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SUMMARY Microsporidia are obligate intracellular pathogens identified ;150 years
ago as the cause of pébrine, an economically important infection in silkworms. There
are about 220 genera and 1,700 species of microsporidia, which are classified based
on their ultrastructural features, developmental cycle, host-parasite relationship, and
molecular analysis. Phylogenetic analysis suggests that microsporidia are related to the
fungi, being grouped with the Cryptomycota as a basal branch or sister group to the fungi.
Microsporidia can be transmitted by food and water and are likely zoonotic, as they parasi-
tize a wide range of invertebrate and vertebrate hosts. Infection in humans occurs in both
immunocompetent and immunodeficient hosts, e.g., in patients with organ transplantation,
patients with advanced human immunodeficiency virus (HIV) infection, and patients receiv-
ing immune modulatory therapy such as anti-tumor necrosis factor alpha antibody. Clusters
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of infections due to latent infection in transplanted organs have also been demonstrated.
Gastrointestinal infection is the most common manifestation; however, microsporidia can
infect virtually any organ system, and infection has resulted in keratitis, myositis, cholecysti-
tis, sinusitis, and encephalitis. Both albendazole and fumagillin have efficacy for the treat-
ment of various species of microsporidia; however, albendazole has limited efficacy for the
treatment of Enterocytozoon bieneusi. In addition, immune restoration can lead to resolution
of infection. While the prevalence rate of microsporidiosis in patients with AIDS has fallen in
the United States, due to the widespread use of combination antiretroviral therapy (cART),
infection continues to occur throughout the world and is still seen in the United States in
the setting of cART if a low CD4 count persists.

KEYWORDS microsporidia, therapy, diagnostics, prevention, Enterocytozoon,
Encephalitozoon, Anncaliia, Vittaforma, AIDS, albendazole, fumagillin

INTRODUCTION

Microsporidia are a diverse group of unicellular obligate intracellular parasites that
were previously believed to be “primitive” early branching protozoa but are now

understood to belong to the fungi as either a basal branch or a sister group (1). Phylogenetic
studies indicate that the microsporidia should be placed with the Cryptomycota as a basal
branch of the fungal kingdom (2). The Cryptomycota have been identified by environmental
microbiome studies, and while poorly described at the biological level, they are closely related
to the microsporidia (3). Cryptomycota that grow as intranuclear parasites of amoeba have
been discovered, and these parasites bear strong morphological similarities to micro-
sporidia (4, 5). These and other microsporidia-like organisms, such as Nucleophaga terri-
cola, Mitosporidium daphniae, and Paramicrosporidium, demonstrate that additional envi-
ronmental sampling is required to completely ascertain the relationship of fungi and
microsporidia and to provide a better understanding of the Cryptomycota and the origin
of microsporidia.

The class or order Microsporidia was elevated to the phylum Microspora by Sprague in
1977 (5). In 1998, Sprague and Becnel suggested that the term Microsporidia instead be
used for the phylum name (6). Microsporidia produce distinctive unicellular spores that are
environmentally resistant (7). The shape and size of these spores vary with the species, but
most microsporidia infecting humans have ovoid spores that range from 1 to 4mm. A defin-
ing feature of all microsporidia is the presence of an extrusion apparatus which consists of a
polar tube attached to the inside of the anterior end of the spore by an anchoring disk.
Depending on the microsporidian species, the polar tube forms 4 to approximately 30 coils
around the sporoplasm in the spore. When exposed to specific environmental conditions,
such as passage through the host's gastrointestinal tract, germination of the spore occurs.
During germination, the polar tube rapidly everts, forming a hollow tube acting as a conduit
to deliver the sporoplasm to the host cell. The mechanism by which the polar tube interacts
with the host cell membrane is an area of active investigation. If a spore is phagocytosed by
a host cell, germination can also occur, enabling the polar tube to pierce the phagocytic
vacuole and resulting in the sporoplasm being delivered into the host cell cytoplasm or into
an adjacent host cell.

Microsporidia have many typical eukaryotic features and contain an intracytoplasmic
membrane system, vesicular Golgi complex, a nucleus with a nuclear envelope, and chro-
mosome separation on mitotic spindles, as well as a mitochondrial remnant organelle
called a mitosome (8, 9). Microsporidia have several characteristics that are unusual for eu-
karyotic organisms. They possess prokaryotic-size ribosomes (10) which lack a 5.8S ribo-
some subunit; however, in their 23S subunit, there is sequence homologous to the 5.8S
region (11). Their genome size varies from 2.18 to 51.35 Mbp, with 2,000 to 5,000 protein
coding genes (Table 1) (12, 13). The genomic size of the Encephalitozoonidae is less than
2.5 Mbp, which places them among the smallest eukaryotic nuclear genomes identified to
date. In this compact Encephalitozoonidae genome, the gene density is high, almost no
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introns exist, and the encoded proteins are significantly shorter than the orthologous pro-
teins seen in other eukaryotes such as Saccharomyces cerevisiae (14, 15).

Analysis suggests that microsporidia may have experienced an early bottleneck in
evolution with a massive gene loss resulting in a core set of conserved genes, and this
core set has been complemented by expansion of transporters that facilitate the obligate in-
tracellular life cycle of these pathogens (16). Further expansion from this core set of genes has
been driven by the acquisition of noncoding DNA (such as transposable elements, etc.), e.g.,
9% of the 51.35-Mbp Edhazardia aedis genome and 90% of the 2.24-Mbp Encephalitozoon
cuniculi genome code for proteins (17, 18). Genome data for the microsporidia are available
online at MicrosporidiaDB.org (https://microsporidiadb.org/micro/) (19), which is part of the
VEuPath database (https://veupathdb.org/veupathdb/) website (Table 1). This website includes
the genomes of the human-pathogenic microsporidia Encephalitozoon cuniculi (15) (all three
strains [20]), Encephalitozoon hellem (21), Encephalitozoon intestinalis (22), Enterocytozoon bien-
eusi (23, 24), Anncaliia algerae, and Vittaforma corneae, as well as microsporidia found in other
organisms (Table 1).

Microsporidia are classically classified by their ultrastructural features, which include the
number of coils of their polar tube, the size, shape, and morphology of their spores, the
features of their developmental life cycle, and their host-parasite relationship. Molecular
phylogenetic data, such as small subunit rRNA sequences, provides a complementary set

TABLE 1Microsporidial genomesa

Organism Strain
Genome
size (Mbp)

No. of protein
coding genes

No. of nonprotein
coding genesb

No. of
pseudogenes

No. of
chromosomes

Amphiamblys sp. WSBS2006 5.62 3,695 48 5
Anncaliia algerae PRA109 17.53 5,330 85 0
Anncaliia algerae PRA339 12.16 3,661 63 0
Anncaliia algerae Undeen 13.82 NA NA NA
Edhazardia aedis USNM 41457 51.35 4,262 72 2
Encephalitozoon cuniculi EC1 2.24 1,898 51 0 12
Encephalitozoon cuniculi EC2 2.24 1,902 51 0 16
Encephalitozoon cuniculi EC3 2.24 1,898 51 2 15
Encephalitozoon cuniculi Ecun III-L 2.29 1,896 51 11 15
Encephalitozoon cuniculi GB-M1 2.5 2,126 33 0 11
Encephalitozoon hellem ATCC 50504 2.25 2,006 78 0 12
Encephalitozoon hellem Swiss 2.18 1,864 51 0 13
Encephalitozoon intestinalis ATCC 50506 2.22 2,011 72 0 11
Encephalitozoon romaleae SJ-2008 2.19 1,883 51 1 13
Enterocytozoon bieneusi H348 3.86 3,806 173 3
Enterocytozoon hepatopenaei TH1 3.25 2,581 45 1
Enterospora canceri GB1 3.1 2,225 47 9
Hamiltosporidium tvaerminnensis OER-3-3 13.27 NA NA NA
Hepatospora eriocheir canceri 4.83 3,117 59 7
Hepatospora eriocheir GB1 4.57 2,770 54 26
Mitosporidium daphniae UGP3 5.64 3,428 98 0
Nematocida ausubeli ERTm2 4.7 2,831 61 0
Nematocida ausubeli ERTm6 4.27 2,544 111 0
Nematocida displodere JUm2807 3.05 2,324 46 0
Nematocida parisii ERTm1 4.07 2,724 63 0
Nematocida parisii ERTm3 4.15 2,788 62 0
Nosema bombycis CQ1 15.69 4,643 175 12
Nosema ceranae BRL01 7.86 2,678 64 554
Nosema ceranae PA08_1199 5.69 3,265 37 19
Ordospora colligata OC4 2.29 1,879 59 0
Pseudoloma neurophilia MK1 5.25 3,676 31 0
Spraguea lophii 42_110 4.98 2,596 53 44
Trachipleistophora hominis unknown 8.5 3,253 41 0
Vavraia culicis subsp. floridensis floridensis 6.12 2,875 102 0
Vittaforma corneae ATCC 50505 3.12 2,340 101 0
aData were obtained from MicrosporidiaDB (https://microsporidiadb.org/micro/). NA, not available.
bNoncoding genes: rRNA, tRNA, etc.
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of data for assigning microsporidia to specific genera as well as distinguishing morphologically
similar microsporidia at the species level (25, 26). Examination of molecular data demonstrates
the polyphyletic nature of the microsporidia and the problems with current classification sys-
tems that use single character states for higher taxonomic groupings. Overviews of the ultra-
structural and structural characteristics, life cycle differences, and history of the microsporidian
taxa can be found in the work of Tuzet (27), Sprague et al. (5), Larsson (28), Issi (29), Weiser
(30), and Sprague et al. (31). Microsporidia are currently separated into three main groups:
(i) the “primitive” microsporidia (Metchnikovellidae), which are hyperparasites of gregarines
found in annelids and which have a rudimentary polar filament and lack a polaroplast in their
spores; (ii) the Burkeidae, Chytridopsidae, and Hesseidsae, which have a short polar filament
and minimal development of a polaroplast and endospore; and (iii) the “higher”microsporidia
that possess a well-developed polar filament, a polaroplast, and a posterior vacuole. Variations
between the current microsporidian classification systems focus primarily on the various char-
acteristics used to divide the “higher”microsporidia into subgroups.

These pathogenic protists were first recognized over 150 years ago with the identifi-
cation of Nosema bombycis by Nageli in 1857 as the cause of the disease pébrine in
silkworms, an economically important insect (13) (Fig. 1). In 2008, Franzen (32) pub-
lished an excellent overview of the history of research on microsporidia, starting with
the discovery of N. bombycis. Microsporidia cause diseases in a wide range of hosts
from invertebrates to vertebrates, including commercially important insects (e.g., silk-
worms and honeybees), fish, cattle, rabbits, rodents, dogs, and primates. Microsporidia
have been developed for use as biologic control agents for several insect pests (13).

The majority of these pathogenic organisms infect their host's gastrointestinal tract;
however, there are documented microsporidian infections of almost all organ systems
(13, 33). Rare reports of human infection were noted as early as 1959 (34), when microspori-
dia were identified in a child with encephalitis. In the 1980s, microsporidia were identified as
opportunistic pathogens in patients with severe immune deficiency due to HIV infection,
and they are now recognized to occur in other immunodeficient patients as well as in

FIG 1 Timeline of investigations on microsporidia.
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immunocompetent hosts (35, 36). Infection with these pathogens can produce a wide spec-
trum of clinical diseases, with chronic diarrhea being the most common presentation in
patients with immune deficiency. Since the advent of combination antiretroviral therapy
(cART), the incidence of microsporidiosis has declined in the HIV-infected population; how-
ever, this infection continues to occur in patients who have low CD4 counts despite cART
(37–40). Besides gastrointestinal tract involvement, there are many examples in the literature
of microsporidian infections causing encephalitis, keratitis, sinusitis, and myositis, as well as
disseminated disease (13, 33). The phylum Microsporidia contains at least 1,700 species dis-
tributed into approximately 220 genera, of which the following have been demonstrated in
human disease (13) (Table 2): Nosema (Nosema corneum, reclassified as Vittaforma corneae
[41]; Nosema algerae, reclassified initially as Brachiola algerae [42] and then Anncaliia algerae
[43]), Enterocytozoon (44), Septata (45) (reclassified as Encephalitozoon [46]), Encephalitozoon,
Pleistophora, Trachipleistophora (47, 48), Brachiola (42), Anncaliia (43), Tubulinosema (49, 50),
Endoreticulatus (51), andMicrosporidium (13).

Morphology of the Microsporidian Spore

Microsporidia form distinctive spores (Fig. 2) which are the infectious stage of their
life cycle and the only stage that can survive outside of the host cell due to their envi-
ronmental resistance. The majority of microsporidian infections in humans are thought
to be a consequence of the ingestion of these spores in either food or water (52). The
spore structure is characteristic of the phylum, and the shape and size of microsporidia
vary depending on the species (53, 54). The spores, depending on the species, range from 1
to 12mm in size, and most spores are either oval or pyriform (5, 55, 56). The general struc-
ture of the spore was first observed in 1894 by Thélohan (57). Since those initial observa-
tions, studies have defined the internal structure of these spores, including the anchoring
disk, polar tube, spore coat, polaroplast, nucleus, and posterior vacuole (58, 59).

The spore coat is composed of three layers, an electron-dense, proteinaceous exospore, an
electron-lucent endospore, and an inner membrane or plasmalemma (60). The endospore,
composed mainly of chitin, functions as the connection of the exospore and plasma mem-
brane (54, 61). Several proteins found in the spore coat possess adhesion domains that are
probably involved in the interaction of microsporidian spores with either the cell surface or
mucus of the gastrointestinal tract before germination (62). The anchoring disk is situated at
the anterior pole of the spore, where the endospore is thinnest in the anterior region (61, 63).
In addition, the anchoring disc is where the polar tube attaches to the spore wall and is
released during spore germination (62). The polar tube was first identifiedmore than 125years
ago by Thélohan and is the defining characteristic of the phylum (57). Prior to germination,
the polar tube is coiled around the nucleus in the spore (the number of coils depends on the
specific microsporidian species) (60, 64, 65). During germination, the polar tube is extruded
from the anchoring disk of the spore and forms a hollow tube that acts as a bridge between
the microsporidian spore and host cell, allowing transfer of the sporoplasm and nucleus into
the host cell cytoplasm, resulting in host cell infection (Fig. 3) (60, 66, 67).

Germination of a spore with extrusion of the polar tube is dependent on environmental
conditions and is species specific, probably reflecting microsporidian adaptation to their
host and external environment (reviewed by Keohane and Weiss [68]). Conditions that pro-
mote spore discharge include various anions and cations, hydrogen peroxide, pH shifts,
dehydration followed by rehydration, mucin, polyanions, the calcium ionophore A23187,
and UV irradiation. Inhibitors of spore discharge include calcium channel antagonists, low
salt concentrations, calmodulin inhibitors, itraconazole, magnesium chloride, ammonium
chloride, sodium fluoride, cytochalasin D, demecolcine, and UV light. The exact mechanisms
that initiate polar tube extrusion are still poorly understood. It has been suggested that ger-
mination is due to increased intrasporal osmotic pressure that results in an influx of water
into the spore, which is accompanied by swelling of the polaroplast and posterior vacuole
before spore discharge. For Ancaliia (Nosema) algerae, it has been theorized that the increase
in osmotic pressure is due to activation, causing trehalose to come into contact with treha-
lase (69, 70). Another study suggested that calcium displacement from the polaroplast mem-
brane results in polaroplast swelling (71, 72).
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The Microsporidian Life Cycle

The majority of species of microsporidia have simple single-host life cycles; however, a few
species have complex life cycles with multiple hosts and can form morphologically distinct
spores in different hosts (e.g., Amblyospora sp. in mosquitoes) (73, 74). The life cycle pattern for
microsporidia can be divided into three stages (Fig. 4): the infective or environmental stage,
the proliferative stage, and the sporogonic or spore-forming stage. During development inside
of the host cell, microsporidia demonstrate different interfacial relationships depending on the
genus of microsporidia (75, 76). These host-parasite interfacial relationships of microsporidia
have been divided into four categories (Table 3), which are thought to represent important
physiological/nutritional differences among the various microsporidia (77–79).

FIG 2 Structure of the microsporidian spore. (A) Scanning electron microscropy (SEM) image of a microsporidian
spore. (B) Microsporidian spore diagram. Microsporidian spores range in size from 1 to 10mm. The spore coat is
thinner at the anterior end of the spore and consists of an electron-lucent endospore (En), an electron-dense exospore
(Ex), and the plasma membrane (Pm). The sporoplasm (Sp) contains ribosomes, the posterior vacuole (PV), and a
single nucleus (Nu). The anchoring disc (AD) at the anterior end of the spore is the site of attachment of the polar
tube. It should be noted that the polar tube is often called the polar filament when it is within the spore prior to
germination. The anterior or straight region of the polar tube that connects to the anchoring disc is called the
manubroid (M), and the posterior region of the tube coils around the sporoplasm. The number of coils and their
arrangement (i.e., single row or multiple rows) is used in microsporidian taxonomic classification. The lamellar
polaroplast (Pl) and vesicular polaroplast (VPl) surround the manubroid region of the polar tube. The insert depicts the
5 polar tube coils in this figure in a cross section illustrating that the polar tube within the spore (i.e., polar filament)
has several layers of different electron densities by electron microscopy. (Reproduced from reference 68 with
permission.)

FIG 3 Germinated microsporidian spores. SEM (A) and transmission electron microscopy (TEM) (B)
images of a germinated spore during infection. Upon exposure to suitable environmental conditions,
the polar tube (PT) rapidly discharges out of the spore (SP) and then interacts with the host cell
membrane, serving as a conduit for the nucleus and sporoplasm passage into the host cell.
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The infective stage, i.e., the spores, are the only stage that can survive outside of the host
cell. When the spores meet an appropriate environmental condition, germination occurs and
the sporoplasm is transported into the host cell via the hollow polar tube (68, 80). As long
as the sporoplasm enters the host cell, it will initiate a reproduction cycle, which terminates
with the production of mature spores. Merogony follows, during which the injected sporo-
plasm develops into meronts (the proliferative stage), which multiply, depending on the spe-
cies, by binary fission or multiple fission. While most microsporidia develop within the host

FIG 4 Developmental life cycles of the microsporidia. Spores germinate and the polar tube is extruded when they are exposed to
specific environmental conditions, which vary depending on the species of microsporidia. Upon germination, the polar tube is
extruded and interacts with the host cell membrane, allowing invasion (see Fig. 6 for a model of this interaction). The sporoplasm
traverses the polar tube, is introduced into the host cell cytoplasm, and begins to proliferate. The morphology of the organism
during the proliferative phase (which is indicated by the region above the dotted line) is used in classification systems for defining
the various microsporidian genera. Relationships of the various microsporidia with their host cells during the proliferative phase are
described in Table 3. On the left side of the figure, the sporoplasm is uninucleate and the microsporidian genera that are defined
during the development of spores, i.e., the sporogenic phase (which is indicated by the region below the dotted line), are all
uninucleate. On the right side of the figure, the sporoplasm is diplokaryotic, and all of the microsporidian genera defined during
spore development have diplokaryotic developmental patterns. Regardless of whether they are uninucleate or diplokaryotic, there
are three basic types of developmental forms. The first developmental pathway, as illustrated by Anncaliia spp., involves cell division
by binary fission that immediately follows karyokinesis. The second type of pathway, as illustrated by some Nosema spp., involves
multiple fission of elongated moniliform multinucleate cells. The third type of developmental pathway, as illustrated by
Endoreticulatus spp., involves the division by plasmotomy of rounded plasmodial multinucleate cells. During the proliferative phase,
cells can have one to several division cycles. Many microsporidia are either in direct contact with the host cell cytoplasm or closely
abutted to the host endoplasmic reticulum; however, other microsporidia are found within a parasitophorous vacuole (e.g.,
Encephalitozoon spp. and probably Tetramicra spp.) or are separated from the host cell cytoplasm by a thick layer of their own
secretions (e.g., Pleistophora spp.). In the sporogonic phase, this thick layer of microsporidian secretions becomes the sporophorous
vesicle. During sporogony, several of the microsporidian genera, such as Enterocytozoon, Nosema, Anncaliia, Ichthyosporidium, and
Tetramicra, maintain direct contact with the host cell cytoplasm. A sporophorous vesicle, illustrated by a circle around the developing
sporogonial stage, is formed by the other microsporidian genera. During the developmental cycle of Thelohania and the Thelohania-
like part of the Vairimorpha cycle, it should be noted that the diplokarya separate and continue their development as cells with
isolated nuclei. (Adapted from reference 453 with permission.)
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cell cytoplasm, some genera of microsporidia will infect the nucleoplasm of the host cell or de-
velop in both the cytoplasm and nucleus (81–84). There are two distinct phases in the devel-
opment of microsporidia inside of host cells: the proliferative (merogony) stage and the sporo-
gonic stage (Fig. 4 and 5). The merogony stage is responsible for the massive increase in
number of infecting organisms (61). At the end of merogony, an electron-dense material is
formed on the external face of the merozoite plasma membrane, which is the sign of the
switch from merogony to sporogony (85). Sporonts give rise to sporoblasts, which go on to
form mature spores without additional multiplication. In most species, the dense material
on the plasma membrane in sporogony will become the primordium of the exospore layer
of the spore wall (86). The polar tube and Golgi complex will also develop in the sporoplasm
of the sporoblast (54, 87, 88). Even though the sporoblast plasma membrane is covered by a
continuous layer of dense material, this layer can also form tubular or fibrillar expansions
that protrude from the surface of the sporoblast into the parasitophorous vacuole (86).
Once a host cell becomes distended with mature spores, the cell ruptures, releasing mature
spores into the environment and completing the life cycle. The combination of merogony
and sporogony results in a large number of spores being produced from a single infection
and underlies the huge reproductive potential of these organisms.

IN VITRO CULTIVATION OF MICROSPORIDIA INFECTING HUMANS

Early studies on the in vitro culture of microsporidia focused on economically important
species such as Nosema bombycis (a pathogen of silkworms), Nosema apis (a pathogen of
honeybees), Ameson michaelis (a pathogen of blue crabs), Brachiola (Nosema) algerae (a
pathogen of mosquitoes), and Vavraia culiceis (a pathogen of mosquitoes) (6, 89, 90). The
first successful in vitro cultivation of microsporidia was conducted by Trager in 1934 by
inoculating silkworm ovarian tube lining cells with the insect parasite Nosema bombycis
(91). Encephalitozoon cuniculi was the first microsporidian of mammalian origin cultured in
vitro (89). In order to prevent the growth of bacteria and fungi during the primary isolation

TABLE 3 Interfacial relationships of the microsporidia

Type of contact Interfacial relationship
Type I. Direct contact Direct contact of microsporidian plasmalemma with the host cell cytoplasm. This is seen in Enterocytozoon bieneusi,

Anncaliia, and Nosema.
Type II. Indirect contact by
host-produced isolation

Subtype A. Microsporidia are in a parasitophorous vacuole (PV)-host-formed single membrane that surrounds the
developing organism. The PV is seen in the proliferative and sporogonic phases of development, but the
relationship of the developing microsporidia changes during development. Early in development, the organisms
have a close association with the PV membrane until the development of a thickened sporont plasmalemma, when
they appear loose within the PV. This type of development is seen in Encephalitozoon hellem and Encephalitozoon
cuniculi.

Subtype B. Throughout development, the microsporidia are surrounded by the host endoplasmic reticulum (ER) that
appears as a double membrane surrounding the developing microsporidian cells. In the proliferative phase, these
host ER double membranes closely follow the dividing microsporidian plasmalemma and no vacuole is seen.
During sporogony, a double-membraned PV is formed by the host ER, which surrounds the cluster of organisms
formed in sporogony. This type of development is seen in Endoreticulatus and Vittaforma.

Type III. Indirect contact by
parasite-produced isolation

Subtype A. During development, microsporidia secrete an envelope that surrounds the developing organisms. In
sporogony, this envelope becomes a sporophorous vesicle (SPOV) as the microsporidian plasmalemma thickens
and pulls away from the secreted envelope. This type of development is seen in Pleistophora.

Subtype B. During early development, the microsporidia are in direct contact with the host cell cytoplasm. As
development proceeds, a membrane formed by the microsporidia isolates sporonts from contact with the host cell
cytoplasm. This type of development is seen in Vairimorpha.

Type IV. Indirect contact by
host- and parasite-produced
isolation

Subtype A. During merogony, the host ER closely associates with the microsporidian plasmalemma. As development
proceeds, the developing microsporidia form an interfacial envelope by producing “blisters” that arise from the
plasmalemma, resulting in a SPOV, which can contain tubules, being formed in sporogony. This type of
development is seen in Glugea and Loma.

Subtype B. During development, both the host and parasite contribute to the formation of a thick interfacial
envelope surrounding the developing organisms. This type of development is seen in Trachipleistophora.

Subtype C. During development, a PV formed by the host surrounds the organisms. Within the PV, microsporidian-
secreted material surrounds each organism. This type of development is seen in Encephalitozoon intestinalis.
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of microsporidia and establishment of in vitro cultures, a combination of antibiotics and
antifungal agents is usually utilized (61, 89–91).

Since microsporidia were found to be able to infect humans, there have been 10 genera
and 17 species of microsporidia reported as etiologic in human infections. Several of these
human-infecting microsporidia have been stably cultured in various cell lines (Table 2) (90,
92). The first successful in vitro cultivation of a human microsporidium was Vittaforma cor-
neae, which was isolated from the corneal biopsy specimen of an immunocompetent
patient (93). The corneal samples were either minced or digested by trypsin and collagenase
and then inoculated into different cell lines, such as SIRC cells, MDCK cells, or rabbit
embryo fibroblasts, and infection could be seen after 30days postinoculation. More than
13 isolates of Encephalitozoon cuniculi, 30 isolates of Encephalitozoon hellem, and 30 isolates
of Encephalitozoon intestinalis have been reported to be successfully cultured (94–121).
These parasites were isolated from various tissue or biological samples, including corneal
scrapings, conjunctival biopsy specimens, urine, sputum, bronchoalveolar lavage fluid,
nasal mucosal biopsy specimens, duodenal biopsy specimens, and stool. Enterocytozoon
bieneusi is the most frequently identified microsporidian that can cause the diarrhea in
AIDS patients. A continuous in vitro culture system for Enterocytozoon bieneusi has not
been established (116, 119). Short-term culture of Enterocytozoon bieneusi has been achieved
in E6 and HLF cells, but those cultivation systems could not produce significant numbers of
spores (119, 122).

EPIDEMIOLOGY
Prevalence in Humans

Microsporidia infect a wide range of animals, including humans, and spores are shed into
the environment, increasing the probability for human exposure. Microsporidian spores are of-
ten found in surface water, and human-pathogenic microsporidia have been found in munici-
pal water supplies (123), hospital effluent (124), tertiary sewage effluent, and groundwater
(125, 126). Human infections due to microsporidia have been identified from all continents
except Antarctica, and stool samples from Africa, Asia, Europe, Australia, North America,
Central America, and South America have all been shown to contain microsporidia (13, 127).

Before the AIDS pandemic, microsporidia were rarely identified in humans (56, 128).
The first authenticated record of a human infected with microsporidia was reported in
1959, when an Encephalitozoon sp. was detected in Japan in a boy with convulsions
(34). Prior to this, there was a report of a case in 1927 in a newborn baby attributed to
“Encephalitozoon chagasi” (129), but it is not clear that that organism was correctly

FIG 5 Transmission electron microscopy of an Encephalitozoon hellem parasitophorous vacuole.
Meronts (MR) can be seen adhering to edge of the vacuole, whereas sporonts (SP), sporoblasts (SB),
and mature spores (S) detach from the vacuole membrane and move to the center of the vacuole.
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identified. Another early case of microsporidiosis was reported in 1937 in a 4-week-old
child who presented with fatal encephalomyelitis and chorioretinitis (130).

The prevalence data for microsporidiosis in human populations, before the era of
AIDS, relied mainly upon serology based on detecting antibodies to Encephalitozoon
cuniculi. The worldwide seroprevalence rates that were reported ranged from 0% to
42% (9, 56, 131–133). Singh et al. (134) found positive titers in 8.7% of healthy adults in
England (n=69), 18.5% of Malaysians with filariasis (n=70), 42% of Nigerians with tuberculosis
(n=89), and 36% of Ghanaians with malaria (n=92). In another study, while no nontravelers
(n=48) were seropositive, 12% of travelers (n=115) returning from the tropics were seroposi-
tive (135). In another study, 33% of HIV-positive men (n=30) were seropositive and of them
100% had traveled to the tropics (132). Antibodies to Encephalitozoon intestinalis were
seen in 5% of pregnant French women and 8% of Dutch blood donors (136). In a study
of HIV-positive Czech patients, 5.3% were seropositive to Encephalitozoon cuniculi and
1.3% to Encephalitozoon hellem (137). In a study in Slovakia, 5.1% of slaughterhouse
workers were seropositive to Encephalitozoonidae (138). Taken as a group, these various
serologic studies suggest that exposure to microsporidia is common and that this expo-
sure often results in an asymptomatic infection.

Increased cases of microsporidian infections were reported in humans with the
expansion of the AIDS pandemic. The majority of these were due to Enterocytozoon
bieneusi or Encephalitozoon intestinalis (Table 2). Reported prevalence rates in the stud-
ies conducted in HIV-infected patients before 1998 and the widespread use of combi-
nation antiretroviral therapy (cART) demonstrated a prevalence of gastrointestinal
microsporidiosis that varied between 2% and 70%, depending on the symptoms of the
population studied and the diagnostic techniques utilized (13, 33, 139). When these early
studies were combined, the overall prevalence of microsporidial infection in patients was
estimated to be 15% (133, 140–142), and in the setting of chronic diarrhea and advanced
AIDS, the prevalence of Enterocytozoon bieneusi infection was estimated to be 30%. A more
recent meta-analysis in 2018 of 131 studies examining microsporidia, cryptosporidium, and
isospora infections in HIV-infected individuals found a pooled prevalence of 11.8% (confi-
dence interval [CI], 10.1% to 13.4%) for human gastrointestinal microsporidiosis using a ran-
dom effects model (139). A lower prevalence of infection was found in high-income coun-
tries and higher prevalence in low-income countries, especially in sub-Saharan Africa (139).
In a 10-year study, the prevalence of microsporidia was significantly higher in samples from
HIV-positive patients (13.9%) than in samples from HIV- negative patients (8.5%) (143), and
the percentage of children that were microsporidia positive (18.8%) was significantly higher
than that of adults (10.2%) (143). A study in Mexico in 2019 found that 67% of HIV patients
with diarrhea had microsporidiosis. A study in Argentina in 2019 found that 12.6% of HIV
patients with chronic diarrhea had microsporidiosis by endoscopy and stool examination
(144). A study in Malawi in 2018 in HIV-positive children found a baseline prevalence of
microsporidiosis of 37% before starting cART and that this prevalence dropped after cART
was started (145). While it is clear from several studies that cART can hasten the resolution
of microsporidiosis, the literature contains many reports that microsporidia can still be a
problem despite cART, especially if the CD4 count remains low (37–40). In France, a 2012
study found microsporidia in 8% of HIV patients on cART with a low CD4 count who had di-
arrhea (37). A study in China in 2017 demonstrated an 11.7% prevalence of microsporidia in
HIV-positive patients, and half of these patients were on cART (146). A study from Cameroon
in 2016 demonstrated a prevalence of microsporidia of 24.5% in HIV patients on cART (147).

Microsporidiosis has been reported in patients without HIV, including travelers to
tropical countries (3.3% to 10%), children with and without diarrhea (1.7% to 17.4%),
and the elderly (17.2%) (133, 148–151). A study of school children in Malaysia demonstrated
a rate of 27% (143, 152). Both Enterocytozoon bieneusi and Encephalitozoon intestinalis infec-
tions have been reported in travelers to and residents of tropical countries (26, 153–156). It
has also been observed that latent infection with shedding of spores is common in immuno-
competent humans (157). In immunocompetent hosts, while the majority of reported cases
of microsporidiosis have manifested as self-limited diarrhea, there are also many reports
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from Asia of ocular infections with Vittaforma corneae that presented as keratoconjunctivitis
(158–160). The incidence of microsporidia in healthy individuals indicates that there is high
exposure to microsporidia in the environment (151, 161).

Risk Factors

Microsporidia are considered opportunistic pathogens, and the major risk factor, especially
in HIV infection, is depressed cell-mediated immunity (162, 163), with individuals with a CD4
T-lymphocyte count below 50 to 100 cells/mm3 having a high susceptibility to microsporidio-
sis (164). Other immunosuppressed patients are also at risk, i.e., cases have occurred in patients
on chemotherapy, in organ transplant recipients, and in bone marrow graft recipients
(165–175). Enterocytozoon bieneusi infections have occurred in patients who have had liver,
heart-lung, or kidney transplantation; Encephalitozoon sp. infections have occurred in patients
who have had bone marrow, liver, kidney, or pancreas transplantation; Tubulinosema acrido-
phagus has occurred in a patient who had a bone marrow transplantation; and Anncaliia
algerae has occurred in a patient who had a lung transplantation (49, 168, 169, 171, 176–183).
Chronic bilateral keratoconjunctivitis due to Encephalitozoon sp. has occurred in a patient tak-
ing prednisone (20mg/day) (184).

There have been several cases of the transmission of microsporidiosis due to transplanted
organs (185, 186). Three patients were infected by transplanted organs (kidney, kidney, and
bilateral lungs) from an Encephalitozoon cuniculi-seropositive donor, and kidney biopsy led to
the correct diagnosis in all three cases. The onset of symptoms (fever, renal dysfunction, and
encephalopathy) was 7 to 10weeks posttransplantation, and death in one patient was directly
related to failure of the transplanted kidney. The other kidney recipient received 6months of
albendazole therapy and remained healthy afterward (185). In a second cluster, which also
involved three patients infected by transplanted organs (kidney, liver, heart/kidney), the index
case presented with neurological symptoms, including headache and encephalitis (186).
Kidney and urine specimens demonstrated Encephalitozoon cuniculi in these patients, and
infection responded to albendazole (186).

The consumption of untreated water has been a risk factor for infection among
travelers and residents, contact lens use is a strongly associated risk factor in micro-
sporidian keratoconjunctivitis, and both young and advanced ages have been identi-
fied as risk factors for infection (148, 154, 187–189). Water contact has been found to
be an independent risk factor for microsporidiosis in some studies (190, 191) but not in
others (192, 193). Outbreaks of Vittaforma corneae infection have been associated with
hot springs exposure (194) and exposure to soil (195, 196). Encephalitozoon cuniculi
spores in water remain viable for 6 days (197).

Modes of Transmission

Microsporidia as an obligate intracellular parasite can infect a wide range of hosts, includ-
ing all major animal groups and humans; however, the manner of transmission and source of
human infection have not been fully elucidated (34, 133, 198). In humans, microsporidiosis is
most likely a zoonotic infection. Species of microsporidia that infect humans have been found
in wild animals, domestic pets, and food-producing farm animals (140). Transmission routes
for infection include ingestion of contaminated food and water, fecal-oral contamination, inha-
lation of contaminated aerosols, inoculation into open wounds, inoculation into the eye, and
sexual transmission (7, 52, 133, 199, 200). Encephalitozoon cuniculi was found to be transmissi-
ble via rectal infection in rabbits (201). Encephalitozoon hellem has been demonstrated in respi-
ratory mucosa, the prostate, and the urogenital tract of patients, indicating that respiratory
and sexual transmission are possible in humans (202, 203). While congenital transmission of
Encephalitozoon cuniculi has not been seen in humans, it has been seen in other mammals,
including mice, horses, rabbits, dogs, foxes, alpaca, and squirrel monkeys (204).

Zoonotic Transmission

Many species of microsporidia that can infect humans are also able to infect a wide
range of animals, supporting that zoonotic transmission likely occurs. Direct evidence
of zoonotic transmission was reported in a child who was infected with Encephalitozoon
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cuniculi after being exposed to an infected litter of puppies and in a 2-year-old child who
was infected with Enterocytozoon bieneusi after being exposed to infected guinea
pigs (205, 206). The species that infect humans, particularly Enterocytozoon bieneusi
and Encephalitozoon spp., have been reported frequently from a wide range of mamma-
lian hosts, including dogs, pigs, donkeys, cats, goats, rabbits, and cattle (26, 133, 141, 199,
207–210). Molecular epidemiologic studies, based on genotyping of polymorphisms in
the ribosomal internal transcriber spacer (ITS) nucleotide sequence, have enabled the
identification of Enterocytozoon bieneusi isolates that are unique to specific animals or
humans as well as isolates seen in both humans and animals (12–14, 26). Additional mo-
lecular epidemiologic studies on Enterocytozoon bieneusi have been performed using
multilocus sequence typing (MLST) based on microsatellites, and this technique supports
the ITS data (13). Variations in the ITS region also define isolates of Encephalitozoon cuniculi
that correlate with their original mammalian hosts and additionally can be used to
distinguish isolates of Encephalitozoon hellem (12, 13, 97).

Studies performed on urban pigeons revealed that there is no barrier to microspori-
dian transmission between park pigeons and humans for Encephalitozoon intestinalis
and Encephalitozoon hellem, suggesting the potential zoonotic transmission of micro-
sporidia between birds and humans (211). Visiting urban parks has been identified as a
high-risk factor for microsporidiosis in children and the elderly (211). Encephalitozoon
cuniculi is often identified in rabbits and dogs (97, 212). The Encephalitozoonidae are
found in numerous species of mammals and birds, and in several reports, the onset of
human infection was associated with exposure to fowl, budgerigars, lovebirds, or livestock
(198, 200, 213–215). Tubulinosema and Anncaliia are pathogens of insects. Nosema and
Vittaforma infections are thought to be due to the inoculation of environmental spores of
insect pathogens into the cornea (198). Even though zoonotic transmission has not been
proven for all species of microsporidia, there appears to be a risk for infection when there is
close contact with infected wild, domesticated, and pet animals and also following exposure
to water, food, or aerosols contaminated by microsporidian spores (199, 214, 216, 217).

Waterborne Transmission

Waterborne transmission is an important risk factor for intestinal diseases, causing
significant morbidity and mortality worldwide (123, 218). Several characteristics of
microsporidian spores indicate a high probability that waterborne transmission is im-
portant for microsporidiosis. Microsporidian spores have been demonstrated to survive
for extended periods of time in water, the small size of spores make filtering processes
less efficient, and the oral infectious dose is relatively low (219). Microsporidian spores
are released from feces, urine, and animal carcasses of infected animals and can be dis-
persed into water sources, contaminating potable and recreational water (220, 221).
The presence of microsporidia seen in human infections, e.g., Enterocytozoon bieneusi,
Encephalitozoon intestinalis, Vittaforma corneae, and Pleistophora sp., has been con-
firmed in tertiary sewage effluent, surface water, and groundwater (123, 125, 222, 223).
Encephalitozoon hellem and Encephalitozoon intestinalis have both been demonstrated
to be present in surface waters contaminated by waterfowl feces (224).

Foodborne Transmission

Microsporidia are pathogens of concern for foodborne transmission due to the globaliza-
tion of food supply, faster transportation of food, modifications in food consumption patterns,
and increased consumer travel (225, 226). Transmission of microsporidiosis may occur due to
the global food chain industry involving consumption of crustaceans (e.g., clams, lobster,
shrimp) and fish (215, 218). Eating raw or insufficiently cooked meat or unwashed vegetables
and fruits has been associated with microsporidiosis. People who consumed raw vegetables
had a 2-fold increase in infection with microsporidia compared to those who consumed
cooked vegetables (150). In a study conducted in agricultural markets in the Central Valley of
Cost Rica, microsporidia were detected in cilantro, parsley, lettuce, blackberries, and strawber-
ries (227). A study in 2018 demonstrated the presence of Enterocytozoon bieneusi and
Encephalitozoon spp. in vegetable samples from farms that were irrigated with contaminated
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water resources (228). Eating of undercooked meat has also been associated with microspori-
dian infection in HIV-infected individuals (133, 191). Encephalitozoon cuniculi has been identi-
fied in fermented meat products that are consumed without cooking (229).

Vertical and Horizontal Transmission

Vertical transmission of microsporidia has been observed in insects, nematodes,
fish, crustaceans, rabbits, and carnivores (204, 230–234). Vertical transmission of micro-
sporidia can induce a sex ratio distortion, which makes these the only eukaryotic para-
sites known to change the sex of their hosts (235, 236). Vertical transmission in humans
has not been observed (204, 237–239).

Horizontal transmission is usually characterized by a high parasite burden and
accompanying pathogenicity (233). As noted previously, the probable routes of hori-
zontal transmission of microsporidia include ingestion of contaminated food or water,
fecal-oral transmission, and inhalation of contaminated aerosols (7, 127, 200, 239). Oral
transmission of spores by means of contaminated food and water is probably the
major pathway for horizontal transmission (198, 240, 241). An early serologic study of
homosexual men in Sweden indicating an increased prevalence of antibodies to
Encephalitozoon cuniculi in this group suggested that oral-anal contact or anal penetra-
tion during sex may contribute to horizontal transmission, and these were subse-
quently identified as risk factors for intestinal microsporidiosis (132, 191, 242).

HOST-PARASITE INTERACTIONS

Microsporidia possess one of the most fascinating parasite invasion mechanisms,
with their environmentally resistant spore and unique polar tube invasion apparatus
(243). The polar tube’s function is to transmit infection by penetrating the host cell,
acting as the conduit for the parasite sporoplasm and nucleus from the spore into a
new host cell (13, 66, 243, 244). Due to the size of the spores (1 to 10mm), diameter of
the polar tube (0.1 to 0.2mm), and rapidity of both polar tube discharge and sporo-
plasm passage (,2 s), study of this process has been difficult (59, 245, 246). To this
end, despite being described over 100 years ago (57), both invasion and the polar tube
are poorly characterized. We do not understand how this structure forms during devel-
opment, how it functions during eversion, or how the polar tube interacts with the
host cell to permit penetration of the sporoplasm and nucleus into the host cell (243).
Furthermore, we do not understand the full complement of proteins that make up this
structure.

Spore Wall Proteins and Host Cell Interaction

There are three layers in the microsporidian spore wall, a proteinaceous exospore,
an electron-lucent endospore, and an underlying plasma membrane (Fig. 2) (54, 56, 78).
Chitin is a component of the endospore wall (247) and fibrillar system of the exospore wall.
To this end, a chitin deacetylase has been identified as a spore wall protein (SWP) (248, 249).
It is believed that several of the proteins in the spore wall, especially in the exospore, partici-
pate in binding to the host cell or triggering signaling during invasion (62, 250, 251).

SWP1, a glycine- and serine-rich protein, is developmentally regulated and is present in
the exospore wall (67, 86, 252). SWP2, a 150-kDa spore wall glycoprotein, is found in mature
spores of Encephalitozoon intestinalis (253). A third spore wall protein (SWP3/Enp2) was iden-
tified by proteomic studies and is found in all microsporidia (254, 255). A fourth spore wall
protein localized in the exospore wall (SWP4/Enp1) appears to be involved in the adhesion
of spores to various carbohydrates (62, 251, 255). Other putative SWPs have been identified
in Nosema bombycis (256–260) but have not been confirmed to occur in other microspori-
dia. Several of these various SWPs are modified by posttranslational glycosylation involving
mannosylation (261–263). These modifications are probably important for spore adherence
to mucin or host cells during passage of spores in the gastrointestinal tract, facilitating inva-
sion; in support of this concept, exogenous glycosaminoglycans decreased adherence of
spores to host cells (62, 251, 255). Using proteomic techniques, SWP5 from Encephalitozoon
cuniculi (EcSWP5) and Encephalitozoon hellem (EhSWP5) (264) were also identified. Antibody
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to EcSWP5 stained parasites that were undergoing cytokinesis but did not stain mature
spores, indicating that SWP5 is developmentally regulated (264).

Several SWPs identified from Antonospora locustae, Nosema bombycis, and Encephalitozoon
spp. are able to interact with host cells through their ability to bind to host cell surface sulfated
glycosaminoglycans (GAGs) as well as heparin-binding motifs (HBM) (62, 251, 253, 257, 265,
266). Encephalitozoon cuniculi EnP1 was the first spore wall protein reported to bind host cell
GAGs (Fig. 6) (62). Six spore wall proteins of Nosema bombycis (NbSWP7, NbSWP9, NbSWP11,
NbSWP12, NbSWP16, and NbSWP26) have been shown to have heparin binding domains and
have been demonstrated to be important for host cell binding and invasion (265, 267–269).

FIG 6 Model of microsporidian (Encephalitozoon) host cell invasion. The spore wall contains spore wall proteins (SWPs)
that can interact with glycosaminoglycans (GAGs) and other substances in the mucin layer (green) of the gastrointestinal
track. These interactions are probably involved in germination. As the polar tube germinates, the polar tube adheres to the
host surface by interactions of polar tube protein 1 (PTP1) with host cell surface mannose binding proteins (MBP). This
allows the polar tube to form an invasion synapse by pushing into the host cell membrane. In the formation of the
invasion synapse, interactions of PTP1 (and possibly PTP4) with the host cell membrane result in the establishment of a
protected microenvironment for the extruded microsporidian sporoplasm which excludes the external environment. Within
the invasion synapse, epitopes of polar tube protein 4 (PTP4) that are exposed at the tip of the polar tube interact with
transferrin receptor 1 (TfR1), and possibly other host cell-interacting proteins (HCIPs), at the host cell plasma membrane,
triggering signaling events. During the final steps of invasion, these various interactions lead to the formation of the
invasion vacuole, which can include clathrin-mediated endocytosis as well as the involvement of host cell actin. The
sporoplasm (and meront) possesses surface proteins, such as sporoplasm protein 1 (SSP1), which interact with various host
cell surface proteins, tethering the sporoplasm to the plasma membrane during invasion and facilitating development of
the invasion vacuole. At this early stage of infection, host mitochondria are already located around the invasion vacuole.
As the vacuole completes its internalization, the sporoplasm becomes a meront and starts replicating. The meront surface
interacts with the invasion vacuole membrane, forming electron-dense membrane structures that allow meront SSP1 to
interact with voltage-dependent anion selective channels (VDAC) located on the outer membrane of the mitochondria. The
interaction of SSP1 and VDAC appears to play a crucial role in association of host cell mitochondria with the invasion
vacuole, facilitating energy acquisition from the host cell by the replicating meronts.

Human Microsporidiosis Clinical Microbiology Reviews

October 2021 Volume 34 Issue 4 e00010-20 cmr.asm.org 15

https://cmr.asm.org


The spore wall protein EhSWP1 of Enterocytozoon hepatopenaei also contains a heparin bind-
ing domain and can bind to GAGs of host cells during invasion (270). In addition to binding to
GAGs, Nosema bombycis spore wall protein NbSWP26 interacts with Bombyx mori turtle-like
protein (BmTLP), which is a receptor involved in antigen presentation to the immune system
(271). Incubation of host cells with recombinant alpha 5 beta 1 and alpha 3 beta 1 human
integrin proteins inhibited host cell infection and spore adherence, indicating that integrins on
the host cell surface are involved in invasion and spore adhesion (272). Genomic analysis of
Encephalitozoon intestinalis indicates that numerous proteins in this organism possess integrin
binding motifs that could participate in interactions of the spore wall and host cell surface
integrins (272).

Polar Tube Proteins and Host Cell Interaction

Microsporidia possess a unique, highly specialized invasion apparatus termed the
polar tube (Fig. 3). During infection, the polar tube is rapidly extruded from the spore
under appropriate environmental stimulation and transports the nucleus and sporo-
plasm into the host cell (59, 245, 246). There are six polar tube proteins (PTP1 to PTP6)
that have been identified from microsporidia, and several of these PTPs are involved in
host cell interactions (Fig. 6) (243, 273). PTP1 is a key component of the polar tube
(274–276) and is a heavily mannosylated protein with a substantial number of O-linked
mannosylation modification sites (262). Mannose pretreatment of host cells decreased
Encephalitozoon hellem infection, consistent with an interaction between the glycoepi-
topes of PTP1 and host cell mannose binding molecules such as dectin-2, mannose
binding lectin (MBL), and C-type lectin receptors (262, 277). Proteomic and immuno-
logic approaches resulted in the identification of PTP2 and PTP3 (276, 278). PTP1, PTP2,
and PTP3 can be purified as a complex using cross-linking agents (278, 279). Yeast
two-hybrid methods confirmed an interaction of PTP1, PTP2, and PTP3 and allowed
mapping of PTP1 subdomain interactions (279). Interestingly, PTP1 interacts with itself
and other PTPs at both its C- and N-terminal subdomains, but its central repetitive core
does not interact with other PTPs (279), consistent with the hypothesis that the PTP1
central region is not involved in protein-protein interactions that are needed to form
the polar tube. A unique epitope of Encephalitozoon hellem PTP4 was found to specifi-
cally localize to the tip of the polar tube and was shown to bind to the host transferrin
receptor 1 (TfR1), which is one of the key receptor proteins in the clathrin-mediated
endocytosis pathway (280). Blocking this interaction with recombinant proteins or anti-
bodies specific to either protein reduced host cell invasion, indicating that PTP4 and
TfR1 are crucial for microsporidian invasion (280). PTP4 and PTP5 homologs are present
in the genomes of other microsporidia such as Anncaliia algerae, Encephalitozoon intes-
tinalis, and Encephalitozoon cuniculi. Like the ptp1 and ptp2 genes (276) that occur in
close proximity to each other in the genome, the ptp4 and ptp5 genes are also found
in close proximity to each other within the genome, suggesting that they may have
been linked in either evolution or expression (13, 60). More recently, a sixth polar tube
protein (PTP6) was identified from the insect microsporidian Nosema bombycis.
NbPTP6 is rich in histidine and serine and has multiple glycosylation sites (273). This
protein has also been identified by proteomic studies of the composition of the polar
tube in Encephalitozoon hellem (L. M. Weiss, unpublished data). NbPTP6 has been
shown to bind to the host cell surface, suggesting a potential role in the process of po-
lar tube interaction with host cell (273).

Sporoplasm Proteins and Host Cell Interaction

It had been postulated that the polar tube functions like a hypodermic needle in
penetration of the host cell (13, 66, 243); however, electron micrographs of the polar
tube interaction with its host cell demonstrated that an invagination occurs at the site
of this interaction (13, 243). If spores are germinated in medium and the sporoplasm
emerges from the polar tube tip, it is very delicate and swells and breaks, suggesting that sur-
vival of the emerging sporoplasm probably requires a protected environment (13). It is
thought that the polar tube invaginates the host cell membrane, forming a microenvironment

Han et al. Clinical Microbiology Reviews

October 2021 Volume 34 Issue 4 e00010-20 cmr.asm.org 16

https://cmr.asm.org


(the invasion synapse) in which final penetration occurs (Fig. 6). During infection, the sporo-
plasm is discharged from the spore through the polar tube into this invasion synapse, which
is formed by the polar tube and host cell plasma membrane (243). An ultrastructural study of
Anncaliia algerae demonstrated that the extracellular discharged sporoplasm tightly abutted
the host plasmalemma and appeared to be in the process of being incorporated into the host
cytoplasm by phagocytosis and/or endocytosis (281).

A sporoplasm surface protein (SSP1) was identified from Encephalitozoon hellem,
and EhSSP1 was shown to bind to the host cell surface at the site where the polar tube
invaginated the host cell membrane during invasion (282). Upon invasion, the sporo-
plasm enters the proliferative phase of the microsporidian life cycle, which is marked
by extensive multiplication via merogony (243, 283). Host cell voltage-dependent
anion channels (VDAC1, VDAC2, and VDAC3) interact with EhSSP1 and EhSSP1 colocal-
ized with host mitochondria and the microsporidian parasitophorous vacuoles in
infected cells. (282). Electron microscopy demonstrated that the outer mitochondrial
membrane interacted with meronts and the parasitophorous vacuole membrane, that
mitochondria clustered around meronts, and that VDACs were concentrated at the
interface of the mitochondria and parasites (282). RNA interference (RNAi) knockdown
of VDAC1, VDAC2, and VDAC3 in host cells resulted in a significant decrease in the number
and size of the parasitophorous vacuoles and a decrease in mitochondrial parasitophorous
vacuole association (282). Microsporidia lack mitochondria and are reliant on the host for ATP
generation, suggesting that the interaction between the microsporidian intracellular sporo-
plasm and the parasitophorous vacuole is crucial for the energy transportation from the host
(8, 284, 285). The interaction of EhSSP1 with VDAC probably plays an important part in energy
acquisition by microsporidia via its role in the association of mitochondria with the parasito-
phorous vacuole (Fig. 6).

An ATP-binding cassette (ABC) transporter subfamily protein NoboABCG1.1 identified in
Nosema bombycis was found on the sporoplasm, meront, and mature spore. This ABC trans-
porter has been shown to be important for microsporidian nutrient acquisition from its host
cells (286). The family of nucleotide transporters (NTTs) which localize to the surface of the
sporoplasm membrane of Encephalitozoon cuniculi and Trachipleistophora hominis has been
demonstrated to transport ATP from the host cytoplasm (287). The major facilitator superfam-
ily protein, which localizes to the proliferative meronts of microsporidia, can also uptake ATP
and GTP (288). In Encephalitozoon spp., host mitochondria are in direct contact with the parasi-
tophorous vacuole, which is thought to facilitate the energy transport into meronts (289, 290).

IMMUNOLOGY

There are limited data for humans on the immune response to microsporidiosis. A
significant humoral response clearly occurs during infection, and antibodies are formed
that react with both the spore wall and polar tube. Immune defects in cell-mediated
immunity are associated with microsporidiosis, as demonstrated by the prevalence of
this infection in patients with AIDS or transplantation. Encephalitozoon cuniculi infec-
tion in mammals results in chronic infection with persistently high antibody titers and
ongoing inflammation, as demonstrated by the occurrence of persistent encephalitis
and chronic renal disease in rabbits. Latent infection occurs, allowing relapse, and
albendazole treatment cannot eliminate latency in immunodeficient mice (291, 292).
The protective immune response to microsporidia is dependent on cell-mediated immunity.
Adoptive transfer of sensitized syngeneic T-enriched spleen cells protects athymic or SCID
mice against lethal Encephalitozoon cuniculi infection but not naive lymphocytes or hyperim-
mune serum (293, 294). Studies using macrophages have demonstrated that reactive nitro-
gen and oxygen species or iron sequestration can contribute to the ability of these cells to
control Encephalitozoon cuniculi infection (295). Maternal antibodies protect newborn rabbits
from infection with Encephalitozoon cuniculi during the first 2weeks of life (296). IgM anti-
bodies against PTP1 in normal human serum may play a role in preventing infection with
E. cuniculi (297). These data indicate that antibodies almost certainly have a role in limiting
infection in the host, although they are not sufficient by themselves to prevent mortality or
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cure infection. Studies with both Encephalitozoon intestinalis and Encephalitozoon cuniculi
have shown that gamma interferon (IFN-g) knockout mice cannot clear infection (298).
Treatment of mice infected with Encephalitozoon cuniculi with neutralizing antibody to IFN-g
or interleukin 12 (IL-12) results in increased mortality (299). In p40 knockout mice, which are
unable to produce IL-12 and have impaired CD81 cell function, Encephalitozoon cuniculi
infection results in death (300, 301).

The role of individual T-cell subtypes in disseminated microsporidiosis following intraperi-
toneal infection has been examined using murine models (301). The cytotoxic T-cell
response is a key factor in the immune response to Encephalitozoon cuniculi. Mice deficient
in CD81 cells succumb to infection, but mice deficient in CD41 cells are similar to wild-type
mice. The protective effect of CD81 T cells is mediated by their ability to produce cytokines
and to reduce microsporidian tissue burden. Studies have demonstrated that the protection
provided by CD81 T cells is through the perforin pathway, and mice lacking perforin die
when infected with Encephalitozoon cuniculi (301). The route of infection is important in
cases where immune cells are involved in a protective response. For example, if mice are
infected orally with microsporidia, both the CD41 and CD81 T cells are involved in the pro-
tective immune response generated by the gastrointestinal tract (302, 303). The CD81 ab

population is a critical cell subset for protective immunity (304). IFN-g production by dendri-
tic cells is important for priming the gut intraepithelial lymphocyte response following oral
infection with Encephalitozoon cuniculi (304). Dendritic cells play a key role in the immune
response to microsporidia (305) by facilitating T-cell responses through recognition of the
pattern recognition receptors expressed by these pathogens (e.g., TLR4 [306] and TLR2
[307]). Observations indicate that aging is a risk factor for microsporidiosis; consistent with
this observation, plasmacytoid dendritic cells in older mice infected with Encephalitozoon
cuniculi have been shown to downregulate CD81 T-cell responses by inhibiting the matura-
tion of normal dendritic cells (308).

CLINICAL MANIFESTATIONS IN HUMAN INFECTIONS

Microsporidia can cause localized or disseminated infection in humans (309). The
microsporidian genera associated with human infection and related clinical manifesta-
tions are summarized in Table 2. Human microsporidiosis represents a significant
emerging opportunistic disease: once thought to be restricted to immunocompro-
mised patients, infections in immunocompetent individuals are also known to occur
(161, 310). The clinical manifestations of microsporidiosis are diverse, varying according
to the mode of transmission, the causal species, and the underlying host immune status
and response (Fig. 7 and 8) (1, 309). Enterocytozoon bieneusi and Encephalitozoon intestinalis
are the most commonly detected microsporidia in human infection, and chronic diarrhea is
the most frequent clinical syndrome. Although most reported cases of microsporidiosis
involve diarrhea, the gamut of diseases caused by these organisms includes myositis, kidney
and urogenital infection, cholangitis, ascites, sinusitis, hepatitis, keratoconjunctivitis, and dis-
seminated infection, as well as asymptomatic infection (1, 7, 13, 162, 311) (Fig. 7).

Enterocytozoon bieneusi

In 1985, the first case of Enterocytozoon bieneusi infection was reported in a Haitian AIDS
patient with diarrhea and wasting (44). Enterocytozoon bieneusi infection in non-HIV-infected
individuals was first reported in travelers to the tropics, and the microsporidium-associated di-
arrhea in those immunocompetent patients tended to be self-limiting (154). Enterocytozoon
bieneusi is the most commonly seen microsporidium causing human infection, being etiologic
in 90% of cases of chronic diarrhea in AIDS patients (33, 161). Infection does not produce
active enteritis or ulceration, although it does result in various degrees of crypt hyperplasia
and villous blunting (Fig. 8B). Enterocytozoon bieneusi is found at the apical surface of small in-
testinal enterocytes, biliary tract epithelial cells, and pancreatic epithelial cells. Spores are essen-
tially not seen on the basal surface of these cells or in the lamina propria (1, 33, 128, 219, 312)
(Fig. 7F and 9A). Infection with Enterocytozoon bieneusi usually presents with chronic diarrhea
(which can last for years [313]), anorexia, weight loss, and bloating without associated fever.
Infection frequently occurs in AIDS patients with CD41 counts lower than 50 cells/ml. On a
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daily basis, 3 to 10 bowel movements which are loose to watery and do not contain blood or
fecal leukocytes occur (314). Malabsorption is usually evident, is often worsened by food inges-
tion, and can result in weight loss and a wasting syndrome. This pathogen can also invade the
cholangioepithelium (315), leading to sclerosing cholangitis (316). When this occurs, imaging
studies such as endoscopic retrograde cholangiopancreatography (ERCP), computerized axial
tomography, abdominal ultrasonography, or endoscopic ultrasonography can demonstrate
irregularities of the bile duct wall (Fig. 8C), dilated biliary ducts, and gallbladder abnormalities,
such as distention, thickening, or the presence of sludge. Encephalitozoon intestinalis can also
cause biliary infection (316). Reports of systemic dissemination of Enterocytozoon bieneusi are
rare; respiratory involvement associated with chronic diarrhea, wheezing, dyspnea, persistent
cough, and chest radiographs showing interstitial infiltrates have been reported (317, 318).

Encephalitozoonidae

The Encephalitozoon species, including Encephalitozoon intestinalis, Encephalitozoon
hellem, and Encephalitozoon cuniculi, are widely distributed in mammals and have been
identified in both immunocompetent and immunocompromised humans (128, 310). These
microsporidia have the capacity to disseminate widely in their hosts and can involve
almost any organ system during infection (Fig. 7A, C, D, and E) (7, 13, 33, 319). The

FIG 7 Light microscopy of biopsy specimens from patients with microsporidiosis. (A) Methylene blue-
azure II-fuchsin stain of an intestinal biopsy specimen from a patient with Encephalitozoon intestinalis
(arrow) infection. (Reproduced from reference 454 with permission.) (B) Hematoxylin and eosin stain
of muscle tissue from a patient with rheumatoid arthritis treated with antibody to TNF-a
demonstrating Anncaliia algerae (arrow) myositis. (C) Tissue chromotrope stain of liver biopsy
specimen from an immunodeficient mouse infected with Encephalitozoon cuniculi (arrows). (D) Steiner
stain of a renal biopsy specimen demonstrating Encephalitozoon hellem (black spores) within the
lumen of the renal tubule. (Reproduced from reference 386 with permission.) (E) Hematoxylin and
eosin stain of brain tissue from a rabbit with torticollis, demonstrating a microgranuloma with central
necrosis due to Encephalitozoon cuniculi infection. No spores are seen in this image. (Reproduced
from reference 386 with permission.) (F) Light micrograph of intestinal villus biopsy specimen (plastic
section) stained with methylene blue-azure II-fuchsin from a patient with AIDS and Enterocytozoon
bieneusi infection. The arrow points to microsporidia within cells. These spores were present only on
the apical epithelial surface; no spores were present on the basal surface or in the lamina propria.
(Reproduced from reference 454 with permission.)
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Encephalitozoonidae have been described as etiologic in cases of sinusitis, bronchiolitis,
nephritis, keratitis, peritonitis, hepatitis, fulminant hepatic failure, gastroenteritis, cerebritis,
cystitis, urethritis, prostatitis, nodular skin lesions, and disseminated infection (7, 13, 33, 99,
320–327). Infection is most commonly seen in immunocompromised patients (e.g.,
patients with HIV infection, especially in patients with CD4 counts of,50/mm3, transplant
recipients, and those receiving immunomodulatory therapy) (49, 169–171, 219, 328–330).
Interstitial nephritis due to microsporidiosis, similar to what has been described in rabbits,
occurs in AIDS patients and has also been seen in patients with renal transplants (169,
171, 178, 331). Encephalitozoon species have also been identified in immunocompetent
travelers with a symptom of self-limiting diarrhea (154).

About 10% of cases of diarrhea and wasting in immunodeficient patients with AIDS has
been due to Encephalitozoon intestinalis (116) (Fig. 7A and 9B). Infection can result in areas
of bowel necrosis and a presentation similar to that of an acute abdomen (322) with perfora-
tion of the intestine and peritonitis (332). This pathogen has also been reported to cause
cholangitis (333), keratoconjunctivitis, osteomyelitis of the mandible (334), renal failure,
upper respiratory infection, and disseminated infection (118, 335).

Encephalitozoon cuniculi infection has been reported to cause hepatitis (336), peritonitis
(323), hepatic failure (320), renal insufficiency, disseminated disease with fever (324), intracta-
ble cough (94), and endocarditis (337) (Fig. 7C). Encephalitozoon cuniculi has been found in
the periprosthetic tissue of several patients in Poland who presented with hip implant loos-
ening, requiring hip replacement, despite an absence of symptoms associated with infection
(338). There are many reports of disseminated infections in transplant recipients. The diagno-
sis is often delayed, perhaps because of the lack of specificity of symptoms and a low index
of suspicion. Granulomatous encephalitis due to this pathogen has been reported in mam-
mals (rabbits) since 1922, and infection in humans has been reported to cause encephalitis
and seizures in AIDS patients (99, 324) (Fig. 7E). Encephalitozoon infection was reported in a
3-year-old boy with seizures and hepatomegaly, as confirmed by the presence of IgG and IgM
antibodies that reacted with Encephalitozoon cuniculi (339). Infection with Encephalitozoon sp.
with recurrent fever has also been reported in a 9-year-old Japanese boy with spastic convul-
sions, headache, and vomiting (34). Encephalitozoon cuniculi and Streptococcus intermedius
were isolated together from a brain abscess in a patient with diabetes (340).

Encephalitozoon hellem infections have been reported in cases of keratoconjunctivitis, ne-
phritis, pneumonia, bronchitis, and disseminated disease with renal failure (112, 203, 341).
Encephalitozoon hellem can also infect the nasal epithelium, causing sinusitis in AIDS patients
(342). The majority of reported ocular infections presenting as punctate keratoconjunctivitis
are caused by Encephalitozoonidae (160, 343–345), and of these, the majority are due to
Encephalitozoon hellem, including three cases originally classified as Encephalitozoon cuniculi
(346, 347) (Fig. 8A and 9E). The few reported cases not due to Encephalitozoon hellem were
caused by Encephalitozoon sp. or Encephalitozoon intestinalis. Infection presents as bilateral
coarse punctate epithelial keratopathy limited to the superficial epithelium of the cornea

FIG 8 Clinical images from patients with microsporidiosis. (A) Encephalitozoon hellem keratoconjunctivitis
demonstrating punctate corneal lesions (white arrows). (B) Endoscopy of jejunal mucosa of a patient with
gastrointestinal microsporidiosis due to Enterocytozoon bieneusi demonstrating fusion of the villi. (Reproduced
from reference 454 with permission.) (C) Endoscopic retrograde cholangiogram (ERCP) of a patient with HIV
infection (AIDS) and sclerosing cholangitis due to Enterocytozoon bieneusi infection. The ERCP demonstrates
diffuse dilations of the common bile duct with irregular walls, plus areas of narrowing and dilation (arrows) of
the intrahepatic bile ducts. (Reproduced from reference 454 with permission.)
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and conjunctival inflammation. Clinically, infection may be bilateral or unilateral and can
present with redness, foreign body sensation, photophobia, excessive tearing, blurred vision,
and changes in visual acuity (13, 347). Disseminated disease is often present in patients with
microsporidian keratoconjunctivitis; therefore, microsporidian spores can be found in urine
samples in patients with this ocular infection.

Anncaliia spp.

There are three species in the Anncaliia genus that have been reported in humans:
Anncaliia algerae, Anncaliia connori, and Anncaliia vesicularum (Table 2). Anncaliia algerae was
first known as Nosema algerae and then as Brachiola algerae before being moved to the genus
Anncaliia (43). Anncaliia algerae was originally recognized as a pathogen of insects but has
now been seen in human infections (Fig. 7B and 9D) (348–350). Infection with Anncaliia
algerae has been reported to cause severe myositis in patients getting immunosuppressive
medication for solid-organ transplantation and for rheumatoid arthritis and in a patient with
graft-versus-host disease after hemopoietic stem cell transplantation (182, 350–354). Anncaliia
algerae has also been reported to cause skin abscesses and infection of the false vocal cord in
patients receiving chemotherapy for hematologic malignancies as well as myositis and keratitis
in a man with no significant medical history (182, 350–354). Anncaliia algerae infection of the
cornea has also been reported (355, 356), and this infection has been associated with endoph-
thalmitis (356). Anncaliia vesicularum (previously called Brachiola vesicularum) has been
reported to cause myositis in a patient with AIDS, and Anncaliia connori (previously called
Nosema connori) was reported in a case of disseminated infection in an infant who had thymic
dysplasia and malabsorption syndrome (42, 357, 358).

FIG 9 Transmission electron micrographs of biopsy specimens from patients with microsporidiosis. (A) Duodenal epithelium
from a patient with AIDS and Enterocytozoon bieneusi infection demonstrating proliferating stages (P) and late sporogonial
plasmodia (Sp). The arrow points to a sloughing enterocyte containing mature spores. (Reproduced from reference 386 with
permission.) (B) Intestinal biopsy specimen from a patient with AIDS and Encephalitozoon intestinalis infection demonstrating
spores within vacuoles containing a fibrillar matrix. (Reproduced from reference 386 with permission.) (C) Enterocytozoon
bieneusi spore demonstrating the characteristic finding of two rows of three cross sections of the polar tube (indicated by an
arrow). (Reproduced from reference 386 with permission.) (D) Muscle biopsy specimen from a patient with rheumatoid arthritis on an
anti-TNF-a antibody who presented with myositis. Proliferative forms are seen in the biopsy specimen with a characteristic diplokaryotic
nucleus (N). (E) Conjunctival biopsy specimen from a patient with keratoconjunctivitis due to Encephalitozoon hellem demonstrating
characteristic spores (arrowheads) with a single row of six cross sections of the polar tube.
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Vittaforma corneae

Vittaforma corneae was first described as Nosema corneum in a stromal biopsy specimen
from a patient without HIV, and it is now recognized to be responsible for keratoconjunctivitis
in healthy persons (with over 300 cases being reported associated with water or soil exposure)
and HIV-infected patients (41, 100, 359–363). An outbreak of Vittaforma corneae has been asso-
ciated with exposure to soil during a rugby tournament in Singapore (159, 196). Vittaforma
corneae has also been seen in the urine in a patient with AIDS, indicating that it is capable of
dissemination in immunocompromised hosts (100). This pathogen has also been reported as
a cause of enteritis in both HIV-positive and HIV-negative patients from Portugal (364). Stromal
keratitis due to microsporidia occurs less often than keratoconjunctivitis, is typically identified
in immunocompetent individuals, and has been caused by infection with Vittaforma corneae,
Nosema ocularum, and Trachipleistophora species (365). A case of urinary tract infection with
prostatitis due to Vittaforma corneae has been reported in a patient with AIDS (366).

Other Species of Microsporidia

The genus Trachipleistophora was established for a microsporidium isolated from the
skeletal muscle of an AIDS patient, and subsequently, more cases of myositis caused by
Trachipleistophora spp. have been reported (47, 367–370). Disseminated infection due to
Trachipleistophora hominis has been described in several patients with AIDS (47), and infec-
tion has been reported to cause myositis, keratoconjunctivitis, and sinusitis. Trachipleistophora
anthropopthera infection has presented with myositis, encephalitis, and keratoconjunctivitis
(48, 371, 372). Pleistophora sp. and Pleistophora ronneafiei infections presenting as myositis
have occurred in patients with AIDS (368, 373–375). The presentation of Pleistophora myositis
included myalgias, elevated serum creatine phosphokinase (CPK) and aldolase levels,
weakness, and abnormal electromyograms consistent with an inflammatory myopathy.
Pleistophora spp. have also been reported as a cause of myositis in patients who are HIV
negative (368, 373). There are several cases of Tubulinosema acridophagus being reported
to cause myositis and disseminated disease in immunosuppressed patients (49, 50, 376).
Endoreticulatus spp. were reported from a patient with myositis with difficulty swallowing,
muscle pain, and necrotizing granulomatous inflammation in the muscle tissue (1).
Microsporidium ceylonensis and Microsporidium africanum were identified from an 11-year-
old Tamil boy and a woman from Botswana, respectively, causing corneal ulcers and deep
corneal stroma infection (the genus Microsporidium is used for unclassified microsporidia)
(349). Nosema ocularum (377), Nosema corneum (now V. corneae) and Trachipleistophora
hominis have been described as the causes of corneal stromal microsporidiosis in humans
(41, 92, 362, 377, 378).

DIAGNOSIS

During the past 20 years, with the recognition of microsporidia as opportunistic
pathogens, the diagnostic procedures for their detection has dramatically improved
(379). With these improved techniques, there has been increasing recognition of micro-
sporidial infection in immunocompetent humans (151, 161, 343, 351). Species-level
identification of microsporidia requires ultrastructural examination (e.g., electron mi-
croscopy) or molecular techniques (e.g., a species-specific PCR assay). Serologic tests
for microsporidiosis have been developed for research purposes and have been used
to estimate prevalence of infection in epidemiologic studies. Serologic tests, however,
are not useful for the diagnosis of active microsporidiosis. Isolation of microsporidia
using tissue culture has not been useful for routine clinical diagnosis; however, it
should be pursued if a novel microsporidium is identified in a clinical sample.

Light Microscopy

Examination of stool specimens by light microscopy is the standard technique for
diagnosing gastrointestinal microsporidiosis. Since renal involvement with shedding of
spores in the urine is common in microsporidia that disseminate, urine specimens
should be obtained whenever the diagnosis of microsporidiosis is being considered. This
has therapeutic implications, as microsporidia that disseminate (e.g., Encephalitozoonidae)
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are sensitive to albendazole, whereas those that do not disseminate (e.g., Enterocytozoon
bieneusi) are resistant.

There are several methods available for the detection of microsporidia (219, 380) (Fig. 10).
Examination of body fluids (e.g., urine, respiratory specimens, duodenal aspirates, cerebrospi-
nal fluid) or histologic examination of biopsy specimens by light microscopy is one of the
most common ways for the diagnosis of microsporidial infection, but this method cannot con-
firm the species of microsporidia. In contrast to stool, it is easier to identify microsporidian
spores in body fluids because of the absence of bacteria and debris that could be confused
with microsporidian spores. Demonstration of microsporidia by light microscopy is accom-
plished by the use of stains that produce differential contrast between the spores of micro-
sporidia and the cells and debris in clinical samples. As spores are 1 to 3mm in size magnifica-
tion, a �60 to �100 objective is required for their visualization. The proteinaceous exospore
and the chitinous endospore of microsporidia make it possible to stain spores by different
methods, such as Giemsa, Gram, and trichrome stains and fluorescent dyes (i.e., Uvitex 2B and
calcofluor white). Giemsa and Gram stains, however, while useful in histology, are not useful
for stool examination, as these methods cannot distinguish between microsporidia and other
similarly sized elements present in stool (381). Chromotrope 2R stains and fluorescent stains
have markedly improved detection of microsporidia in body fluids and stool samples (219)
(Fig. 10). The chromotrope 2R staining technique described by Weber et al. is based on a mod-
ification of routine trichrome staining using a 10-fold-higher concentration of chromotrope 2R

FIG 10 Demonstration of microsporidia in stool, urine, and other clinical specimens. (A and B) Chromotrope
stains of stool specimens from patients with AIDS and diarrhea demonstrating spores of Enterocytozoon
bieneusi measuring 0.7 to 1.0 by 1.1 to 1.6mm. Spores have a pink to reddish hue with this stain. Stained
spores can have a safety pin appearance as well. (Reproduced from reference 386 with permission.) (C)
Conjunctival scraping from a patient with Encephalitozoon hellem keratoconjunctivitis stained with a
chemifluorescent brightening agent (that stains chitin) demonstrating microsporidian spores. (D) Stool
specimen from a patient with AIDS and Encephalitozoon intestinalis infection stained with a quick hot Gram-
chromotrope stain demonstrating spores of 1.0 to 1.2 by 2.0 to 2.5mm. The spores have a violet hue with
this stain. (Reproduced from reference 455 with permission.) (E) Chromotrope stain of urine sediment from a
patient with HIV infection who had a disseminated Encephalitozoon cuniculi infection demonstrating pink- to
red-colored spores that are 1.0 to 1.5 by 2.0 to 3.0mm. (Courtesy of Elizabeth Didier; reproduced with
permission.) (F) Methylene blue-azure II-fuchsin stain of a touch preparation of an intestinal biopsy specimen
(obtained by endoscopy) from a patient with intestinal Enterocytozoon bieneusi infection demonstrating
intracellular spores.
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and a longer staining time (382) (Fig. 10A, B, and E). Modifications of this staining method,
which are preferred by some laboratories, have been described by Ryan and coworkers (383)
(using aniline blue in place of fast green) and by Kokoskin and colleagues (384) (using a higher
temperature). Spores stained by chromotrope 2R, against a green (Weber stain) or blue
(Ryan stain) background, appear as ovoid, light pink structures that are usually 1 to 3 mm in
size, and these spores display a belt-like stripe girding them diagonally and equatorially
(382) (Fig. 10B). The chromotrope 2R stains are time-consuming procedures, and the hot
Gram-chromotrope technique which stains microsporidian spores dark violet in a much
shorter period time is preferred by some laboratories (385) (Fig. 10D). Fluorescent stains that
bind to chitin in the spore wall of microsporidia, such as calcofluor white M2R, Uvitex 2B,
Fungi-Fluor, Fungiqual A, Cellufluor, and other chemofluorescent optical brighteners, have
also been useful for visualizing microsporidian spores in various clinical samples (386) (Fig.
10C). These stains are easy and quick, but these stains also stain fungi and other fecal ele-
ments (387). Microsporidia can be distinguished from yeast cells by their size and lack of
budding. Both chromotrope 2R and chemifluorescent brightening stains have demonstrated
excellent sensitivity (100%) and specificity (100% for chromotrope 2R and 90 to 100% for
chemifluorescent stains) (387–389). The limit of detecting microsporidia by these techniques
appears to be 50,000 organisms/ml. Microsporidian spores in food can give a false-positive
result; however, despite the fact that microsporidia are common in the environment, this
has not been a significant problem in diagnosis. Neither the chromotrope nor chemifluores-
cent stain provide microsporidian species-specific information.

Histologically, microsporidian spores can be identified in routine fixed tissue by using sev-
eral standard stains, including a modified tissue chromotrope 2R, tissue Gram stain (Brown-
Hopps or Brown-Brenn), or Luna stain (390) (Fig. 7). If microsporidia are suspected, then a sam-
ple of the biopsy or autopsy material should also be put into electron microscopy fixative, as
the definitive classification of a microsporidian species depends on ultrastructural information.
Since microsporidian infections often involve mucosa or epithelium, cytological preparations
are especially useful for diagnosis. In cases of microsporidian keratitis, microscopic examination
material obtained by gently rubbing the conjunctiva and cornea with a tissue swab will
demonstrate microsporidia within the epithelial cells (Fig. 10C). Monoclonal antibodies to
Encephalitozoon hellem (121) Encephalitozoon intestinalis (380), and Enterocytozoon bieneusi
(391, 392) have been developed and used for immunofluorescence or other immunostain-
ing techniques to detect microsporidia in tissue sections, stool, and other body fluids.
Commercial kits for the detection of microsporidia in environmental samples that utilize
antibodies to Encephalitozoonidae and Enterocytozoon bieneusi are available.

Electron Microscopy

Electron microscopy is the “gold standard” for diagnostic confirmation and species
identification of microsporidia (386). While mature spores seen in body fluids or stool samples
can provide important ultrastructural data for species identification, definitive identification
requires examination of the developmental life cycle seen in tissue samples (219) (Fig. 9). In
general, it is not used for routine diagnosis, as electron microscopy is less sensitive than rou-
tine microscopy or molecular techniques, requires specialized equipment, is very labor-inten-
sive, and is time-consuming (393). Molecular techniques can also be used to identify the exact
species of microsporidia that are known to cause human infections and are much more sensi-
tive for diagnosis (394). Electron microscopy is, however, very important when a novel micro-
sporidium is suspected as causing an infection, as along with sequencing the rRNA gene of
such organisms, the ultrastructural data provided by electron microscopy enables classification
of such novel microsporidia.

Molecular Biology-Based Techniques

The successfully sequencing of various microsporidial genomes has led to the applica-
tion of molecular biology-based techniques for the diagnosis of microsporidial infections
in humans (219). Weiss and Vossbrinck (25) and Ghosh and Weiss (395) have reviewed mo-
lecular diagnostic tests for microsporidiosis. The detection of microsporidia using molecu-
lar-based methods such as PCR and in situ hybridization provides sensitive and specific
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methods for species identification (219, 396). PCR-based tests using single and nested
primer pairs of the small subunit rRNA (SSU rRNA), large subunit rRNA (LSU rRNA), and the
intergenic spacer region have been described for the detection of different species of
microsporidia in humans (219, 397). PCR-based tests have been used with both tissue bi-
opsy specimens and body fluids, including stool samples (219, 395, 398–400). Nucleic acids
are isolated from clinical specimens by mechanical disruption of the microsporidial spores
in clinical specimens combined with the use of lyticase and/or chitinase to increase the ef-
ficiency of DNA extraction (219, 401). PCR-based methods have been shown to be able to
detect 100 to 1,000 spores/ml in clinical samples (402, 403). In a study comparing real-
time PCR and traditional microscopy for three species of microsporidia, the real-time PCR
method was found to be three times more likely to detect the presence of spores in sam-
ples (402). In situ hybridization using rRNA probes has also been used to identify micro-
sporidia to the species level in clinical samples and can be useful in examining tissue speci-
mens (396, 404, 405). However, in situ hybridization is not widely used for routine clinical
diagnosis, as it is less sensitive than PCR, is time-consuming, and requires significant exper-
tise to perform (395).

THERAPY

Microsporidiosis is often seen in immunocompromised hosts, especially in patients with
advanced AIDS and CD41 cell counts lower than 50/ml. Improved immune function can
result in a clinical response in patients with gastrointestinal microsporidiosis leading to elimi-
nation of the organism and normalization of the intestinal architecture (406–410) (Table 4).
Based on these observations, the institution of effective cART is important as part of the pri-
mary treatment of microsporidiosis in the setting of AIDS. Immune reconstitution syndrome
(IRIS), while reported, has not generally been a problem in the setting of microsporidiosis
(411). Interestingly, relapse of microsporidiosis can occur if there is a decline in immune
function and falling CD41 counts, suggesting that latent infection is occurring. To this end,
latent infection has been observed in immunodeficient mice, where albendazole treatment
has not been able to eliminate microsporidia and relapse is seen. Costa and Weiss (412)
have reviewed the drugs used for the treatment of microsporidiosis in humans and animals.

Based on studies in vitro and in vivo in animal models as well as clinical data on microspori-
diosis in humans, albendazole (which inhibits b-tubulin) and fumagillin (which inhibits methi-
onine aminopeptidase type 2) have the most consistent activity against the microsporidia that
cause human infections (118, 312, 335, 357, 413–418) (Table 4). Albendazole is highly active in
vitro against Encephalitozoon hellem, Encephalitozoon cuniculi, and Encephalitozoon intestinalis
(357, 419), their b-tubulins demonstrate an amino acid sequence that is known to be associ-
ated with sensitivity to benzimidazoles (420), and numerous reports demonstrate the efficacy
of 2 to 4weeks of albendazole at 400mg twice daily for these infections (118, 335, 417, 418).
Other benzimidazole derivatives can also inhibit the growth of Encephalitozoonidae in vitro
(421). The sequences of both Enterocytozoon (422) and Vittaforma b-tubulin contain amino
acid residues associated with albendazole resistance consistent with the observation that
albendazole is less effective for the treatment of Enterocytozoon bieneusi infection (423).
Albendazole has been effective in patients with microsporidiosis due to Trachipleistophora
hominis and in patients with infections due to Anncaliia spp. (42, 47, 350, 354).

Fumagillin has been used for the treatment of microsporidiosis in various types of fish as
well as the treatment of honeybees infected with Nosema apis (412, 424). Microsporidia, unlike
most eukaryotes, are dependent on methionine aminopeptidase type 2, as they lack amino-
peptidase type 1. Fumagillin and its semisynthetic analogues have in vitro and in vivo activity
against the Encephalitozoonidae and Vittaforma corneae and have been used to treat ocular
microsporidiosis (312, 357, 413–416). Fumagillin (20mg three times a day) has been effective
for the treatment of Enterocytozoon bieneusi gastrointestinal infections in patients with AIDS
and in patients with various organ transplants (413, 424–427). The main limiting toxicity of
fumagillin has been reversible thrombocytopenia.

There are several other medications that have been reported as treatments for
microsporidiosis. Atovaquone has shown variable results against microsporidia (350,
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414, 428). Furazolidone has been shown to have transient efficacy for Enterocytozoon
bieneusi (429). Itraconazole has been used in the treatment of microsporidial stromal
keratitis, sinusitis, and keratoconjunctivitis in both immunocompetent and immuno-
compromised patients (72, 430–432). While some early case reports suggested that
metronidazole was effective for Enterocytozoon bieneusi, the majority of data have
shown that this drug is not effective (71, 312, 433). Nitazoxanide has been effective in
a few cases of Enterocytozoon bieneusi infection in patients with AIDS (434–436), and
unpublished anecdotal experience exists for its successful use in the treatment of this infection
in transplant patients. Thalidomide, an anti-tumor necrosis factor alpha (TNF-a) drug, has
been effective in decreasing diarrhea in 50% of patients with gastrointestinal microsporidiosis,
but on biopsy, the organisms were still present in responding patients (437).

Several potential new therapeutic approaches for the treatment of microsporidiosis
have been published. Novel synthetic polyamines have been shown to be effective in the
treatment of experimental microsporidiosis (438). The process of spore germination is cal-
cium dependent; to this end, calmodulin inhibitors (trifluoperazine and chlorpromazine) and
calcium antagonists (verapamil and lanthanum) both prevented spore germination in
Spraguea lophii (439). Nifedipine has been demonstrated to inhibit the spore germination of
Encephalitozoon intestinalis and Encephalitozoon hellem (71, 72). The endospore of micro-
sporidia contains mainly chitin and proteins, which is important for extracellular survival and
infection of microsporidia (419). Chitin synthesis inhibitors such as polyoxins, nikkomycins,
and lufenuron have shown some efficacy against microsporidia (440–442). A topoisomerase

TABLE 4 Therapy of microsporidiosis

Organism Therapy Dosagea

All microsporidia Immune reconstitution (cART in HIV with a goal of a CD4 count
greater than 100 cells/ml) is associated with resolution of
symptoms of enteric microsporidiosis.

Severe dehydration, malnutrition, and wasting syndrome should be
managed by fluid support and nutritional supplementation.

Diarrhea can be controlled by antimotility agents as needed.
Enterocytozoon bieneusi No current effective commercial therapy. Fumagillinb (oral form has been

effective in a clinical trial and is available on expanded access).
Alternatives: Nitazoxanide at 1,000mg BIDwith food for 60days has
shown efficacy in anecdotal cases. Albendazole has some limited
efficacy; however, the sequence of Enterocytozoon bieneusi contains
amino acids associatedwith resistance to this class of drugs. In general,
medications have also been less effective in patients with low CD4
counts.

20 mg TID (i.e., 60mg/day)

Encephalitozoonidae (systemic infections);
E. cuniculi, E. hellem, and E. intestinalis

Albendazole 400mg BID

Encephalitozoonidae keratoconjunctivitis Fumagillin solution (70mg/ml)c.
Patients may also need albendazole if systemic infection is present.

2 drops every 2 h for 4 days
and then 2 drops 4 times a
day

Vittaforma corneae keratoconjunctivitis No defined therapy. Fumagillin solution has had activity. Topical
fluoroquinolones and itraconazole have been used in case reports.

The sequence of V. cornea tubulin contains amino acids associatedwith
resistance to albendazole and related agents in this class of drugs.

Trachipleistophora hominis Albendazole 400mg BID
Anncaliia spp. Albendazole

In a reported case of Anncaliia vesicularum, itraconazole (400mg
BID) was added to albendazole

400mg BID

Tubulinosema spp. No defined therapy. There was no response to albendazole in
published cases. Fumagillin is a reasonable therapeutic choice.

Enoreticulatus spp. Albendazole 400mg BID
aThe duration of treatment for microsporidiosis has not been established. Relapse of infection has occurred on stopping therapy. Patients should be maintained on
treatment for at least 4weeks. If immunosuppression persists (e.g., CD4 count less than 200 cells/ml), then consideration should be given to continuing therapy. TID, three
times a day; BID, twice a day.

bFumagillin is available from Sanofi in France as Flisint 20-mg capsules and has been obtained for patients in the United States (contact https://app.smartsheet.com/b/form/
4dea2fbff8c449f095ce5f335b9c7881).

cTopical fumagillin solution must made by a compounding pharmacy, as it is not commercially available in the United States. This solution can be made by using fumagillin
bicylohexylammonium (Fumidil B) at 3mg/ml in sterile saline (fumagillin, 70mg/ml).
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IV subunit (part C) was identified in the Vittaforma corneae genome, and fluoroquinolones
have been shown in vitro to inhibit both Vittaforma corneae and Encephalitozoon intestinalis
(443). Triosephosphate isomerase (TIM) plays a crucial role in glycolysis of Encephalitozoon
intestinalis, and its inhibition by three different sulfhydryl reagents {MTSES [methanethiosul-
fonate ethylsulfonate], MMTS [methyl methanethiosulfonate], and DTNB [5,59-dithiobis-(2-
nitrobenzoic acid)]} inhibited microsporidian energy use (444).

PREVENTION

The presence of infective spores in bodily fluids indicates that safety measures when han-
dling body fluids in clinical settings and personal hygiene measures should help prevent infec-
tion. Common-sense approaches include drinking boiled water, washing hands, eating thor-
oughly cooked meat, and carefully washing vegetables and fruits before ingestion (127, 133,
140, 200, 445). Spores can be killed in the environment by exposure to 70% ethanol, phenolic
derivatives, formaldehyde, 1% hydrogen peroxide, sodium hydroxide, chloramine, or ampho-
teric surfactants for 30min at 22°C and autoclaving at 120°C for 10min or boiling for 5min
(197, 446). No prophylactic agents that prevent microsporidiosis have been identified. Patients
have developed microsporidiosis while on trimethoprim-sulfamethoxazole prophylaxis (447),
and infection has been reported in patients receiving dapsone, atovaquone, azithromycin, itra-
conazole, or pyrimethamine. The most effective preventative measure is restoration of
immune function in immunocompromised hosts. Based on the epidemiology of these infec-
tions, screening close contacts of index cases for infection and/or carriage is rational.

CONCLUSIONS

The first clearly defined case of human infection with microsporidia was a 9-year-old
Japanese boy with disseminated Encephalitozoon infection who suffered from recurrent fever,
vomiting, headache, and spastic convulsions in 1959 (34, 448). Microsporidiosis was rarely
reported until the advent of the AIDS epidemic and the subsequent identification of
Enterocytozoon bieneusi gastrointestinal infections in patients with AIDS, chronic diarrhea, and
wasting syndrome (44, 449). Since that initial description, microsporidia have been recognized
as opportunistic pathogens in patients with various type of immune suppression as well as in
immunocompetent hosts (136, 151, 161, 450–452). There are about 10 genera and 17 species
of microsporidia associated with human infection, and infections have occurred in almost all
organ systems. There are data to suggest that latent infection can occur in humans, and the
importance of this during immune suppression remains to be elucidated. Observations indi-
cate that environmental exposure to microsporidia is high and that asymptomatic infection is
common. Many of the microsporidia that are human pathogens are probably zoonotic infec-
tions that are either water- or foodborne. More research is needed on the natural reservoirs
and environmental sources of microsporidia as well as improved therapeutic agents and pre-
vention strategies to avoid transmission. Furthermore, additional studies are needed to more
fully understand the molecular pathogenesis of microsporidiosis.
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