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Abstract: Genomic sequencing provides critical information to track the evolution and spread of 

SARS-CoV-2, optimize molecular tests, treatments and vaccines, and guide public health 

responses. To investigate the spatiotemporal heterogeneity in the global SARS-CoV-2 genomic 

surveillance, we estimated the impact of sequencing intensity and turnaround times (TAT) on 

variant detection in 167 countries. Most countries submit genomes >21 days after sample 5 

collection, and 77% of low and middle income countries sequenced <0.5% of their cases. We 

found that sequencing at least 0.5% of the cases, with a TAT <21 days, could be a benchmark for 

SARS-CoV-2 genomic surveillance efforts. Socioeconomic inequalities substantially impact our 

ability to quickly detect SARS-CoV-2 variants, and undermine the global pandemic preparedness. 

 10 

One-Sentence Summary: Socioeconomic inequalities impacted the SARS-CoV-2 genomic 

surveillance, and undermined the global pandemic preparedness.  
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The importance of genomic surveillance  

Twenty months into the COVID-19 pandemic, many countries continue to face large epidemics of 

SARS-CoV-2 infections (1), mostly driven by the emergence and spread of novel viral variants 

(2). Genomic surveillance has been critical to the study of SARS-CoV-2 evolution and spread, to 

the design and optimization of diagnostic tools and vaccines, and to the early identification and 5 

assessment of viral lineages with altered epidemiological characteristics, including variants of 

concern (VOCs) such as Alpha/B.1.1.7; Beta/B.1.351; Gamma/P.1; and Delta/B.1.617.2. These 

lineages pose increased global public health risks due to their greater transmissibility and potential 

immune escape from neutralizing antibodies induced by natural infections and/or vaccines (3, 4). 

Variants of interest (VOIs) also require continued monitoring for changes in transmissibility, 10 

disease severity, or antigenicity (5). To help guide public health responses to evolving variants, it 

is essential to track the diversity of SARS-CoV-2 lineages circulating worldwide in near real-time 

(3, 6, 7). An unprecedented number of SARS-CoV-2 viral genomes have now been released in 

publicly accessible databases, with >4 million consensus genome sequences shared via the EpiCoV 

database at the GISAID data science initiative (8) and >1.2 million high-throughput sequencing 15 

datasets and >1.7 million consensus sequences in National Center for Biotechnology Information 

as of October 1st, 2021. Until then, and as a comparison, 324,992 influenza genome sequences 

have been shared in the GISAID database. Despite improvements in models for equitable sharing 

of pathogen genomic data (9), there are striking differences in the intensity of genomic surveillance 

within and among countries worldwide. Here we examine global publicly-accessible SARS-CoV-20 

2 genomic surveillance data from the first 15 months of the COVID-19 pandemic to identify key 

aspects associated with sequencing intensity and timely variant detection, and investigate the 

consequences of surveillance disparities. 

 

 25 
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Global disparities in SARS-CoV-2 genomic surveillance 

To investigate spatial and temporal heterogeneity in SARS-CoV-2 genome sequencing intensity, 

we explored the percentage of COVID-19 cases sequenced each week per country from February 

2020 to March 2021 (Fig. 1A; Table S1). It has been proposed that at least 5% of SARS-CoV-2 

positive samples should be sequenced to detect viral lineages at a prevalence of 0.1 to 1.0% (10). 5 

Only 16 countries (or 9.6%) worldwide sequenced 5% or more of their total confirmed cases, while 

100 out of 167 countries had <0.5% of confirmed cases sequenced (Fig. 1B; Fig. S1). A total of 

72 countries had <25% of their genomes sequenced locally, and relied mostly on sequencing 

capacity in other countries to get their cases sequenced (Fig. S2; Table S2). Among high-income 

countries (HICs) and low- and middle-income countries (LMICs), while the number of reported 10 

cases was relatively similar until late March 2021 (65.3 and 61.2 million, respectively), HICs 

shared on average 16.5–fold more sequences per reported case (1.81% and 0.11% for HIC and 

LMICs, respectively) (Table S3). A moderate negative correlation between weekly sequencing 

percentages and reported COVID-19 incidence was observed (cases/100K pop., r² = -0.52; p-value 

< 0.001), suggesting that countries with low incidence (Fig. 1C; Fig. S3) were able to sequence 15 

higher proportions of cases. Exceptionally, some countries, such as Denmark and the UK, faced 

high weekly COVID-19 incidence in late 2020 but were still able to maintain sequencing intensity 

>10% in most weeks (32% and 8% of total confirmed cases, respectively) (Fig. 1A-B; Fig. S3). 

 

Most countries in Africa and Asia, despite reporting low COVID-19 incidence, did not reach 20 

genomic surveillance levels similar to the Gambia (8.6%), Japan (7.3%), Hong Kong (12.3%), 

New Zealand (3.8%) and Australia (5.9%), which also experienced low COVID-19 incidences 

(Fig. 1B-C; Fig. S3). Likewise, sequencing of >0.5% of cases has not been achieved in most Latin 

American countries, particularly during periods of high incidence (Fig. S3). This finding is robust 

to under-ascertainment of reported cases due to more limited availability of diagnostic tests. Our 25 
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study also revealed an absence of SARS-CoV-2 genomes in public databases from >20 LMICs; 

for some countries, the only available information on the diversity of circulating lineages has been 

obtained from travel-related infections sequenced abroad (Fig. S2). Overall, most countries did 

not achieve high or moderate percentages (0.1% to 1%) of sequenced cases each week of the 

pandemic (Fig. 1; Fig. S3).  5 

 

We also described turnaround time (TAT; defined as the time in days between sample collection 

and genome submission) of SARS-CoV-2 genome sequencing across 19 geographic regions (Fig. 

1D; see also (11)). On average, virus sequences were deposited in public databases 48 days after 

sample collection, but in 2021, following the detection of the Alpha VOC, efforts were made in 10 

nearly all geographic regions to decrease TAT, and provide faster responses (Fig. 1D; see Fig. S4 

for weekly changes in TAT across regions). Rapid generation and sharing of pathogen sequence 

data from regularly-collected samples is essential to maximize public health impact of genomic 

data (12, 13). The VOCs Alpha and Gamma, for example, reached up to 50% frequency within 2 

to 3 months of their emergence in the U.K. and Manaus, respectively (14, 15). Thus, quick TAT 15 

is essential for the timely recognition and assessment of transmissibility potential of VOCs. 
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Sampling strategies for rapid variant detection 

We investigated the impact of genome sequencing intensity and TAT on the detection of SARS-

CoV-2 lineages. Similar to what has been observed in the UK (14), the number of globally 

observed lineages correlates with the number SARS-CoV-2 genomes available per country 

(Pearson’s r = 0.96, p-value<0.0001) and the overall proportion of sequenced cases in each country 5 

(Pearson’s r = 0.48, p-value<0.0001) (Fig. S5). This implies that limited genome sequencing 

intensity may affect the identification and response to new viral lineages with altered 

epidemiological and antigenic characteristics. To investigate strategies for rapid variant detection, 

we simulated the impact of the percentage of sequenced cases and TAT on the reliable detection 

of previously-identified SARS-CoV-2 lineages using metadata from Denmark, which has one of 10 

the most comprehensive SARS-CoV-2 genome surveillance systems (see Materials and 

Methods). Because several countries have opportunistically selected samples for sequencing 

based on testing characteristics, e.g. spike gene target failures of a commonly-used PCR assay, or 

additional, often unspecified characteristics, such as imported cases or severe disease, we focused 

on analysing data collected prior to November 2020 (Fig. S6). 15 
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We assumed a recommended scenario of random sampling, whereby samples for virus genomic 

sequencing are selected independently of sample metadata such as age, sex, or clinical symptoms 

(15). When calculating the probability of detecting at least one genome of a rare lineage (0–5% 

prevalence) under different sequencing intensities, we found that sequencing at least 300 genomes 

per week is required to detect, with a 95% probability, a lineage that is circulating in a population 5 

at a weekly prevalence of 1%. For a weekly prevalence of 5%, this number decreases to 75 

genomes per week (Fig. 2A). These figures are independent of outbreak and population size of a 

given location, and can only tell if a lineage is present, not how prevalent it is, and furthermore 

assumes representative sampling. On average, genome surveillance programmes in high income 

countries should be able to detect circulating virus lineages at 5% prevalence with maximum 10 

probability under the assumption of random sampling (Fig. 2B; Table 1). However, under a 

scenario of random sampling, low income countries that sequence an average of 9 genomes per 

week may miss a SARS-CoV-2 lineage circulating at up to 26% prevalence. This will present a 

substantial limitation to the lines of inquiry available to such countries from genome sequencing 

data (Table 1). Within the range 0.05–5% sequences per case considered here, increasing sampling 15 

intensity and at a lesser extent reducing TAT strongly improves the rapid detection of viral lineages 

(Fig. 2B).  

 

 

 20 
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Next, we simulated 25 scenarios with 100 replicates, in which we varied sampling frequency (from 

0.05% to 5%) and TAT (from 35 to 7 days) to compute the probabilities of detecting at least one 

genome of a given lineage before the lineage reaches a cumulative size of 100 cases (Fig. 2B), 

using as “ground truth” a dataset from a well characterized setting (see Materials and Methods 

and Fig. S6). The simulated scenario shows that when sequencing percentages of 5% per week 5 

and turnaround times of 7 days are achieved in a given setting, there is a 48% probability of 

detecting a viral lineage before it reaches 100 cases randomly selected from the population. When 

the proportion of sequenced cases per week decreases by 100-fold, to 0.05%, the probability of the 

timely detection of a viral lineage before it reaches 100 cases decreases to 4.8% for turnaround 

times of 7 days, and further declines to 2.6% when turnaround time is 35 days (Fig. 2B). 10 
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For an optimistic scenario of 0.5% of sequenced cases (achieved by 69% of HICs and 23% of 

LMICs) and a turnaround time of 21 days (achieved by 14% of the HICs and 3% of the LMICs) 

(Table S4), we found a 20% probability of detecting a lineage before it reaches 100 cases. 

Throughout the pandemic, many countries reported weekly incidences as high as 100 cases per 

100,000 inhabitants (Fig. 1C, Fig. S3). For example, in such a scenario of high incidence, for 5 

Manaus (2.2 million inhabitants, Amazonas state, Brazil), the 0.5% sequencing threshold would 

correspond to 11 randomly selected genomes per week. With a 21-day turnaround time, this would 

allow the detection of a given lineage with a 20% probability (Fig. 2B). For São Paulo (12.4 million 

inhabitants), this number increases to 62 genomes per week. For Brazil (212.6 million inhabitants), 

this would correspond to 1,063 weekly genomes selected from a random population of samples, 10 

in the above mentioned scenario of high incidence. Although the 0.5% ratio of sequenced cases 

per week in near real-time is a reasonable benchmark for SARS-CoV-2 genomic surveillance in 

over two thirds of high income country settings (Table S4), this often comes as a result of close 

coordination between diagnostic centers and well-funded, decentralized infrastructures to integrate 

sequencing data and sample-associated metadata (see e.g. (16)). 15 

 

Factors associated with genomic surveillance capacity 

While many HICs were able to rely on previously established networks and laboratory 

infrastructure to perform molecular testing and sequencing (17, 18), many LMICs – including 

Brazil, South Africa, and India where three VOCs are believed to have emerged (19–22) - have 20 

faced additional challenges to rapid expansion of genomic surveillance (18, 23, 24). Pathogen 

genomics complements but often competes for limited resources with other aspects of pandemic 

response, for instance, surveillance and testing capacity, medical supplies, laboratory reagents, 

public health and social measures, vaccine development, and supplies (25). To investigate how 

socioeconomic factors can impact SARS-CoV-2 genomic surveillance response around the 25 
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world, we explored the correlation between the percentage of sequenced COVID-19 cases in 

each country, and 20 country-level socioeconomic and health quality covariates (Table S5). We 

found that the percentage of sequenced cases are significantly associated with expenditure on 

research and development (R&D) per capita (r2=0.47, p-value<0.0001), GDP per capita (0.37, p-

value<0.0001), socio-demographic index (0.31, p-value<0.001), and established influenza virus 5 

genomic surveillance capacity prior to the COVID-19 pandemic (0.30, p-value<0.001) (Fig. 3; 

Table S6).  

 

Before January 2020, only 67% (113 out of 167) of the countries that uploaded SARS-CoV-2 

genomes to public databases had shared influenza virus genome sequences. When we compared 10 

breakdown by income class, we observed that the majority of UMCs (77%) and HICs (78%) 

sequencing SARS-CoV-2 had already reported influenza virus sequences in public databases up 

to 2019. For LICs and LMCs countries, this number drops to 39% and 54%, respectively, 

suggesting that many LICs and LMCs initiated genome sequencing programmes during the 

COVID-19 pandemic. While disparities in investment in national health, research, and 15 

development continue to impact the ability of countries to scale up genomic surveillance intensity 

(6, 18, 26), the uptake in genomic surveillance by many LMICs and the association of sequencing 

efforts with established genomic surveillance capacity provide an encouraging picture for future 

pandemic preparedness programmes.  

 20 
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When we explored correlations with mean turnaround time (Table S7), we found that universal 

health coverage (r2=-0.45, p-value<0.0001), healthcare access and quality index (-0.44, p-

value<0.0001), socio-demographic index (-0.42, p-value<0.0001), and health expenditure per 

capita (-0.4, p-value<0.0001) are significantly correlated with mean turnaround times (Fig. S7, 

Table S7). Our results quantify only correlations between socioeconomic covariates, sequencing 5 

intensity, and turnaround time, and cannot be interpreted as causal. Future studies should focus 

on additional variables, such as training laboratory and bioinformatic personnel, costs associated 

with imported consumables, and shipment delays that may be exacerbated by border closures and 

travel restrictions (6, 23, 24, 26, 27). Other factors associated with delays in reporting VOCs 

include social and political stigma and perceived negative impact on travel when reporting 10 

potential VOCs, and concerns of having findings scooped and published by other researchers 

(28). Longer turnaround times are also expected in countries where virus genomics activities are 

focused on retrospective genomic studies to investigate SARS-CoV-2 reinfections (29), vaccine 

breakthrough infections (30), and past epidemic dynamics (31, 32). 

 15 

 

 

 

 

 20 
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Conclusions 

Strengthening pathogen genomic surveillance efforts worldwide, but particularly in LMICs, 

should be a global priority to improve pandemic preparedness. Our findings demonstrate that 

global SARS-CoV-2 genomic surveillance efforts are currently highly unbalanced, and 

contingent upon socioeconomic factors and pre-pandemic laboratory and surveillance capacity. 5 

Our results suggest that sequencing 0.5% of total confirmed cases, with a TAT below 21 days, 

could provide a benchmark for genomic surveillance studies targeting SARS-CoV-2 and future 

emerging viruses. Ongoing surveys to understand barriers to virus genome sequencing and 

sampling selection strategies will provide valuable information for future surveillance 

programmes. Implementation of metagenomic approaches for virus discovery followed by virus-10 

genome specific sequencing approaches could help overcome existing limitations of molecular 

and syndromic surveillance strategies (33). Adoption of standardized protocols for representative 

genomic surveillance strategies (15, 34), rapid integration of sequence and sample-associated 

metadata, and collaboration between academia, public health laboratories and other stakeholders 

will be essential to maximize cost-effectiveness and public health impact of genomic 15 

surveillance. While a random sampling strategy may provide accurate information into SARS-

CoV-2 variant emergence and frequency estimation, we note that genome sampling strategies 

should be considered pathogen- and question-specific (15). For example, non-random selection 

of samples stratified by disease severity may be required to identify genes or mutations 

associated with clinical outcomes. 20 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 9, 2021. ; https://doi.org/10.1101/2021.08.21.21262393doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.21.21262393
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

Our findings call for strengthening equitable strategies that increase confidence in data sharing for 

improving global genomic surveillance (28). There are several global efforts underway to improve 

genomic sequencing capacities around the world, including the AFRO-Africa Centre for Disease 

Control, the Pan American Health Organization COVIGEN Network, South East Asian SARS-

CoV-2 Genomics Consortium, and the ACT-A WHO Global Risk Monitoring Framework. These 5 

global efforts must be made to improve in-country genomic surveillance capacity and guarantee 

sustainable research funding for low and middle income countries. Improved pathogen 

surveillance at the human, animal and human-animal interfaces is also urgently needed (35). 

Retaining existing and expanding local capacity efforts acquired during the SARS-CoV-2 

pandemic will be critical to contain and respond to the next “Disease X'' (35).  10 
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Fig. 1. Disparities in SARS-CoV-2 global genomic surveillance. (A) Percentage of reported cases that were 
sequenced per country, per epidemiological week (EW), between February 23rd, 2020 and March 27th, 2021 (based 
on metadata submitted to GISAID up to May 30th, 2021). Updated numbers on sequence submissions and proportion 
of sequenced cases are available on the GISAID Submissions Dashboard at gisaid.org. (B) Frequency and overall 5 
percentage of sequenced cases per country. This plot summarizes the data shown in (A), where the x-axis shows the 
percentage of EWs with sequenced cases, and the y-axis displays the overall percentage of cases shown in the 
rightmost column of panel (A). (C) Percentage of cases sequenced per EW per country, per geographic region 
(classified according to the UNSD geoscheme). Each circle represents an EW with at least one sequenced case, and 
their diameters highlight the incidence (cases per 100,000 habitants), e.g. “ISL-EW38-2020” shows data from week 10 
38 in 2020, in Iceland. (D) Distribution of turnaround times of genomes collected in different geographic regions, in 
2020 and 2021. Countries are highlighted in panels of this figure using the ISO 3166-1 nomenclature. 
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Figure 2. Detection of SARS-CoV-2 lineages under different genomic surveillance scenarios. (A) The probability 
of detecting at least one genome of a rare lineage under different sequencing regimes. (B) Relative importance of 
decreasing genome sequencing turnaround time (TAT) versus increasing sequencing percentage, measured as 
probability that a lineage found in simulated datasets was detected before it had reached 100 cases (described in Fig. 5 
S6). (C-G) Probability of lineage detection considering TATs of 7, 14, 21, 28 and 35 days. 
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Figure 3. Case sequencing percentages and socioeconomic covariates. Covariates that show the highest correlation 
with the overall percentage of COVID-19 sequenced cases (during the period shown in Fig. 1A). (A) Expenditure on 
R&D per capita; (B) GDP per capita; (C) Socio-demographic index; (D) Overall percentage of influenza virus 
sequenced cases in 2019 (HA segment). For correlations between covariates and turnaround time, see Fig. S7. The 5 
colour scheme is the same as in Figure 1 and 2. Solid line shows the linear fit. *PPP = purchasing power parity, USD 
= US dollar 2005. 
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Table 1. Empirical country sequencing capacities at different income levels and lines of inquiry enabled at each 
level. Countries at each income level have markedly different sequencing capacities, allowing for different degrees of 
epidemic resolution and lines of inquiry. Characteristics of each income class are shown in Table S4. 
 

Income 
class 

Median 
weekly 

genomes 
(when 

sequencing 
at all) 

Mean 
weekly 

genomes 
(when 

sequencin
g at all) 

Probability of 
detecting a lineage 
at 5% prevalence 

under mean weekly 
sequencing regime 

Maximum probable 
prevalence of an 

undetected lineage 
under mean weekly 
sequencing regime 

Lines of inquiry 
available 

Low 
income 
countries 
(LICs) 
 

4 8.64 0.351 0.262 Presence/absenc
e of prevalent 
lineages 

Lower 
middle 
income 
countries 
(LMCs) 

5 25.97 0.727 0.095 + Quantification 
of lineage 
prevalence with 
some error; 
identification of 
preliminary 
patterns of 
geographic 
spread 

Upper 
middle 
income 
countries 
(UMCs) 

7 33.16 0.810 0.073 

High 
income 
countries 
(HICs) 

38 524.80 1.000 0.005 + Investigations 
of lineage 
dynamics, and 
transmissibility; 
high precision 
lineage tracking 
(molecular 
evolution and 
geographic 
spread) 
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