Skip to main content
. 2021 Aug 17;7(8):148. doi: 10.3390/jimaging7080148
Algorithm 1: hotBSI algorithm
Inputs:
  NM - feature set from all the hotspots extracted from the nonmalign images
  M - feature set from all the hotspots extracted from the malign images
  T - threshold (default as 0.8)
  NrIt - number of iterations (default as 100)
Output:
  C - a classifier to classify new hotspots as nonmalign or malign
  •  1:

    Train an initial classifier, C0, with the input features (NM ∪ M)

  •  2:

    for i = 1:NrIt do

  •  3:

        Empty M

  •  4:

        for each patient in the malign set do

  •  5:

            Use Ci1 to predict the probabilities of the detections to be a metastases (Pmet)

  •  6:

            Identify the hotspot with the highest likelihood of being a metastasis (Pmax)

  •  7:

            for d = 1: number of detected hotspots for the current patient do

  •  8:

               if Pmet(d)==Pmax || Pmet(d)>T then

  •  9:

                   Add the hotspot to M

  • 10:

        Create a new training set, NM ∪ M

  • 11:

        Train a new classifier Ci with the new training data set

  • 12:

    returnCNrIt