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Abstract: Medical image analysis research requires medical image datasets. Nevertheless, due to
various impediments, researchers have been described as “data starved”. We hypothesize that
implicit evolving community standards require researchers to use ever-growing datasets. In Phase
I of this research, we scanned the MICCAI (Medical Image Computing and Computer-Assisted
Intervention) conference proceedings from 2011 to 2018. We identified 907 papers involving human
MRI, CT or fMRI datasets and extracted their sizes. The median dataset size had grown by 3–10 times
from 2011 to 2018, depending on imaging modality. Statistical analysis revealed exponential growth
of the geometric mean dataset size with an annual growth of 21% for MRI, 24% for CT and 31%
for fMRI. Thereupon, we had issued a forecast for dataset sizes in MICCAI 2019 well before the
conference. In Phase II of this research, we examined the MICCAI 2019 proceedings and analyzed
308 relevant papers. The MICCAI 2019 statistics compare well with the forecast. The revised annual
growth rates of the geometric mean dataset size are 27% for MRI, 30% for CT and 32% for fMRI. We
predict the respective dataset sizes in the MICCAI 2020 conference (that we have not yet analyzed)
and the future MICCAI 2021 conference.
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1. Introduction

Medical image analysis is an active research field focusing on computational meth-
ods for the extraction of clinically useful information from medical images. Research in
medical image analysis critically depends on the availability of relevant medical image
sets (datasets) for tasks, such as training, testing and validation of algorithms. It is widely
accepted that solid medical image analysis research requires the use of sufficiently large
datasets. This notion is rooted in classical statistical estimation [1] and classification [2]
theories and is supported by the state-of-the-art machine learning theory [3].

Obtaining relevant medical images is challenging and costly, as it requires the coop-
eration of medical professionals and institutes and alleviation of ethical, legal and often
commercial conflicts. For example, making a clinical medical image available for research
usually requires a collaborating clinical expert to obtain regulatory approvals, to find a
relevant image in an institutional archive, to interpret the image and to remove identifying
details. Thus, for research in medical image analysis, relevant images are usually in high
demand and short supply. In a recent conference [4], “the common theme from attendees
was that everyone participating in medical image evaluation with machine learning is data
starved”. Thus, typical dataset sizes in medical image analysis research are a far cry from
the common perception of big data in healthcare [5].

Since 2012, the deep learning paradigm has revolutionized the field of medical image
analysis [6], underscoring the significance of large image datasets. Thus, researchers are
torn between the need for large image datasets, i.e., datasets containing medical images of
many subjects, and the cost and effort required to obtain them.

In contrast to classical estimation, detection and classification problems, where sam-
ple size planning may yield to analysis [1,2,7–11], the theoretical understanding of deep
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learning is limited. The trend is that increasing the training dataset size improves the perfor-
mance of deep learning networks [3,12]. Small datasets are associated with overfitting and
poor generalization performance on unseen data [12]. In the presence of rare pathologies,
small datasets are known to result in class imbalance and inadequate training [4]. Yet, solid
objective criteria for dataset size are difficult to obtain, especially in medical image analysis.

In practice, since dataset size is associated with research quality, the research com-
munity develops expectations regarding dataset size in medical image analysis. These
evolving expectations are reflected in the peer-review process of reputable publication
venues, implicitly setting ad-hoc thresholds on dataset size. Thus, a manuscript is accepted
for publication or presentation in a reputable venue only if the dataset size is regarded
by the referees as sufficiently large. Consequently, dataset sizes appearing in published
articles reflect the implicit standard of the research community for dataset size. Since the
standard is not static, researchers are often dismayed to discover that the dataset used in
their current study, where the number of subjects was previously considered sufficiently
large, is no longer up to expectations. This uncertainty leads to marginalization and loss of
potentially valuable research.

The purpose of this research is to better understand the temporal trends in the im-
plicit community expectations regarding dataset size. We hypothesize that these expec-
tations grow over time, such that ever-increasing datasets are required for acceptance of
a manuscript to a reputable venue. This study provides researchers, funding agencies,
program committees and editors with guidelines regarding the community standards for
dataset size in current and future medical image analysis research. For example, when
preparing a research proposal for a funding agency, our results will allow the investigator to
plan the dataset size and its evolution over the research period and to present a convincing
justification for the requested dataset cost.

2. Methods

We scanned the proceedings of the annual MICCAI conference from 2011 to 2019 [13–21],
and carefully extracted the numbers of human subjects included in the datasets used.
MICCAI, the acronym for Medical Image Computing and Computer-Assisted Intervention,
is a leading conference in the field, with a rigorous peer-review process (typically at least
three reviewers, double-blind). Table 1 shows the number of submitted papers, the number
of accepted papers (oral and posters) and the acceptance ratio per year (main conference
only, excluding satellite events). We preferred monitoring a conference series rather than an
archival journal since the conference review period is shorter than that of quality journals,
implying a shorter sampling aperture, hence better temporal sampling.

Table 1. MICCAI submission and acceptance data (main conference).

Year Submitted Papers Accepted Papers Acceptance Rate

2011 819 251 30%
2012 781 252 32%
2013 798 262 33%
2014 862 253 29%
2015 810 263 32%
2016 756 228 30%
2017 800 255 32%
2018 1068 372 35%
2019 1809 540 30%

We focused on studies involving three important imaging modalities: Magnetic
Resonance Imaging (MRI), Computed Tomography (CT) and Functional MRI (fMRI). Taken
together, this selection covers a substantial portion of the research articles in the MICCAI
proceedings. Being well-established modalities, a good number of articles associated
with each modality is found in each annual edition of the MICCAI proceedings, allowing
meaningful statistical study.
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We only considered datasets referring to human subjects rather than animal or other
datasets. Given the stringent regulatory framework regarding human data [22], we believe
that the challenges and trade-offs associated with the collection and use of human medical
data are unique and justify the exclusion of non-human datasets from this study. Neverthe-
less, in utero and post-mortem human datasets are included. We define the dataset size to
be the number of distinct human subjects rather than the number of test images or similar
data structures, as the number of human subjects better reflects the recruitment effort.

We examined each of the 2676 articles in the MICCAI 2011–2019 proceedings, found
the 1215 relevant articles and extracted from each article the dataset size. No distinction
was made between data used for training, validation, testing or any other use. With few
exceptions, articles associated with several imaging modalities were considered with regard
to one of the modalities, with preference to fMRI over CT and MRI. Table 2 shows the
number of relevant MICCAI articles, i.e., the articles included in our analysis, per year and
imaging modality. The growth in 2018 and 2019 corresponds to the larger overall number
of articles in the respective MICCAI conferences (see Table 1).

Table 2. Number of articles included in the analysis, per year and imaging modality.

2011 2012 2013 2014 2015 2016 2017 2018 2019

MRI 62 63 76 63 66 69 75 94 187
CT 36 24 20 40 23 14 30 36 97

fMRI 11 10 14 10 14 16 15 26 24

To obtain an initial overview of dataset sizes in the MICCAI 2011–2019 conferences
(Section 3), for each year and modality, we present the average, geometric mean and median
dataset sizes. In computing the average, to reduce the effect of outliers, we discarded the
largest value and smallest value.

The statistical analysis (Sections 4 and 5) had been carried out in two phases. Phase I
(Section 4) had been carried out before MICCAI 2019 took place. Statistical analysis of the
2011–2018 data was performed for each modality separately, using SPSS v.25 (IBM, Armonk
NY, USA) and R v.3.6.0 25 (R-Foundation, Vienna, Austria). p-values were corrected
for multiple comparisons using the Benjamini–Hochberg (BH) procedure, with p < 0.05
considered as significant. Phase I culminated in the release of predictions [23] regarding
dataset sizes in the then-upcoming MICCAI 2019 conference [21].

In Phase II (Section 5), the MICCAI 2019 statistics were extracted and compared to
the corresponding Phase I predictions. The statistical analysis was then revised to include
the 2019 data and cover the entire 2011–2019 period. Based on this analysis, we issue
predictions regarding dataset sizes in the MICCAI 2020 conference (its analysis is beyond
the scope of this research) and the MICCAI 2021 conference, noting that it has not yet taken
place at the time of writing.

3. Descriptive Results

For MRI, the annual average, geometric mean and median dataset sizes used in
MICCAI articles in each of the years 2011–2019 are shown in Table 3. It can be seen that all
three measures greatly increased over that period. The higher values of the average values
follow from the occasional use of large publicly accessible datasets, see [24], affecting the
averages but not the median values. A graphical representation of the median values per
year is shown in Figure 1.

The measures for CT are presented in Table 4, showing marked overall dataset growth
over the study period. For CT, the graph of median dataset size per year is shown in
Figure 2. The corresponding data for fMRI is presented in Table 5 and in Figure 3.
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Table 3. Average, geometric mean and median MRI dataset sizes (number of subjects) used in
MICCAI articles in each of the years 2011–2019.

MRI 2011 2012 2013 2014 2015 2016 2017 2018 2019

average 74.3 52.2 79.9 139.2 65.6 163.6 178.1 250.6 650.2
geom. mean 21.7 19.2 28.5 43.0 27.4 64.2 62.5 68.6 141.1

median 23 20 21 54 33 64 80 67 152
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Figure 1. Median size of datasets used in MICCAI articles related to MRI in each of the years
2011–2019.

Table 4. Average, geometric mean and median CT dataset sizes (number of subjects) used in MICCAI
articles in each of the years 2011–2019.

CT 2011 2012 2013 2014 2015 2016 2017 2018 2019

average 54.4 26.8 40.4 48.0 71.6 71.3 143.9 504.0 509.9
geom. mean 19.1 15.6 26.4 20.3 29.3 39.7 35.7 102.0 126.2

median 17 16 33 20 29 24 28 72 128
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Figure 2. Median size of datasets used in MICCAI articles related to CT in each of the years 2011–2019.
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Table 5. Average, geometric mean and median fMRI dataset sizes (number of subjects) used in
MICCAI articles in each of the years 2011–2019.

fMRI 2011 2012 2013 2014 2015 2016 2017 2018 2019

average 21.3 31.9 32.3 67.5 86.6 111.7 151.6 264.4 316.5
geom. mean 17.3 27.9 25.2 65.1 59.8 93.7 68.0 131.6 180.5

median 15 29 25 64 53 86 46 191 174
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Figure 3. Median size of datasets used in MICCAI articles related to fMRI in each of the years
2011–2019.

4. Statistical Analysis and Prediction—Phase I (2011–2018 Data)

As a preliminary test of the dataset growth hypothesis, we first divided the range of
years into two categories: 2011–2014 and 2015–2018. The distributions of the dataset sizes
in the two categories were similar and non-normal. A Mann–Whitney U test was carried
out to determine if there were differences in dataset sizes between the two time-categories.

• For MRI, the median numbers of subjects for 2011–2014 (26) and 2015–2018 (55.5) were
statistically significantly different, U = 19.115, p < 0.001.

• For CT, the median numbers of subjects for 2011–2014 (18.5) and 2015–2018 (36) were
statistically significantly different, U = 8.311, p = 0.006.

• For fMRI, the median numbers of subjects for 2011–2014 (37) and 2015–2018 (77) were
statistically significantly different, U = 10.493, p = 0.003.

These results corroborate the dataset-growth hypothesis.
Returning to the full Phase-I year range, 2011–2018, we used the natural logarithm

(ln) transformation to normalize dataset sizes. Linear regression established that the year
(after 2010) could statistically significantly predict the natural logarithm of the dataset
size. Throughout this research, in each regression analysis, the regression is based on the
whole ensemble of dataset sizes, not on the empirical geometric means. The predictions for
2019 are of special interest since MICCAI 2019 had not yet taken place at the time these
predictions were made.

For MRI, the model was statistically significant, F(1,566) = 38.720, p < 0.001. The model
explained 6.2% (adjusted R2) of the variance in the natural logarithm of dataset sizes. The
year was statistically significant (B = 0.189, CI = (0.129, 0.249), p < 0.001), where B denotes
slope and CI is its confidence interval. The regression equation is

Ê(ln N) = 2.771 + 0.189(y − 2010) (1)

where Ê(ln N) is the predicted mean of the natural logarithm of dataset sizes and y is the
year. Returning to the original scale of MRI dataset sizes, we obtain
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Ĝ(N) = e2.771+0.189(y−2010) (2)

Here, Ĝ(N) is the predicted geometric mean of MRI dataset sizes. The annual growth
rate of the predicted geometric mean is about 21%, corresponding to (e0.189 − 1). Figure 4
shows Ĝ(N) with its confidence interval for each of the years 2011–2019. The empirical
geometric means, taken from Table 3, are shown (in green) for comparison. We predicted
the geometric mean of MRI dataset sizes in MICCAI 2019 to be 87.5, with a confidence
interval of (65.5, 116.9). The empirical geometric mean for 2019 (in purple) became available
later, in Phase II of this research.
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this research.

The regression model was statistically significant for CT as well, F(1,221) = 21.273,
p < 0.001. The model explained 8.4% (adjusted R2) of the variance in the natural logarithm
of the dataset sizes. The year was statistically significant (B = 0.213, (CI = 0.122, 0.305),
p < 0.001). The regression equation is

Ê(ln N) = 2.456 + 0.213(y − 2010) (3)

Returning to the original scale of CT dataset sizes, we obtain

Ĝ(N) = e2.456+0.213(y−2010) (4)
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In Equation (4), Ĝ(N) is the predicted geometric mean of CT dataset sizes. Here, the
annual growth rate of the predicted geometric mean is about 24%. Figure 5 shows Ĝ(N)
with its confidence interval for each of the years 2011–2019. The empirical geometric means,
taken from Table 4, are shown (in green) for comparison. We predicted the geometric mean
of CT dataset sizes in the MICCAI 2019 conference to be 79.6 with a confidence interval of
(49.9, 126.9). The empirical geometric mean for 2019 (in purple) became available later, in
Phase II of this research.
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this research.

Finally, for fMRI, the model was yet again statistically significant, F(1,114) = 27.130,
p < 0.001. The model explained 18.5% (adjusted R2) of the variance in the natural logarithm
of dataset sizes. The year was statistically significant (B = 0.271, CI = (0.168,0.374), p < 0.001).
The regression equation is

Ê(ln N) = 2.683 + 0.271(y − 2010) (5)

Returning to the original scale of fMRI dataset sizes, we obtain

Ĝ(N) = e2.683+0.271(y−2010) (6)

In Equation (6), Ĝ(N) is the predicted geometric mean of fMRI dataset sizes. For fMRI,
the annual growth rate of the predicted geometric mean is about 31%. Figure 6 shows Ĝ(N)
with its confidence interval for each of the years 2011–2019. The empirical geometric means,
taken from Table 5, are shown (in green) for comparison. We predicted the geometric mean
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of fMRI dataset sizes in the MICCAI 2019 conference to be 167.7, with a confidence interval
of (104.9, 268.0). The empirical geometric mean for 2019 (in purple) became available later,
in Phase II of this research.

J. Imaging 2021, 7, x FOR PEER REVIEW 8 of 15 
 

 

Finally, for fMRI, the model was yet again statistically significant, F(1,114) = 27.130, 
p < 0.001. The model explained 18.5% (adjusted R2) of the variance in the natural logarithm 
of dataset sizes. The year was statistically significant (B = 0.271, CI = (0.168,0.374),  
p < 0.001). The regression equation is  E(ln N) = 2.683 + 0.271(y − 2010) (5)

Returning to the original scale of fMRI dataset sizes, we obtain  G(N) = eଶ.଼ଷା.ଶଵ(୷ିଶଵ) (6)

In Equation (6), Ĝ(N) is the predicted geometric mean of fMRI dataset sizes. For fMRI, 
the annual growth rate of the predicted geometric mean is about 31%. Figure 6 shows 
Ĝ(N) with its confidence interval for each of the years 2011–2019. The empirical geometric 
means, taken from Table 5, are shown (in green) for comparison. We predicted the geo-
metric mean of fMRI dataset sizes in the MICCAI 2019 conference to be 167.7, with a con-
fidence interval of (104.9, 268.0). The empirical geometric mean for 2019 (in purple) be-
came available later, in Phase II of this research. 

 
Figure 6. Phase I—Predicted geometric mean (black dots) and confidence intervals of dataset sizes 
in MICCAI articles involving fMRI for the years 2011–2019, based on the whole ensemble of 2011–
2018 fMRI dataset sizes. The empirical geometric means (2011–2018) are shown (in green) for com-
parison (x marks). The empirical geometric mean for 2019 (in purple) became available later, in 
Phase II of this research. 

The low adjusted R2 values in this section (6.2% for MRI, 8.4% for CT and 18.5% for 
fMRI) and in the next section require clarification. The regression tasks in this research are 
unusual because for each imaging modality and for each value of the independent varia-
ble (year), there are many (10–187, see Table 2) disparate values of the dependent variable 
(dataset size). The values themselves are radically different from each other, as dataset 

Figure 6. Phase I—Predicted geometric mean (black dots) and confidence intervals of dataset sizes in
MICCAI articles involving fMRI for the years 2011–2019, based on the whole ensemble of 2011–2018
fMRI dataset sizes. The empirical geometric means (2011–2018) are shown (in green) for comparison
(x marks). The empirical geometric mean for 2019 (in purple) became available later, in Phase II of
this research.

The low adjusted R2 values in this section (6.2% for MRI, 8.4% for CT and 18.5% for
fMRI) and in the next section require clarification. The regression tasks in this research are
unusual because for each imaging modality and for each value of the independent variable
(year), there are many (10–187, see Table 2) disparate values of the dependent variable
(dataset size). The values themselves are radically different from each other, as dataset
sizes encountered in MICCAI articles can be as small as one or as large as many thousands
(where large external datasets are used). This implies a huge inherent variance of the
dependent variable at each value of the independent variable. No single-valued hypothetic
regression function, regardless of linearity or of any other property, can provide a single
prediction at a specific value of the independent variable that simultaneously “explains”
hugely different observations of the dependent variable at that point. This is the reason for
the inevitably low adjusted R2 values. The higher adjusted R2 value for fMRI, compared to
MRI and CT, follows from the scarcity of large external fMRI datasets, implying a smaller
inherent variance that needs to be “explained”. Nevertheless, our models are statistically
significant, and the predicted geometric means are pleasantly close to the empirical ones
where the latter are available.

The Phase I analysis, including predictions regarding dataset sizes in MICCAI 2019,
had been presented in [23], before the MICCAI 2019 conference took place.
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5. Statistical Analysis and Prediction—Phase II (2011–2019 Data)

Once the MICCAI 2019 proceedings became available, we extracted the dataset sizes
and computed the empirical geometric means of dataset sizes for MRI, CT and fMRI (see
the 2019 column in Tables 3–5, respectively). The 2019 values are shown in purple in
Figures 4–6. For CT and fMRI, the empirical geometric means are within the confidence
intervals of the Phase I analysis. For MRI, the empirical geometric mean of dataset sizes
exceeds the confidence interval, indicating dataset growth beyond the Phase I prediction.

Based on the Phase II year range 2011–2019, we updated the statistical analysis. Linear
regression again established that the year (after 2010) can statistically significantly predict
the natural logarithm of the dataset size. Here too, the regression is based on the whole
ensemble of dataset sizes, not on the empirical geometric means. The predictions for 2020–
2021 are of special interest since MICCAI 2021 has not yet taken place, and the MICCAI
2020 data has not yet been analyzed at the time of writing. For MRI, the Phase II model was
statistically significant, F(1,753) = 104.727, p < 0.001. The model explained 12.09% (adjusted
R2) of the variance in the natural logarithm of dataset sizes. The year was statistically
significant (B = 0.240, CI = (0.194,0.286), p < 0.001), where B denotes slope and CI is its
confidence interval. The Phase II regression equation is

Ê(ln N) = 2.596 + 0.240(y − 2010) (7)

where Ê(ln N) is the predicted mean of the natural logarithm of dataset sizes, and y is the
year. Returning to the original scale of MRI dataset sizes, we obtain

Ĝ(N) = e2.596+0.240(y−2010) (8)

Here, Ĝ(N) is the Phase II prediction of the geometric mean of MRI dataset sizes. The
annual growth rate of the predicted geometric mean is about 27%, corresponding to (e0.240

− 1). Figure 7 shows Ĝ(N) with its confidence interval for each of the years 2011–2021.
The empirical geometric means for 2011–2019, taken from Table 3, are shown (in green) for
comparison. We predict the geometric mean of MRI dataset sizes in MICCAI 2020 to be
147.2, with a confidence interval of (116.9, 185.5). We predict the geometric mean of MRI
dataset sizes in MICCAI 2021 to be 187.1, with a confidence interval of (142.8, 245.2).

The Phase II regression model was statistically significant for CT as well, F(1,318) =
63.700, p < 0.001. The model explained 16.4% (adjusted R2) of the variance in the natural
logarithm of dataset sizes. The year was statistically significant (B = 0.266, (CI = 0.200,
0.331), p < 0.001). The Phase II regression equation is

Ê(ln N) = 2.289 + 0.266(y − 2010) (9)

Returning to the original scale of CT dataset sizes, we obtain

Ĝ(N) = e2.289+0.266(y−2010) (10)

In Equation (10), Ĝ(N) is the Phase II predicted geometric mean of CT dataset sizes.
Here, the annual growth rate of the predicted geometric mean is about 30%. Figure 8 shows
Ĝ(N) with its confidence interval for each of the years 2011–2021. The empirical geometric
means for 2011–2019, taken from Table 4, are shown (in green) for comparison. We predict
the geometric mean of CT dataset sizes in MICCAI 2020 to be 140.7, with a confidence
interval of (101.1, 196.0). We predict the geometric mean of CT dataset sizes in MICCAI
2021 to be 183.6, with a confidence interval of (124.7, 270.2).
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Finally, for fMRI, the Phase II model was yet again statistically significant, F(1,138) =
42.545, p < 0.001. The model explained 23.0% (adjusted R2) of the variance in the natural
logarithm of dataset sizes. The year was statistically significant (B = 0.277, CI = (0.193,0.361),
p < 0.001). The Phase II regression equation is

Ê(ln N) = 2.661 + 0.277(y − 2010) (11)

Returning to the original scale of fMRI dataset sizes, we obtain

Ĝ(N) = e2.661+0.277(y−2010) (12)

In Equation (12), Ĝ(N) is the Phase II predicted geometric mean of fMRI dataset sizes.
For fMRI, the annual growth rate of the predicted geometric mean is about 32%. Figure 9
shows Ĝ(N) with its confidence interval for each of the years 2011–2021. The empirical
geometric means for 2011–2019, taken from Table 5, are shown (in green) for comparison.
We predict the geometric mean of fMRI dataset sizes in MICCAI 2020 to be 228.5, with a
confidence interval of (150.6, 346.6). We predict the geometric mean of fMRI dataset sizes
in MICCAI 2021 to be 301.4, with a confidence interval of (184.6, 492.1).
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6. Discussion

To our knowledge, this research is the first attempt to quantify the evolving, implicit
standards of the research community regarding dataset size in medical image analysis
research. Compared to common computer vision tasks, acquiring datasets for medical
image analysis is difficult and expensive. For example, while annotation of the ImageNet
dataset [25] was based on low-cost crowdsourcing using the Amazon Mechanical Turk,
the gold standard for most medical image analysis tasks is reading by a highly qualified
radiologist. Therefore, the marginal cost of enlarging a computer vision dataset is often
negligible, but the cost of expanding a medical image analysis dataset can be prohibitive.
Thus, prior to this research, dataset growth in medical image analysis research was not
obvious, and the growth rate could not be deduced from other domains.

In Phase I of this research, we scanned all the 2136 articles published in the MICCAI
proceedings from 2011 to 2018. We extracted the dataset sizes from 907 papers relying on
human data from three prevalent imaging modalities: MRI, CT and fMRI. Going through
so many papers required substantial effort and expertise because dataset size is often not
explicitly reported. It is sometimes distributed in different parts of an article or provided
as a reference to another publication. Tables 3–5 and Figures 1–3 describe the data. Human
dataset size in MRI-related research nearly trebled from 2011 to 2018, while the CT and fMRI
datasets grew at even faster rates. Similar trends are observed in the median, geometric
mean and average values, though the average numbers are substantially higher than the
median and geometric mean measures due to the occasional use of very large open datasets.
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Still in Phase I, statistical analysis using the Mann–Whitney U test corroborated
the dataset growth hypothesis for all three modalities. Furthermore, regression analysis
revealed statistically significant exponential growth in the geometric mean of the dataset
sizes, albeit with large variability. The predicted annual growth rates of the geometric
mean of the number of subjects in the datasets were about 21% for MRI, 24% for CT and
31% for fMRI.

For the MICCAI 2019 conference, which had not yet taken place during Phase I of
this research, we predicted the geometric mean of the number of subjects in the datasets
to be 87.5 with a confidence interval of (65.5, 116.9) for MRI related articles, 79.6 with a
confidence interval of (49.9, 126.9) for CT and 167.7 with a confidence interval of (104.9,
268.0) for fMRI.

Phase II of this research incorporated the MICCAI 2019 data. The empirical geometric
means in the MICCAI 2019 proceedings were 141.1 for MRI, 126.2 for CT and 180.5 for fMRI.
For CT and fMRI, the empirical MICCAI 2019 values are within the confidence intervals
of the Phase I predictions. For MRI, they are even beyond the confidence interval of the
Phase I prediction. Based on analysis of the MICCAI 2019 data, we updated the regression
models. The Phase II annual growth rates of the geometric mean of the number of subjects
in the datasets are about 27% for MRI, 30% for CT and 32% for fMRI. In slight analogy
to Moore’s law, these estimated growth rates can provide researchers, review boards and
funding agencies with a tentative roadmap regarding dataset sizes in future medical image
analysis studies.

This study estimated dataset growth in medical image analysis research by analyzing
the annual MICCAI conference proceedings. The extension to prominent journals in the
field is an interesting topic for future research. Note, however, that the review period for
conferences is short, identical for all papers and synchronized by the common submission
and reviewing timeline. For reputable journals, the review period is longer, different be-
tween papers and unsynchronized. These differences raise substantial analysis challenges.
Comparative dataset growth analysis across different scientific domains is an additional
interesting future research topic. For example, ImageNet currently contains more than 14
million images. We assume that the growth rate in a particular field depends on the data
acquisition and annotation cost in that field.

The perception that “everyone participating in medical image evaluation with ma-
chine learning is data starved” [4] is not surprising given the exponentially increasing
expectations regarding dataset size. Transfer learning [26] and data augmentation [27]
are two popular and often successful strategies to alleviate the shortage of data, see [28].
Recently, Generative Adversarial Networks (GAN) have been used to create large sets of
“fake” but credible new medical images based on a limited collection of genuine images,
see [29]. If accepted by the research community, this strategy may bridge the gap between
demand and supply of medical images for use in research and development.
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