
Abstract. Background/Aim: Cisplatin combined with
pemetrexed disodium heptahydrate (pemetrexed) is
considered the standard treatment for patients with
advanced, non-squamous, non-small-cell lung cancer.
However, its growth-inhibitory effects on KRAS-dependent
lung cancer as monotherapy and combination therapy are
not well understood. The aim of this study was to compare
the effects of cisplatin and pemetrexed on A549 cells as
mono- and combination therapies and elucidate the
underlying mechanisms. Materials and Methods: For in vitro
studies, A549 cells were exposed to cisplatin with/without
pemetrexed for 72 h. The results were then evaluated by cell
viability, apoptosis, reactive oxygen species, terminal
deoxynucleotidyl transferase dUTP nick-end labeling, and
western blotting assays. Results: Our results revealed that
cisplatin monotherapy was most cytotoxic to A549 cells,
while cisplatin plus pemetrexed combination had an
intermediate effect, and pemetrexed monotherapy induced a
minimal cytotoxic effect on A549 cells. This effect was
evidenced by cell viability results, inhibition of KRAS proto-
oncogene, GTPase (KRAS)/Raf proto-oncogene, serine/
threonine kinase/mitogen-activated protein kinase kinase/
extracellular signal-regulated kinase pathways and apoptosis
induction triggered by reactive oxygen species-mediated
DNA damage. The immunoblotting result of conversion of
microtubule-associated protein 1 light chain 3 alpha (LC3)-
I to -II indicated that the greatest inducer of autophagy was
combined treatment with cisplatin plus pemetrexed, while

pemetrexed monotherapy had the lowest effect on autophagy
induction, with cisplatin monotherapy having an
intermediate effect. We found that the AKT serine/threonine
kinase 1/mechanistic target of rapamycin kinase (mTOR) and
AMP-activated protein kinase/mTOR signaling pathways
were associated with autophagy activation. Interestingly,
combination therapy with cisplatin plus pemetrexed was the
primary eliminator of cellular senescence; cisplatin
monotherapy had an intermediate effect, while pemetrexed
monotherapy increased cellular senescence of A549 cells, as
assessed by the expression of β-galactosidase protein.
Conclusion: Cisplatin monotherapy may be more effective
than pemetrexed monotherapy or cisplatin plus pemetrexed
combination therapy against KRAS-dependent lung cancer.

In terms of incidence and mortality, lung cancer is the most
common cancer globally (1). Lung cancer is a leading cause
of death, with non-small-cell lung cancer being the
predominant form of the disease (2), accounting for nearly
80% of all lung cancer cases (3).

Mutations in the KRAS proto-oncogene, GTPase (KRAS)
gene are frequently found in various types of human cancer,
including of the lung, pancreas, and large intestine (4, 5).
Approximately 15-25% of patients with non-small cell lung
cancer reportedly have KRAS mutations (6, 7). These
mutations alter the intrinsic GTPase activity of RAS and
confer resistance to GTPase activators, which causes the
accumulation of RAS in its active GTP union state,
supporting the activation of KRAS (8, 9). Constitutive
activation of KRAS triggers stimulation of downstream
signaling pathways, including the phosphatidylinositol-4,5-
bisphosphate 3-kinase (PI3K)/AKT serine/threonine kinase
1 (AKT)/mechanistic target of rapamycin kinase (mTOR)
and Raf proto-oncogene, serine/threonine kinase (RAF)/
mitogen-activated protein kinase kinase (MEK)/extracellular
signal-regulated kinase (ERK) signaling cascades (10, 11). 

In multicellular organisms, apoptosis can occur in the form
of programmed cell death (12). Apoptosis can be initiated via
two crucial pathways: the extrinsic and the intrinsic (13).
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Various types of stress can induce programmed cell death
(14). The generation of reactive oxygen species (ROS) is a
crucial stressor that can trigger DNA damage (15). DNA
damage can activate members of the caspase family, leading
to cleavage of poly (ADP-ribose) polymerase (PARP), a
hallmark of apoptosis (16). It has been reported that ROS-
mediated DNA damage is related to cellular senescence (17).
The production of DNA damage can lead to permanent arrest
of the cell cycle (18). Under irreversible conditions, damaged
cells remain alive but unable to proliferate, a phenomenon
known as cellular senescence (19, 20).

Several studies have reported the interaction between ROS
generation and autophagy (21, 22). Autophagy is considered
a double-edged sword in cancer cells (23). Under nutrient
starvation conditions, autophagy can promote cell survival
by providing the energy required for cellular metabolism
(24). On the other hand, autophagy can lead to cell death by
consuming essential cellular components (25, 26). Various
studies have claimed that the PI3K/AKT/mTOR and AMP-
activated protein kinase (AMPK)/mTOR pathways regulate
autophagy to induce apoptosis (27, 28). 

Herein, we compared the anticancer effects of cisplatin
and pemetrexed on KRAS-dependent A549 cells as mono-
and combination therapies and clarified the underlying
mechanisms.

Materials and Methods

Cell line and cell culture. A KRAS-mutated A549 cell line was
obtained from the American Type Culture Collection (Manassas,
VA, USA). A549 cells were cultured in Roswell Park Memorial
Institute 1640 medium containing 10% fetal bovine serum
(Invitrogen, Carlsbad, CA, USA) and maintained at 37˚C in a
humidified atmosphere containing 5% CO2.

Drug preparation. Cisplatin [PtCl2(NH3)2] and pemetrexed
disodium heptahydrate [C20H19N5Na2O6·7H2O] were obtained from
FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan). These
drugs were dissolved in dimethyl sulfoxide for in vitro experiments.

Cell viability assay. The cytotoxicity of cisplatin and pemetrexed
as single-drug or combined therapies in A549 cells was assessed
using a water-soluble tetrazolium salt (WST-1) assay (Cell
Proliferation Reagent WST-1; Roche, Tokyo, Japan). Into each
well of a 96-well microtiter plate, 100 μl of a growing cell
suspension (4×103 cells/well) was seeded, and 100 μl of cisplatin
(200 nM) or pemetrexed (100 nM) solution as single-drug or
combined treatments was added to each well (29). After incubation
for 72 h at 37˚C in 5% CO2, 10 μl of WST-1 solution was added
to each well, and the plates were incubated at 37˚C for an
additional 4 h (29). The absorbance was then measured at 450 nm
with a microplate enzyme-linked immunosorbent assay reader
(Multiskan FC; Thermo Scientific, Tokyo, Japan). Data are
presented as relative viability (%) by comparing drug-treated cells
with DMSO-treated cells; the viability of DMSO-treated cells was
assumed to be 100%.

Intracellular ROS assay. The intracellular ROS level was
determined using a Reactive Oxygen Species Detection Assay Kit
(ab186029; Abcam, Tokyo, Japan). In brief, after treatment with
cisplatin and pemetrexed as single-drug or combined therapy for 72
h, cells were harvested for staining with a working solution of deep
red ROS dye. Subsequently, the cells were incubated at 37˚C for 60
min before flow cytometric (FCM) analysis.

Terminal deoxynucleotidyl transferase dUTP nick-end labeling
(TUNEL) assay. For 72 h, A549 cells were treated with cisplatin or
pemetrexed as single-drug therapy or in combination. An in situ
Direct DNA Fragmentation (TUNEL) Assay Kit (ab66108; Abcam)
was used to measure DNA fragmentation in apoptotic cells. In
brief, cells were fixed with 1% paraformaldehyde in phosphate-
buffered saline and placed on ice for 15 min. Subsequently, the
samples were treated with a staining solution and incubated at 37˚C
for 60 min. After the addition of rinse buffer, cells were
resuspended in propidium iodide/RNase A solution and incubated
at room temperature for 30 min for the FCM analysis.

Apoptosis assay. A549 cells were treated with cisplatin and
pemetrexed as single-drug or combined therapy for 72 h. Apoptotic
cell death was quantified by FCM using fluorescein isothiocyanate
(FITC) Annexin V Apoptosis Detection Kit with propidium iodide
(PI) (BioLegend, San Diego, CA, USA). 

Western blotting. For 72 h, A549 cells were treated with cisplatin
and pemetrexed as single-drug or combined therapy. Whole
protein lysates were isolated using M-PER Mammalian Protein
Extraction Reagent (Thermo Scientific), which included a
phosphatase inhibitor cocktail and a protease inhibitor cocktail
(Sigma-Aldrich, St. Louis, MO, USA). Protein concentrations
were assessed using BCA protein assay reagent (Thermo
Scientific). Total cellular protein (40 μg) was separated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis and transferred
to polyvinylidene fluoride membranes (Bio-Rad Laboratories,
Hercules, CA, USA). Milk-blocked blots were then incubated at
4˚C overnight with primary antibodies against the following
proteins: KRAS, RAF, MEK, phospho (p)-MEK (Ser 217/221),
ERK, p-ERK (Thr 202/Tyr 204), AKT, p-AKT (Ser 473), mTOR,
p-mTOR (Ser 2448), AMPKα, p-AMPKα (Thr 172), microtubule-
associated protein 1 light chain 3 alpha (LC3), β-galactosidase, β-
actin, and cleaved PARP (Asp 214) (all from Cell Signaling
Technology, Danvers MA, USA). They were then incubated with
appropriate horseradish peroxidase-conjugated secondary
antibodies (Cell Signaling Technology). Proteins of interest were
revealed using SuperSignal West Pico PLUS Chemiluminescent
Substrate (Thermo Fisher Scientific, Rockford, IL, USA) and
viewed using an Invitrogen iBright FL1000 Imaging System
(Thermo Fisher Scientific). The bands were quantified with the
densitometric program of iBright Imaging System and normalized
against β-actin.

Statistical analysis. Statistical analysis was conducted using
GraphPad PRISM software, v. 7.0 (GraphPad Software Inc., San
Diego, CA, USA). Results are presented as the mean±standard
deviation of three independent experiments and were analyzed by a
one-way analysis of variance followed by Dunnett’s multiple
comparison test. Values of p<0.05 were considered statistically
significant. 
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Results

Effects of cisplatin and pemetrexed on the viability of A549
cells, alone and in combination. The effect of cisplatin and
pemetrexed on the viability of A549 cells was determined
using a WST-1 assay. As shown in Figure 1A, cisplatin
monotherapy was most cytotoxic to A549 cells, whilst
cisplatin and pemetrexed combination therapy had an
intermediate effect; pemetrexed monotherapy had the least
effect on A549 cells. As illustrated in Figure 1B, after
treatment with cisplatin and pemetrexed, both as
monotherapy and combination therapy, we noted that a
proportion of A549 cells had grown round and become
detached from the culture dish, features typical of apoptotic
cells. Cisplatin monotherapy was more potent in inducing
these apoptotic characteristics than pemetrexed monotherapy
and the combination therapy.

Effects on inducing ROS-mediated DNA damage. Previous
studies reported that many chemotherapy drugs induce
cytotoxic effects via ROS-mediated DNA damage (30-32).
Therefore, we hypothesized that cisplatin and pemetrexed
might cause DNA damage through the generation of ROS.
The intracellular ROS level was determined by FCM after
treatment with cisplatin and pemetrexed alone and in
combination to investigate ROS generation. As indicated in

Figure 2, cisplatin monotherapy was more potent in
increasing ROS production than pemetrexed monotherapy.
In contrast, cisplatin plus pemetrexed combination therapy
had an intermediate effect on increasing ROS generation. 

To determine whether cell death caused by cisplatin and
pemetrexed was due to DNA fragmentation, we performed a
TUNEL assay. As shown in Figure 3A, after 72 h of cisplatin
monotherapy, the proportion of cells with fragmented DNA
increased from 0.18% to 78%. In contrast, the combination
therapy had an intermediate effect, resulting in a rate of 71%,
while pemetrexed monotherapy showed a fragmented cell
rate of 20.4%. These results are consistent with the findings
of the ROS-generation assay. 

Effect on apoptosis of A549 cells. Previous studies reported
that ROS-mediated DNA damage triggered growth
inhibition via activation of apoptosis signaling (32-34). To
investigate whether or not growth inhibition due to
apoptosis occurred, we conducted annexin V-FITC and
propidium iodide fluorescence staining. As illustrated in
Figure 4A and B, combined treatment with cisplatin and
pemetrexed resulted in an intermediate increase in the
apoptotic population, while cisplatin monotherapy was the
most potent apoptosis-inducing agent. By contrast,
pemetrexed monotherapy induced the lowest proportion of
apoptotic cells. 
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Figure 1. Impact of cisplatin and pemetrexed on the viability of A549 cells. A: A549 cells were treated with cisplatin (200 nM) and pemetrexed (100
nM) alone and in combination for 72 h, and the cell survival rate was measured by the WST-1 assay. Data are presented as the mean±SD from
three independent experiments. ***Significantly different at p<0.001 compared with the dimethyl sulfoxide (DMSO)-treated group using one-way
analysis of variance with Dunnett’s multiple comparison test. B: After 72-h treatment with cisplatin (200 nM) and pemetrexed (100 nM) as single-
agents and combined, the morphological changes of A549 cells were captured under optical microscopy. 



Several studies have claimed that ROS-mediated DNA
damage can activate a caspase cascade (33, 35, 36). The
cleavage of PARP, a DNA-repair enzyme, by activated
caspases (16, 37) is a hallmark of apoptosis (38, 39). To
examine the expression of cleaved PARP, we performed
immunoblotting. As shown in Figure 4C, the strongest inducer
of cleaved PARP was cisplatin monotherapy, while
combination therapy with cisplatin and pemetrexed had an
intermediate effect on increasing cleaved PARP. Pemetrexed
monotherapy induced the lowest amount of cleaved PARP. This
result is consistent with the findings from the apoptosis assay.

Effects on the RAF/MEK/ERK signaling pathway. Previous
studies have revealed that the RAF/MEK/ERK signaling
pathway plays a vital role in cell growth, cell-cycle arrest, and
in prevention of apoptosis and drug resistance in various
cancer cell lines (40-42). The effects of cisplatin and
pemetrexed on RAF/MEK/ERK signaling were evaluated by
immunoblotting. As indicated in Figure 5, combined treatment
with cisplatin and pemetrexed had an intermediate inhibitory
effect on the RAF/MEK/ERK signaling cascade, whereas
cisplatin monotherapy induced a maximum inhibitory effect.
In contrast, when A549 cells were treated with pemetrexed
alone, we observed activation of the RAF/MEK/ERK
signaling cascade. These results suggest that cisplatin
monotherapy is more effective at inhibiting RAF/MEK/ERK
signaling in A549 cells than pemetrexed monotherapy and
cisplatin plus pemetrexed combination therapy.

Effects on autophagy. mTOR is a signaling molecule of the
PI3K/AKT/mTOR signaling pathway closely connected with
the inhibition of autophagy (43, 44). Several studies have
reported that inhibition of the PI3K/AKT/mTOR signaling
pathway can induce autophagy (45, 46). To determine whether
or not cisplatin and pemetrexed induce autophagy, A549 cells
were treated for 72 h. The levels of total and phosphorylated
mTOR and AKT were examined by immunoblotting. As
indicated in Figure 6, cisplatin and pemetrexed exerted a
distinctive inhibitory effect on the AKT/mTOR signaling
pathway both as monotherapies and in combination.

In contrast, AMPK is a key regulator of cellular metabolism
and energy balance (47). Previous studies have reported that
mTOR is a sensor of changes in the cellular energy state
through AMPK (48, 49). Activation of AMPK can inhibit
mTOR-dependent signaling, which can trigger protein
synthesis inhibition (49, 50). Several studies have reported that
AMPK/mTOR signaling is associated with autophagy, and
AMPK can enhance autophagy initiation (49, 51). As shown
in Figure 6, combined treatment with cisplatin plus pemetrexed
increased the expression of p-AMPKα (Thr 172), triggering
inhibition of mTOR-dependent signaling. Importantly, when
A549 cells were treated with cisplatin and pemetrexed as
monotherapies, AMPK activation was not observed. 

LC3 is currently broadly used to study autophagy (52, 53).
During autophagy, conversion of LC3 type II from LC3 type I
occurs; therefore, an increase in the ratio of LC3-II/LC3-I
expression is considered an autophagy marker (54, 55). As
shown in Figure 6, cisplatin plus pemetrexed treatment was most
potent for increasing the LC3-II/LC3-I ratio, whereas cisplatin
monotherapy had an intermediate effect and pemetrexed
monotherapy had the least autophagy induction activity. 

Effects on cellular senescence. Previous studies have
reported that chemotherapy drugs can induce cellular
senescence of cancer cells (56-59). Some claim that some
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Figure 2. The effect of cisplatin and pemetrexed on reactive oxygen species
(ROS) production. A: A549 cells were incubated with cisplatin (200 nM)
and pemetrexed (100 nM) alone and in combination for 72 h and then
stained with ROS deep-red dye. The fluorescent signal was evaluated by
flow cytometry, and the median fluorescence intensity (MFI) was
determined. The histogram indicates the ROS levels after drug treatment.
B: The bar diagram shows the quantification of ROS production. The
results are presented as the mean±SD from three independent experiments.
***Significantly different at p<0.001 vs. control by one-way analysis of
variance followed by Dunnett’s multiple comparison test.
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Figure 3. The effect of cisplatin and pemetrexed on DNA fragmentation. A: A549 cells were stained with fluorescein isothiocyanate-dUTP dye after
incubation with cisplatin (200 nM) and pemetrexed (100 nM) as single-agent therapy and combined therapy for 72 h. The fluorescence signal was measured
by flow cytometry. (B) The bar diagram shows the quantification of DNA fragmentation. The results were expressed as the mean±SD from three independent
experiments. ***Significantly different at p<0.001 vs. control by one-way analysis of variance followed by Dunnett’s multiple comparison test.
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Figure 4. Effect of cisplatin and pemetrexed on the induction of apoptosis in A549 cells using an annexin V-fluorescein isothiocyanate/propidium iodide
(PI) apoptosis detection kit. A: A549 cells were treated with cisplatin (200 nM), and pemetrexed (100 nM) alone and in combination for 72 h and then
flow cytometry was used to evaluate apoptosis. Quadrant 1 shows necrotic cells; quadrant 2 shows late apoptotic cells; quadrant 3 shows early apoptotic
cells; quadrant 4 shows viable cells. B: Quantification of apoptotic cells. The results were expressed as the mean±SD from three independent experiments.
Significance was determined by one-way analysis of variance followed by Dunnett’s multiple comparison test at: *p<0.05, **p<0.01 and ***p<0.001
when compared with the control. C: To evaluate the expression of cleaved poly (ADP-ribose) polymerase (PARP) (Asp 214), western blotting was performed.
β-Actin served as a loading control. Representative immunoblots with quantification relative to β-actin from three independent experiments are shown. 



chemotherapy drugs can remove cellular senescence (60, 61).
Therefore, it is crucial to characterize the senescence status
correctly when managing patients with cancer. 

To examine the effect of cisplatin and pemetrexed
treatment on cellular senescence in A549 cells, the level of
β-galactosidase, a biomarker for senescent cells, was
determined by immunoblotting. A549 cells were exposed to
drugs for 72 h. As shown in Figure 7, cisplatin plus
pemetrexed combined treatment most potently reduced
expression of β-galactosidase, whereas cisplatin monotherapy
had a milder effect. In contrast, in A549 cells that were

exposed to pemetrexed monotherapy, β-galactosidase
expression was induced, suggesting that pemetrexed
monotherapy may promote adverse effects (62). 

Discussion

Cisplatin and pemetrexed are well-known anticancer drugs
but to our knowledge, this is the first study to elucidate the
anticancer effects of cisplatin and pemetrexed as
monotherapy or combination therapy and to propose
potential mechanisms of action in A549 cells.
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Figure 5. Effect of cisplatin and pemetrexed on KRAS proto-oncogene,
GTPase (KRAS) signaling in KRAS-dependent A549 cells.
Representative western blot data of the levels of KRAS proto-oncogene,
GTPase (KRAS), Raf proto-oncogene, serine/threonine kinase (RAF),
mitogen-activated protein kinase kinase (MEK), phospho (p)-MEK (Ser
217/221), ERK and p-ERK (Thr 202/Tyr 204) after 72-h treatment with
cisplatin (200 nM) and pemetrexed (100 nM) alone and in combination.
β-Actin was used as a loading control. Representative immunoblots with
quantification relative to β-actin or non-phosphorylated forms from
three independent experiments are shown.

Figure 6. Effect of cisplatin and pemetrexed on autophagy induction in
A549 cells. Representative western blot data of the levels of AKT
serine/threonine kinase 1 (AKT), phospho (p)-AKT (Ser 473), mechanistic
target of rapamycin kinase (mTOR), p-mTOR (Ser 2448), protein kinase
AMP-activated catalytic subunit alpha (AMPKα), p-AMPKα (Thr 172)
and microtubule-associated protein 1 light chain 3 alpha (LC3) after 72-
h treatment with cisplatin (200 nM) and pemetrexed (100 nM) alone and
in combination.  β-Actin served as a loading control. Representative
immunoblots with quantification relative to β-actin, non-phosphorylated
forms, or LC3-I from three independent experiments are shown.



ROS have been reported to promote or slow the
progression of cancer cells (63, 64). Furthermore, ROS play
a fundamental role in pathological and physiological
processes (65, 66). Many studies have claimed that excessive
ROS generation by chemotherapy drugs can trigger DNA
damage and lead to the onset of apoptosis (63, 67). In the
present study, cisplatin monotherapy most potently increased
ROS-mediated DNA damage, causing apoptosis of A549
cells, as evidenced by PARP cleavage (Figure 2-4). In
contrast, we found that pemetrexed monotherapy induced
greater expression of β-galactosidase, a biomarker for
senescent cells, than cisplatin monotherapy or its
combination treatment (Figure 7). 

The RAS/RAF/MEK/ERK pathway (also known as the
mitogen-activated protein kinase signal transmission
pathway) has been reported to be crucial in the regulation of
several physiological processes, including cell division,
growth, development, and death (68, 69). This pathway is the
core of the signaling network involved in cell division,
growth, and development (70, 71). RAS acts as a key
upstream molecule of the RAF/MEK/ERK signaling
pathway (71, 72). In the present study, we found that
cisplatin monotherapy was the most effective agent at
impeding RAF/MEK/ERK signaling in KRAS-dependent
A549 cells, suggesting cell growth inhibition (Figure 5).

Previous studies have reported many vital molecules and
signaling pathways responsible for regulating autophagy (73-
75). The PI3K/AKT/mTOR signaling pathway is well-
studied,  and critical in regulating the cell cycle, apoptosis,
and autophagy (43, 76). Drugs that suppress the
PI3K/AKT/mTOR signaling pathway have been reported to
induce autophagy (77, 78). In our study, we found that
cisplatin and pemetrexed inhibited AKT/mTOR signaling,
triggered activation of autophagy (Figure 6). Various studies
have reported that AMPK positively regulates autophagy and
inhibits the mTOR-dependent signaling pathway (28, 79,
80). The AKT/mTOR signaling pathway is involved in
regulating autophagy (81). AKT controls autophagy mainly
through the alteration of mTOR activity (82-84). Our results
showed that cisplatin plus pemetrexed therapy induced
AMPK activation, thereby stimulating autophagy through the
blockade of the mTOR-dependent signaling pathway (Figure
6). In addition, several studies have claimed that LC3 is an
autophagosome marker and can be used for monitoring
autophagy (85-87). In actuality, the LC3-II/LC3-I ratio is a
hallmark of the degree of activation of autophagy (88, 89).
In the present study, our approach to detect the conversion
of LC3 (LC3-I to LC3-II) by western blotting revealed
cisplatin plus pemetrexed combination therapy to be more
potent than both cisplatin and pemetrexed monotherapies for
inducing autophagy in A549 cells (Figure 6).

Finally, this study revealed that cisplatin and
pemetrexed induced growth inhibition in A549 cells in

four explicit systems (Figure 8). Firstly, these drugs
enhance ROS-mediated DNA damage, which triggers
apoptosis. Secondly, they induced autophagy by regulating
the AMPK/mTOR and PI3K/AKT/ mTOR signaling
pathways. Thirdly, the generation of fragmented DNA may
regulate cellular senescence in A549 cells. Fourthly, these
drugs impede the RAS/RAF/MEK/ERK signaling pathway,
thereby inhibiting the growth of A549 cells. Overall, our
findings suggest that cisplatin monotherapy is the most
potent against A549 cells, as evidenced by the cell
viability outcome, RAS/RAF/MEK/ERK pathway
inhibition, and induction of apoptosis triggered by
excessive generated ROS.

Conclusion
Our results revealed the mechanisms of action of cisplatin
and pemetrexed alone and in combination against A549 cells.
We conclude that cisplatin monotherapy may be more
efficient than pemetrexed monotherapy or cisplatin plus
pemetrexed combination therapy in eliminating KRAS-
dependent cells. 
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Figure 7. Effect of cisplatin and pemetrexed on cellular senescence in
A549 cells. A549 cells were treated with cisplatin (200 nM) and
pemetrexed (100 nM) alone and in combination for 72 h. The expression
level of cellular senescence marker β-galactosidase was determined by
western blotting. β-Actin was used as a loading control. Representative
immunoblots with quantification relative to β-actin from three
independent experiments are shown. 
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kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway to induce apoptosis. C: Cisplatin and pemetrexed induce
autophagy in A549 cells through the regulation of the AKT serine/threonine kinase 1 (AKT)/mechanistic target of rapamycin kinase (mTOR) and
AMP-activated protein kinase (AMPK)/mTOR signaling pathways. 
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