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Abstract: Infants with fragile skin are patients who would benefit from non-contact vital sign
monitoring due to the avoidance of potentially harmful adhesive electrodes and cables. Non-contact
vital signs monitoring has been studied in clinical settings in recent decades. However, studies
on infants in the Neonatal Intensive Care Unit (NICU) are still limited. Therefore, we conducted
a single-center study to remotely monitor the heart rate (HR) and respiratory rate (RR) of seven
infants in NICU using a digital camera. The region of interest (ROI) was automatically selected
using a convolutional neural network and signal decomposition was used to minimize the noise
artefacts. The experimental results have been validated with the reference data obtained from an
ECG monitor. They showed a strong correlation using the Pearson correlation coefficients (PCC) of
0.9864 and 0.9453 for HR and RR, respectively, and a lower error rate with RMSE 2.23 beats/min and
2.69 breaths/min between measured data and reference data. A Bland–Altman analysis of the data
also presented a close correlation between measured data and reference data for both HR and RR.
Therefore, this technique may be applicable in clinical environments as an economical, non-contact,
and easily deployable monitoring system, and it also represents a potential application in home
health monitoring.

Keywords: heart rate; respiratory rate; NICU; convolutional neural network; signal decomposition

1. Introduction

A delivery between 37 and 42 weeks of gestation is defined as term pregnancy by the
World Health Organization [1]. Preterm birth is defined as any birth prior to 37 weeks of
gestation, and it is a priority health issue worldwide. It is projected that more than one
in ten of the infants in the world are born prematurely [2]. As preterm infants are not
completely developed and have a tendency to have medical conditions that need specialist
care, they are often placed into the Neonatal Intensive Care Unit (NICU) immediately
after birth [3].

Infants in the NICU have unstable vital signs. According to their particular require-
ments, specialized medical equipment is used to estimate their physiological condition [4].
The vital signs monitored generally include respiratory rate (RR), heart rate (HR), tempera-
ture (T), blood pressure (BP), and oxygen saturation level (SpO2) [5,6]. A very high or low
heart rate may direct an underlying situation such as pain, infection, or illness. Irregular
values of respiratory rate may indicate hypercapnia, hypoxaemia, or acidosis [6,7].

Continuous monitoring of vital signs is usually conducted using different monitoring
equipment such as pulse oximeters, electrocardiogram (ECG), respiratory belt transducers,
nasal thermocouples, and piezoelectric transducers [8]. Conventional vital sign monitoring
equipment involves adhesive transducers or electrodes to be directly attached to the
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skin. Preterm infant skin is very sensitive and fragile, particularly for those born before
29 weeks of gestational age, when the bond between the dermis and attached sensor may
be stronger than that between the epidermis and dermis [9]. As a result, the skin may
be damaged. There is also a risk of enabling or introducing an infection [10]. There are
numerous established and experimental technologies to remotely monitor an infant’s vital
signs, including magnetic induction [11], radar [12], WiFi [13,14], phonocardiograms [15],
thermal imaging [16,17], and video camera imaging [18,19].

Magnetic induction-based methods can perceive the impedance changes due to blood
and air volume differences caused by the mechanical action of the heart, thorax and
diaphragm [20]. This method incorporates a simple arrangement using multiple coils [21]
or a single coil integrated into a bed, mattress, or seat [22]. However, the method is highly
susceptible to relative movements between coil and body.

Radar- and WiFi-based methods use radio frequency (RF) and exploits wireless signals
to monitor vital signs [23]. Standard WiFi devices are used to continuously accumulate the
wireless received signal strength (RSS) [24] or channel state information (CSI) [13,14] around
a person to detect chest movement. On the other hand, radar-based methods can detect
subtle chest movements due to cardiorespiratory activity using the phase shift between the
transmitted waves and the reflected received waves from a region of interest (ROI) [25,26].

Thermal imaging-based methods extract vital signs by measuring temperature changes
or heat differences due to pulsating blood flow in the main superficial arteries [27,28].
However, both radar and thermal imaging-based approaches are susceptible to noise and
motion artefacts and constrain the movement of the subjects [29]. Their relatively low
resolution limits the detection range and specificity to one subject. Moreover, these methods
need exposed ROI and specialized hardware, making them costly [30]. Additionally, radar-
based methods may have biological effects on humans [29].

Video camera imaging extracts vital sings from several regions of the body. The
technology can be classified into two main classes: colour-based methods, also known
as imaging photoplethysmography (iPPG) [31,32], and motion-based methods [33,34].
The first class exploits skin tone variations owing to cardiorespiratory activity, and the
second one relies on cyclic motion of specific regions of the body due to the activity of the
cardiorespiratory system. For noncontact monitoring of vital signs, camera imaging-based
methods seem to be a promising approach since they are robust, safe, reliable, economical,
suitable for long distance and long-term monitoring as well they can measure vital signs
from multiple persons simultaneously [29].

In recent years, research in contactless vital signs monitoring using digital video
cameras in the near-infrared and visible spectrum (400–1000 nm) has significantly expanded
since the technology has become ubiquitous and the cost of digital cameras continues to
decrease [29]. It has been revealed that heart rate can be estimated by analyzing the subtle
colour variations on the skin surface captured by a video camera [31,32,35–37]. Respiratory
rate can be estimated by analyzing the movement of certain body parts such as the chest,
abdomen or head [34,38]. SpO2 can be measured from signals attained from camera
imaging using different wavelengths [39,40]. However, all these studies measured the vital
signs of the adult population.

Some studies have considered contactless vital signs monitoring of infants using video
cameras in a hospital environment. For example, a non-contact monitoring system was first
introduced to monitor HR of seven neonates using a low-cost webcam and a non-ambient
green light [41]. A manual region of interest (ROI) selection, spatial averaging, independent
component analysis (ICA) [42] and power spectral density (PSD) were considered to
measure HR. In [43], ambient light was first used to estimate the HR of 19 neonates in
a NICU in different challenging conditions. A manually selected ROI was considered
as a template to track the global motion of the subject. Fourier analysis was used, and
a joint-time-frequency diagram (JFTD) was represented. A camera-based method was
developed in [44] for monitoring the HR and RR of seven infants in a NICU using RGB
colour magnification and infrared thermography (IRT). A method comparison study was
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performed on 10 premature babies in the NICU using digital cameras compared with
the unit’s cardiorespiratory monitor [45]. To extract HR and RR signals, both colour
magnification and motion magnification were used, respectively, based on Eulerian video
magnification (EVM). However, EVM carries a high computational cost. Most of the above
discussed studies identified confounding factors, such as camera shake, subject movement,
limited ROI visibility, noise artefacts, and variable illumination that need to be minimized.
An experiment with a similar setting is reported in [46]. They also used RGB and thermal
images and showed that the proposed method works when the skin is not visible. More
compact wearable motion-based methods have been proposed with increasing success for
heart rate [47] and breathing rate [48] monitoring.

To minimize the effect of the changing light conditions and moderate motion artefacts,
a robust and efficient method was introduced in [49] using multichannel analysis based
on the least-squares method. They reported that the proposed algorithm required 75%
less CPU use than ICA. Another clinical study was performed in [50] to monitor the
HR of 19 neonates using three CMOS and two LWIR cameras. After selecting the ROI
manually, a kernelized correlation filter (KCF) was used to track the ROI. Multiple ROIs
were considered to retrieve a signal such as the entire body, face, head, forehead, nose,
torso, right arm, left arm, leg and foot. The main challenges addressed by them were
artefacts from medical devices, light sources, motion, and the detection and tracking of
appropriate regions to retrieve the signal.

In [51], a continuous HR monitoring system was introduced using a webcam where
videos of eight neonates were recorded for 30 min each. Another continuous monitoring
system was proposed in [52], where two infants were monitored for 40 h by a video
camera. A spectral analysis based on auto-regressive modeling and pole cancellation
were considered. However, this system was affected by the lighting condition, subject
movement, and unclear ROI. However, in all the above discussed studies, the ROI was
selected manually.

The respiration of 30 preterm infants was monitored in NICU using a 3-CCD digital
camera [53]. In the proposed method, a simple colour-based skin detector was used to
segment the ROI. However, colour-based image segmentation is less consistent in a clinical
setting. More robust image segmentation is required in order to develop a continuous
monitoring system over longer periods of time.

Recent advances in deep learning research have yielded an outline to embed visual
features within convolutional neural networks (CNNs) to produce highly precise classifiers
in challenging segmentation scenarios [54]. In [55], a multi-task convolutional neural
network model was presented to identify the presence of a subject and divide skin regions
of the subject to estimate vital signs. This enabled continuous vital signs monitoring that
can be performed automatically in challenging clinical situations. The proposed multi-task
model had a shared core network with two branches: a patient detection branch employed
by means of global average pooling and a skin segmentation branch using a convolutional
network. This multi-task CNN model was used in [56,57] to monitor the respiration of
five neonatal patients and the vital signs (HR and RR) of 30 preterm infants in the NICU,
respectively. The CNN model was extended in [58] by adding a body part detection branch
to detect the body parts that are important to estimate the HR, such as the torso, head, and
diaper area of the subject. The body part detection branch was executed by means of the
Faster R-CNN network. However, computational cost and runtime of CNN are high.

In this work, using visible light video cameras, we remotely monitored both HR
and RR of neonates in the NICU using colour and motion-based method, respectively.
We trained a baby detection model using the YOLO V3 weights [59] to detect ROI au-
tomatically. The YOLO weights were originally trained on the MS COCO dataset [60],
which has 80 classes of objects present in it. YOLO works well with multi-scale detec-
tions and has shown better accuracy and speed than similar detection models (1000 times
faster than R-CNN [61] and 100 times faster than Fast R-CNN [62]). We used a signal
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decomposition technique to minimize the noise effect using an ensemble empirical mode
decomposition (EEMD).

In the literature, the ROI selection of babies for non-contact vital sign monitoring was
mainly conducted using manual methods. Vital sign monitoring and acting on irregular
vital sign patterns is a real-time requirement. The entire process becomes inefficient when
the ROI selection is not automated.

In this study, we (i) proposed an efficient ROI selection method based on a convolu-
tional neural network that could work with different poses of babies in different settings
even with unclear regions and (ii) proposed a noise removal method based on a noise-
assisted signal decomposition technique to improve the cardiorespiratory signal.

We have found a strong correlation and low error rate between the data measured
by the proposed non-contact method and reference data, indicating that video camera
imaging can be applied in the NICU and may represent an application to broader contexts
such as home health monitoring.

In Section 2, we explain our methods and materials, including study design, the
experimental setup for camera imaging-based monitoring in the NICU and the system
framework. Subsequently, the results are presented and discussed in Section 3. Finally, this
study concludes with the main findings, limitations, and future work in Section 4.

2. Methods and Materials
2.1. Study Design

A single center cross-sectional observational study was attained at Flinders Med-
ical Centre Neonatal Intensive Care Unit, Adelaide, South Australia. This study was
approved by the Southern Adelaide Local Network Research Committee (Protocol no.:
HREC/17/SAC/340; SSA/17/SAC/341). After providing a complete explanation of the
study measures, written consent from the guardian of the infants was obtained before
recording the videos.

We recorded seven infants who were under the monitoring of the regular ECG moni-
tors in the unit. Six infants were preterm (less than 37 weeks gestational age), and one was
term. Infants who were not monitored by ECG, those who had unusual characteristics or
conditions that may have made them recognizable in publications and those who were
likely to be discharged during the data acquisition period were not considered during the
experiment.

In this study, for validation purposes, ECG was used as the ground-truth standard for
all babies to validate the accuracy of the proposed non-contact technique. The impedance
lead of the ECG measures the difference in electrical impedance together with the motion of
the chest wall to extract heart rate and respiratory rate. Although it is recognized that ECG
has some limitations, such as being influenced by cardiac activity or patient movement [63],
it was used for validation purpose to reduce any disruption to the infants or diversion of
nursing resources.

2.2. Experimental Setup

The experimental setting is shown in Figure 1, where two digital single-lens reflex
(DSLR) cameras were used to record videos, an infant was positioned in the incubator, and
the ECG monitor was measuring the vital signs continuously. To record the video of the
infant and the ECG monitor, a Nikon D610 with a resolution of 1920 × 1080 and a frame
rate of 30 fps, and a Nikon D5300 were used, respectively. The cameras were mounted
on tripods. To synchronize data points from the ECG and contactless method, recording
from each camera was started simultaneously. The videos were saved in “MOV” format.
The digital camera was placed at a distance of 1–2 m away from the patient. We recorded
10 min long videos for each infant. For the experiment, we took 10 s videos when babies
were stable, i.e., not moving. For each infant, 5 samples were used.
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Figure 1. The experimental setup where the data recording was performed. A schematic of the setup
is shown to the right of the image. A camera was mounted on a tripod closer to the infant to record
the infant body’s heart rate and respiratory rate. Another camera was mounted on a tripod to capture
vital signs’ ground truth (shown on the monitor). A schematic diagram on the left of the figure shows
an overview of the setting.

The most significant challenges we encountered in collecting the videos were the
fickle and unstable readings of the hospital monitor attached to the baby. Therefore, we
recorded 10 min videos for each child and cut them into 10-s clips when the monitor
readings were stable.

2.3. System Framework

The overall system includes several image and signal processing techniques, such
as automatic ROI selection, spatial averaging, signal decomposition, spectral analysis,
band-pass filtering, and peak detection, as shown in Figure 2.

Figure 2. The system framework consists of two branches to detect heart rate and respiratory rate.
The input video was processed for automatic ROI detection, and the ROI was processed separately
for heart rate and respiratory rate detection.



J. Imaging 2021, 7, 122 6 of 19

2.3.1. Automatic ROI Selection

In a hospital setting, it is very challenging to record a clear video of babies. Most of
the time, their body is occluded with medical instruments or clothes. Datasets for deep
learning and testing of algorithms must cover many such variations to be useful in a
practical setting.

We collected our images mostly from hospital settings. The images represented
different poses of babies in different settings. Images were selected mainly to cover
different sleeping positions of babies from different angles while they were fully visible
or occluded.

Standard image processing techniques cannot be used for detecting babies in such
complex images. There are popular people detector models (YOLO and Mask-RCNN,
etc.) available for detecting people of any age, including babies. However, these detectors
fail to detect babies in a complex hospital setting as they were trained to detect people
in day-to-day situations. Such detectors were trained with very few or no baby images
of interest. There are also detectors to detect skeletons and faces [64]. They work well in
general situations but fail to detect babies in a hospital setting. This is mainly due to the
lack of similar images in the training dataset, occlusions, and lighting conditions.

Therefore, we trained a baby detector using a small dataset gathered from the internet.
A total of 473 images were collected for training. The model was trained using the original
YOLO V3 weights [59]. The network architecture is illustrated in Figure 3. The YOLO
weights were originally trained on the MS COCO dataset [60], which has 80 classes of
objects. The YOLO neural network segments the image into regions and predicts bounding
boxes and probabilities for each region, as shown in Figure 4. These bounding boxes
are weighted by the predicted probabilities. Our detector can detect the face of the baby
receiving phototherapy producing a blue light source (Figure 4b).

Figure 3. YOLO network architecture (adapted from [65]). The YOLO network has 24 layers followed by two fully
connected layers.



J. Imaging 2021, 7, 122 7 of 19J. Imaging 2021, 7, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 4. Automatic ROI selection using the YOLO neural network. The detected ROIs were shown in green bounding 
boxes. (a) Infant under normal light, (b) infant under blue light. 

2.3.2. Spatial Averaging 
Colour-based and motion-based methods were used to extract raw cardiac and res-

piratory signals, respectively. A colour variation in human skin is observed, as haemoglo-
bin in blood absorbs illumination more than surrounding tissue, which may not be visible 
with the naked eye but can be detected by a video camera [66]. The colour changes reflect 
the blood volume changes in the microvascular tissue bed under the skin due to variation 
in pulsatile blood flow during each cardiac cycle. The cardiac signal can be extracted using 
this principle. Using the green channel of RGB colour space, a raw cardiac signal was ex-
tracted by averaging the brightness pixel values of the selected ROI as given in equation 
(1). The purpose of this was to minimize noise improve the signal to noise ratio. 

𝑝𝑝𝐺𝐺(𝑡𝑡) =
∑ 𝑃𝑃(𝑖𝑖,𝑗𝑗,𝑡𝑡)𝑖𝑖,𝑗𝑗∈𝑅𝑅𝑅𝑅𝑅𝑅

|𝑅𝑅𝑅𝑅𝑅𝑅|
  (1) 

where |𝑅𝑅𝑅𝑅𝑅𝑅| represents the size of the detected ROI and 𝑃𝑃(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) is the brightness value 
of a pixel at image location (i,j) at a time (t). To estimate the cardiac signal, the 𝑝𝑝𝐺𝐺(𝑡𝑡) signal 
was chosen as the green channel has the strongest cardiac frequency band compared to 
the other channels (red and blue) [35]. We found from the literature [67,68] as well as from 
our experiments that green channel intensity images provide the best estimate for the 
heart rate. In addition, we skipped the red and blue channels to reduce impacts resulting 
from skin tone changes and reduce processing time. 

Respiratory activity causes cyclic motion in specific body regions such as the head, 
nostril area, thoracic and abdominal region. In the video recording, spatial variations of 
intensity values directly indicate this motion. Therefore, the respiratory signal can be 
measured using this principle. As the video camera captured the video in the RGB colour 
space, it is required to separate the intensity data from the colour data. Therefore, the RGB 
colour space was changed to the YIQ colour space. From the Y channel of the YIQ colour 
space, the raw respiratory signal was measured by averaging the intensity values of the 
pixels within the selected ROI, as follows: 

𝑝𝑝𝑌𝑌(𝑡𝑡) =
∑ 𝑃𝑃(𝑖𝑖,𝑗𝑗,𝑡𝑡)𝑖𝑖,𝑗𝑗∈𝑅𝑅𝑅𝑅𝑅𝑅

|𝑅𝑅𝑅𝑅𝑅𝑅|
  (2) 

where |𝑅𝑅𝑅𝑅𝑅𝑅| presents the size of the detected ROI and 𝑃𝑃(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) represents the intensity 
value of a pixel at image location (i,j) at a time (t). 

2.3.3. Signal Decomposition 
Signal decomposition techniques are applied in biomedical signal processing to sep-

arate a temporal signal into a collection of modes of interest. The most appropriate modes 

Figure 4. Automatic ROI selection using the YOLO neural network. The detected ROIs were shown in green bounding
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2.3.2. Spatial Averaging

Colour-based and motion-based methods were used to extract raw cardiac and respi-
ratory signals, respectively. A colour variation in human skin is observed, as haemoglobin
in blood absorbs illumination more than surrounding tissue, which may not be visible
with the naked eye but can be detected by a video camera [66]. The colour changes reflect
the blood volume changes in the microvascular tissue bed under the skin due to variation
in pulsatile blood flow during each cardiac cycle. The cardiac signal can be extracted
using this principle. Using the green channel of RGB colour space, a raw cardiac signal
was extracted by averaging the brightness pixel values of the selected ROI as given in
Equation (1). The purpose of this was to minimize noise improve the signal to noise ratio.

pG(t) =
∑i,j∈ROI P(i, j, t)

|ROI| (1)

where |ROI| represents the size of the detected ROI and P(i, j, t) is the brightness value of
a pixel at image location (i,j) at a time (t). To estimate the cardiac signal, the pG(t) signal
was chosen as the green channel has the strongest cardiac frequency band compared to the
other channels (red and blue) [35]. We found from the literature [67,68] as well as from our
experiments that green channel intensity images provide the best estimate for the heart
rate. In addition, we skipped the red and blue channels to reduce impacts resulting from
skin tone changes and reduce processing time.

Respiratory activity causes cyclic motion in specific body regions such as the head,
nostril area, thoracic and abdominal region. In the video recording, spatial variations
of intensity values directly indicate this motion. Therefore, the respiratory signal can be
measured using this principle. As the video camera captured the video in the RGB colour
space, it is required to separate the intensity data from the colour data. Therefore, the RGB
colour space was changed to the YIQ colour space. From the Y channel of the YIQ colour
space, the raw respiratory signal was measured by averaging the intensity values of the
pixels within the selected ROI, as follows:

pY(t) =
∑i,j∈ROI P(i, j, t)

|ROI| (2)

where |ROI| presents the size of the detected ROI and P(i, j, t) represents the intensity
value of a pixel at image location (i,j) at a time (t).
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2.3.3. Signal Decomposition

Signal decomposition techniques are applied in biomedical signal processing to sepa-
rate a temporal signal into a collection of modes of interest. The most appropriate modes
are then selected to represent the original signal. The most common signal decomposition
techniques are empirical mode decomposition (EMD), ensemble empirical mode decompo-
sition (EEMD), complete ensemble empirical mode decomposition (CEEMD), and complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN).

EMD is a multiresolution signal decomposition technique for a complex and multi-
component signal representation developed by Huang et al. [69]. It is commonly used
to remove noise artefacts from biomedical signals. The EMD uses the local temporal
and structural characteristics of a non-linear and non-stationary signal and adaptively
decomposes it into a set of stationary modes in different time scales, called intrinsic mode
functions (IMFs). IMF is commonly used to remove noise artefacts from biomedical signals,
such as the removal of noise artefacts from ECG data [70], the removal of noise artefacts
from electromyogram data [71], the removal of muscle artefacts from electroencephalogram
data [72], the removal of tissue artefacts from respiratory signals [73], and the removal of
illumination variations from photoplethysmography signal [74].

In order to define a meaningful instantaneous frequency, the corresponding function
should be symmetric (symmetry of the upper and lower envelopes) with respect to zero
and have the same numbers of zero crossings and extrema. This type of function represents
the oscillation mode imbedded in the data and is called an “intrinsic mode function”.
Therefore, an IMF can be formally defined as follows.

The decomposition of the original signal, x(t), into a set of IMFs must occur under two
assumptions, as follows: (i) the number of extrema of x(t) is either equal to the number of
zero-crossing or differs at most by one and (ii) the mean values of the envelopes defined by
local maxima and local minima are equal to zero.

The signal decomposition based on EMD is defined in the following steps:
1. Identify all peaks (maximum and minimum) of x(t).
2. Generate the lower and upper envelopes of the peaks through cubic spline interpo-

lation.
3. Calculate the mean value, m(t), of the lower and upper envelopes point by point.
4. Extract the detail signal, d(t), by subtracting the mean value m(t) from x(t):

d(t) = x(t) − m(t) (3)

5. Verify the properties of d(t):
a. If d(t) meets the above two assumptions and becomes a zero-mean process, then it

would be the first IMF component of x(t), named IMF1, and replace x(t) with the residue:

r(t) = x(t) − d(t) (4)

b. Otherwise, go to step (1) and replace x(t) with d(t).
6. Repeat Steps 1 to 5 to obtain the IMF1, IMF2, IMFN, where N is the number of

alterations. The process is stopped when r(t) becomes a monotonic function, and no further
IMF can be extracted.

As a result of the EMD process, x(t) can be recovered by the following expression:

x(t) = ∑N
i=1 IMFi + rN(t) (5)

where N is the number of IMFs and rN(t) is the residue of the signal x(t).
In this work, we used EEMD, which is a noise-assisted signal decomposition technique

proposed by Wu et al. [75], aimed at eliminating the mode-mixing problem caused by the
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original EMD because of intermittency. It is based on adding white Gaussian noise into the
original signal, x(t), in a controlled manner to obtain the noisy signal, xm(t), as follows:

xm (t) = x(t) + ωm(t), m = 1, 2, . . . L, (6)

where ωm(t) is the mth added white noise and L is the ensemble number of the EEMD
technique. The acquired original signal, xm (t), is then decomposed into a set of IMFs using
EMD, and can be recovered as follows:

xm(t) = ∑N
i=1 IMFi,m + rN,m(t) (7)

x(t) =
1
L ∑N

i=1 ∑L
m=1 IMFi,m+

1
L ∑L

m=1 rN,m(t) (8)

2.3.4. Spectral Analysis and Band-Pass Filtering

A spectral analysis technique based on the Fast Fourier Transform (FFT) was used
to transform the time series cardiac and respiratory signals from the time domain to the
frequency domain (see Figure 5). After that, two ideal band-pass filters were applied at 1.5
to 3 Hz, which correspond to the heart pulse range (90–180 beats/min), and 0.3 to 1.5 Hz,
corresponding to the breathing range (18–90 breaths/min), to obtain the frequency band of
interest. The inverse FFT was then applied to the filtered signals to obtain the time series
cardiorespiratory signals.

Figure 5. The spectral analysis and band-pass filtering process.

2.3.5. Peak Detection

The processing of time series cardiorespiratory signals includes calculating peaks and
the distance between the consecutive peaks. MATLAB’s built-in ‘findpeaks’ function was
used for peak detection. After determining the peaks and their locations (locs), the total
cycle length (CL) between two peaks can be found using

CL = mean (diff (locs)) (9)

the number of peaks (M) can be extracted as follows:

M =
t

CL
(10)

where t represents the video recording length in seconds.
Using the following equation, HR and RR per minute could be calculated:

CV =
60M

t
(11)

where CV represents the calculated value.

3. Experimental Results

MATLAB 2020a was used to implement our algorithm and calculate the statistical
results. As shown in Figure 6a, the first frame of the video was considered to detect ROI
using the YOLO neural network. Figure 6b shows the detected ROI.
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Figure 6. An infant image with detected ROI is shown in (a). The corresponding ROI extracted from the original is
shown in (b).

We obtained the raw cardiac and respiratory signals after performing spatial averaging
over the detected ROI, as shown in Figure 7a,b, respectively. Then, signal decomposition
based on EEMD was applied to the raw cardiorespiratory signals. The window length of
the EEMD was 10 s. The raw cardiac and respiratory signals were decomposed into IMF1,
IMF2, . . . , IMF7 as presented in Figure 8a,b. To select the best IMF that should be used
for calculating the HR and RR, the frequency spectral analysis of the decomposed IMFs
was performed using FFT, as shown in Figure 9. Figure 9 shows the spectrum of IMFs 3–6,
which have the best frequency bands of interest that fall within the cardiorespiratory range,
while other spectra fall outside this range. We selected IMF3 (Figures 8a and 9a) and IMF4
(Figures 8b and 9b) for calculating HR and RR, respectively, as their highest frequencies are
close to the frequency of normal HR and RR for infants.

Figure 7. Raw cardiorespiratory signals for 300 frames are shown in the figure. (a) Raw cardiac signal, (b) raw respira-
tory signal.
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Figure 8. IMF components of the raw cardiorespiratory signals using EEMD technique. (a) Cardiac signal (b) respiratory
signal.



J. Imaging 2021, 7, 122 12 of 19

Figure 9. The frequency spectrum of decomposed IMF3, IMF4, IMF5 and IMF6. (a) Cardiac signal (b) respiratory signal.

Figure 10a demonstrates the filtered cardiac signal achieved after FFT, band-pass
filtering and inverse FFT. The window length of the FFT was 10 s. From the filtered signal,
we calculated the HR by calculating the number of peaks. Similarly, Figure 10b presents the
filtered respiratory signal. By calculating the number of peaks, RR could also be calculated
from the filtered respiratory signal.
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Figure 10. The filtered cardiorespiratory signals are shown in the figure. The red colour markers indicate the peak locations
of the filtered signal. (a) Filtered cardiac signal, (b) filtered respiratory signal.

Our ROI selection uses part consists of a neural network. It is the computational heavy
component of the proposed solution. Our experiments showed that the ROI selection can
process an image of resolution 1920 × 1080 at 1 fps in MATLAB, which is slower than
native code implementations would be. In our experiments, the ROI selection and signal
processing were conducted separately. ROI selection, together with the signal processing
part, can run at roughly 1 fps speed on our test platform (a laptop computer).

To evaluate the proposed non-contact system, we considered statistical methods based
on the Pearson correlation coefficient (PCC), linear regression, Bland–Altman plot, root
mean square error (RMSE) and mean absolute error (MAE). We considered a total sample
size, n = 35. Figure 11a shows a strong correlation between the reference and measured data
with PCC of 0.9864. As shown in the Bland–Altman Plot in Figure 11b, the reproducibility
coefficient (RPC) was 4.3 beats/min (3%), the mean bias was 0.44 beats/min, the lower
and upper limits of agreement were −3.9 and +4.8 beats/min. For HR, the RMSE was
2.22 beats/min, and the MAE was 1.80 beats/min.

Figure 12 represents the statistical measurement for RR. As shown in Figure 12a, a
strong correlation exists between the reference and measured data with a PCC of 0.9453.
Figure 12b represents the Bland–Altman plot with a mean bias of 0.71 breaths/min, a lower
and upper limit of agreement of−4.5 and +5.9 breaths/min, and an RPC of 5.2 breaths/min.
For RR, the RMSE and MAE were 2.69 and 2.13 breaths/min, respectively.
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Figure 11. Statistical measurement for HR. (a) Correlation Plot, (b) Bland–Altman plot.

Figure 12. Statistical measurement for RR. (a) Correlation Plot, (b) Bland–Altman plot.

The standard deviation of heart rate measurement was lower than that of respiratory
measurement in this work. This is because the measured heart rate was obtained using the
colour-based method. In contrast, the measured respiratory rate was extracted using the
motion-based method, which was highly affected by baby movement.

In Table 1, we have compared the Bland

Table 1. Comparison of Bland–Altman data for HR.

Methods Lower Limit Upper Limit Mean Bias

Scalise et al. [41] −9.79 7.99 0.90
Aarts et al. [43] −5 +5.5 -

Gibson et al. [45] −8.3 17.4 4.5
Proposed method −3.9 +4.8 0.44
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–Altman data for HR with some of the state-of-art methods. Our proposed method
showed better results than other methods for all three performance measures compared in
the table.

We could conclude that using the proposed system for both HR and RR showed a
strong correlation with the reference method with a lower error rate.

4. Discussion

In this study, we remotely monitored the vital signs of seven infants in the NICU using
video cameras as part of a project to overcome the limitations of contact-based methods. A
colour-based method was used to measure HR and a motion-based method was used to
calculate RR. Instead of using a manual ROI selection method, an automatic ROI selection
method based on a convolutional neural network using the YOLO V3 weights was used to
detect ROI. YOLO works well with multi-scale detections and has shown better accuracy
and speed than similar detection models (1000 times faster than R-CNN [61] and 100 times
faster than Fast R-CNN [62]). Moreover, a signal decomposition technique based on EEMD
was also considered to minimize noise artefacts.

In this work, we used EEMD to eliminate the mode-mixing problem caused by the
original EMD because of intermittency. However, the EEMD technique may produce noisy
IMF components, especially when L is relatively low, and may lead to an error in the
reconstructed signal. Therefore, more advanced signal decomposition techniques such as
CEEMD, CEEMDAN may be used to minimize the limitations of EEMD.

Data collection from infants is a time consuming and challenging process. For this
study, we collected a small dataset to validate our proposed method. The data we used for
this study comprise a challenging background and varying lighting. Each infant video in
our dataset has different setting (clothes, bedsheets, lights, monitoring equipment, etc.).
In a hospital setting, it is very challenging to record uncluttered video of infants. Usually,
their body is occluded with medical instruments or bedclothes. In addition, the frequent
movement of infants is another challenge. Some videos were recorded under poor lighting
conditions and one video was recorded while the infant was receiving phototherapy. To
improve the reliability of our techniques, we need to experiment with a larger dataset. We
are in the process of creating a sufficiently large dataset in this challenging environment.

In this study, ECG was used as the reference for all babies to validate the accuracy
of the proposed non-contact technique. Although it is recognized that ECG has some
limitations, such as being influenced by cardiac activity or patient movement [63], it
was used for validation purposes to reduce any disruption to the infants or diversion of
nursing resources.

The most significant challenges we encountered in collecting the videos were the
unstable readings of the hospital monitor attached to the baby, which formed our control
measurement. Therefore, we recorded 10 min of videos for each child and cut them into
10 s clips when the monitor readings were stable. Longer videos need to be taken and
considered in future. The fact that the control data are unstable indicates that the need for
sophisticated alternatives to the ECG, such as this, will continue as a major research topic.

Another challenge is that preprocessing, especially filtering, on the IMF signals may
cause a change in the waveform and may affect some features of bio signals [76–78].
Therefore, more advanced signal processing techniques should be used in the future to
improve the robustness of the proposed system and address this limitation.

The experimental results showed a strong correlation with PCC values of 0.9864
and 0.9453 for HR and RR, respectively, and a lower error rate with RMSE values of
2.23 beats/min and 2.69 breaths/min between measured data and ECG data, and MAE
values of 1.80 beats/min and 2.13 breaths/min between measured data and ECG data.
A Bland–Altman analysis of the data also presented a close correlation between mea-
sured data and ECG data for both HR and RR, with a mean bias of 0.44 beats/min and
0.71 breaths/min, and the lower and upper limits of agreement of−3.9 and +4.8 beats/min,
and −4.5 and +5.9 breaths/min, respectively. Therefore, not only can this technique be
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applicable in clinical environments, but it also shows potential for application in home
health monitoring due to its non-contact, cost-effective and easily deployable capability.

5. Conclusions

In this paper, we measured the HR and RR of seven infants in the NICU based
on colour- and a motion-based methods, respectively, using video camera imaging. We
used automatic ROI selection based on a convolutional neural network instead of using
manual ROI selection. Moreover, to minimize noise artefacts, a signal decomposition
technique based on EEMD was also considered. The experimental results showed a strong
correlation with PCC values of 0.9864 and 0.9453 for HR and RR, respectively, and a
lower error rate with RMSE values of 2.23 beats/min and 2.69 breaths/min and MAE
values of 1.80 beats/min and 2.13 breaths/min between measured data and reference
data. A Bland–Altman analysis of the data also presented a close correlation between mea-
sured data and reference data for both HR and RR with a mean bias 0.44 beats/min and
0.71 breaths/min, and the lower and upper limits of agreement of−3.9 and +4.8 beats/min,
and −4.5 and +5.9 breaths/min, respectively. As a result, it can be concluded that this
non-contact method has valuable potential as a non-contact, economical and easily deploy-
able monitoring system for use in clinical environments. Still, it also shows a potential
application for remote, home health monitoring. However, to calculate vital signs, we
had considered the videos when infants were not in motion, and ECG values were also
stable. Moreover, the EEMD technique may produce noisy IMF components, especially
when L is relatively low, leading to an error in the reconstructed signal. In future, to
continuously monitor vital signs in the NICU, more advanced signal processing techniques
will be required, including all of the practical challenges such as camera movement, subject
movement, and illumination variations. Our sample size was also small, so to ensure the
system is reliable for real applications, more subjects will need to be considered in future
work. We will consider using a dual camera (RGB + thermal) system to further increase
our future work reliability.
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