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The natural history and treatment landscape of primary brain tumours are complicated by the varied tumour behaviour of primary
or secondary gliomas (high-grade transformation of low-grade lesions), as well as the dilemmas with identification of radiation
necrosis, tumour progression, and pseudoprogression on MRI. Radiomics and radiogenomics promise to offer precise diagnosis,
predict prognosis, and assess tumour response to modern chemotherapy/immunotherapy and radiation therapy. This is achieved
by a triumvirate of morphological, textural, and functional signatures, derived from a high-throughput extraction of quantitative
voxel-level MR image metrics. However, the lack of standardisation of acquisition parameters and inconsistent methodology
between working groups have made validations unreliable, hence multi-centre studies involving heterogenous study populations
are warranted. We elucidate novel radiomic and radiogenomic workflow concepts and state-of-the-art descriptors in sub-visual MR
image processing, with relevant literature on applications of such machine learning techniques in glioma management.
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BACKGROUND

Primary brain tumours account for about 2% of all cancers in the
US with an incidence of about 23 per 100,000. Gliomas account for
80.6% of all malignant brain tumours.' The incidence is highest for
glioblastoma (3.21 per 100,000 population), followed by diffuse
astrocytoma (0.46 per 100,000 population). The age-adjusted
mortality rate is 4.4 per 100,000 and the 5-year survival rate is
35%." However, the rate varies significantly by age at diagnosis
and the histology of the tumour.

Advances in our understanding of the molecular pathogenesis
of gliomas has prompted significant changes to the World Health
Organization (WHO) classification of central nervous system (CNS)
tumours in 2016.% Previously, the classification criteria was based
solely on microscopic features® The new criteria reclassifies
entities with the incorporation of genetic information in certain
tumours. These changes were incorporated because of the impact
genetic factors have on tumorigenesis and subsequent therapy.

In today's era of modern imaging, accurate non-invasive
prediction of glioma grade/type, survival, and treatment response
remains challenging. Stereotactic brain biopsy, despite being
invasive and costly, remains the reference standard for histological
and genetic classification; however, pathological diagnosis may
still remain inconclusive in 7-15% of patients.* This necessitates
imaging surrogates to characterise tumour heterogeneity.
Recently, multiple studies have shown strong association between
morphological features from multiparametric magnetic resonance
imaging (MRI) and survival.>™'® Similarly, functional imaging

techniques such as perfusion weighted MRI and magnetic
resonance spectroscopy (MRS) have been shown to be beneficial
when used along with morphological features, but with limited
success and reproducibility.”''® The limitations in current imaging
techniques provide an opportunity for more sophisticated sub-
visual feature analysis to augment the morphological features and
current functional imaging capabilities.

Radiomics refers to the computerised extraction of quantifiable
data from radiological images in the form of radiographical cues
that are usually sub-visual.'”'® The extraction of these data creates
mineable databases from radiological images which can be used
for diagnosis, prognosis characterisation, and to assess or predict
response to certain therapies.'®?' Genetic mutations often
determine the aggressiveness of the tumour and have been
shown to be associated with a lesion’s growth pattern and
response to therapy. Radiomic features have been shown to
identify genomic alterations within tumour DNA and RNA. The
integrated study of data from radiographical and the genomic
scales is termed radiogenomics.

In this review, we describe the applications of radiomics and
radiogenomics from the perspective of neuroradiologists, neuro-
surgeons, and neuro-oncologists. Specifically, we review work that
highlights the importance of the evolving field for diagnosing and
predicting prognosis of individuals with different brain tumour
types. Additionally, we discuss the potential and importance of
integrating these applications into radiological workflows to
improve patient care and outcome.
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OVERVIEW OF RADIOMICS AND RADIOGENOMICS WORKFLOW
Radiomics is an emergent field that involves converting radi-
ological images into high-dimensional mineable data in a high-
throughput fashion. This multi-step process involves (a) image
acquisition and reconstruction, (b) image pre-processing, (c)
identification of regions of interest, (d) feature extraction and
quantification, (e) feature selection, and (f) building predictive and
prognostic models using machine learning (Fig. 1).?2 To account
for MRI intensity non-uniformity, inter- and intra-site scanner
variability, image processing routines, such as intensity normal-
isation, voxel intensity calibration and bias field correction, are
used as a precursor to radiomic feature extraction.>>> The
segmentation of the regions of interest (ROI) can be achieved by
manual, semi-automated or fully-automated methods.'*?%"%*
Radiomic features are then extracted from the identified ROls.
Common features can be divided into the following groups:
morphological radiomics, textural radiomics, and functional
radiomics.

Following feature extraction, different statistical methods are
used to select a subset of top features that correlate with the
expected outcome.>® Commonly used feature selection algo-
rithms include minimum redundancy maximum relevance
(MRMR) algorithm3'3? and sequential feature selection meth-
ods.>® Feature selection is performed in order to reduce
potential model overfitting associated with the high dimension-
ality of the radiomic feature set. Once top features are identified,
machine learning classifiers and other statistical methods such
as the Cox-proportional Hazards modelling techniques®* are
used to build predictive and prognostic models. Sanduleanu
et al. proposed a “radiomics quality score” tool to assess the
quality of the radiomics research study linking tumour biology;
however, interpretability of the outcomes of those scores is still
questionable.”

The recent advent of radiogenomics has also accelerated the
integration of multi-omic data for accurate diagnosis and
improved personalised cancer treatments. The first step of the
radiogenomic pipeline in neuro-oncology (Fig. 1) is to acquire
genomic material via a fresh frozen paraffin embedded (FFPE)
sample or a tissue microarray (TMA) sample obtained from a
stereotactic brain biopsy from within the brain tumour. Next,
bioinformatics techniques, such as sequencing, can detect single-
gene mutations. For instance, epidermal growth factor receptor
(EGFR) amplification, O°-methylguanine-methyltransferase
(MGMT) methylation can be detected by analysing the proteins
through immunohistochemical (IHC) analysis and next-generation
sequencing (NGS) techniques such as mRNA sequencing. mRNA
sequencing, whole-exome sequencing, and whole-genome
sequencing can help detect multi-gene expression anomalies.
The decisive goal of radiogenomic analysis involves associating
gene mutations and pathways directly with distinct imaging
phenotypes.

RADIOMIC FEATURE GROUPS

Morphological radiomics

Morphological radiomic features are used to quantify lesion
topology induced by the proliferating boundaries. These can be
further divided into global and local morphological features.
Global features characterise the contour of the lesion by extracting
measurements such as roundness, perimeter, diameters of major
and minor axes, and elongation factor. Local morphological
features characterise the surface curvature attributes derived from
isosurfaces.?®*® These comprise quantitative measurements such
as degree of curvature (curvedness) and degree of sharpness.

Textural radiomics
Structural texture analysis. Structural methods describe texture
by identifying structural primitives and their placement rules.

Multi-scale, multi-resolution steerable bandpass filters like Gabor
filter banks®® are among the most widely used orientation-
based structural descriptors. Gabor descriptors are modelled to
mimic the way the human visual system deciphers object
appearances, by decomposing the original image into filter
responses of a sinusoidal wave of multiple frequencies and
orientations. Gabor filters have been shown to distinguish
pathc;lgogies on histology samples as demonstrated by Doyle
et al.

Statistical texture analysis. Statistical methods analyse the spatial
distribution of grey values by computing local features at each
image point and deriving a set of statistics from the distribution of
local features. One commonly used statistical technique for
identifying shape-based object classes is histogram of oriented
gradients (HOG).*® Traditionally, the applicability of HOG has been
demonstrated for detection of human forms in cluttered images.
Multi-coordinate HOG can distinguish different categories of lung
tissues in high-resolution tomography images. It characterises
local object appearance and shape by computing distribution of
local intensity gradients. Grey level co-occurrence matrix (GLCM)
features, popularly known as Haralick features*' and originally
designed for aerial photography, utilise the values of distance and
angle for a combination of grey levels.

Texture analysis using a combination of statistical and structural
techniques. Local binary patterns (LBP) is a textural operator
that combines statistical and structural methods in appearance
classification. LBP is robust with regards to illumination changes
and has been shown to be useful in medical datasets which are
corrupted by patient motion artefacts. This feature presents
texture information as a joint distribution of the intensity of a
central pixel and that of its neighbors.*? Li et al.** demonstrated
the use of LBP along with neural networks to classify
endoscopic images. Another feature that combines statistical
and structural techniques is the co-occurrence of local
anisotropic gradient orientations (CoLIAGe) descriptor which
seeks to capture and exploit local anisotropic differences in
voxel-level gradient orientations to distinguish similar appear-
ing phenotypes.**

Functional radiomics

A critical obstacle to the clinical adoption of traditional radiomic
features is its low biological interpretability. To qualify as a
biomarker, an attribute should not only be measurable and
reproducible, but also be reflective of the underlying anatomy or
physiology. It is imperative to discover radiomic signatures that
are biologically relevant. Functional radiomic markers are a new
class of markers which specifically target the issue of ‘interpret-
ability’ by modelling features that directly capture underlying
physiological properties such as angiogenesis. Properties of
vessels feeding the lesions (such as convolutedness, density) play
an important role in the drugs’ ultimate response. Recently,
tortuosity-based features capturing local and global disorder in
vessel network arrangement have been shown to be effective in
diagnosis and treatment response assessment.*> Deformation
descriptors are another class of functional radiomics markers
which seek to measure tissue deformation in the brain
parenchyma due to mass effect.*® These features provide an
insight into the microenvironment outside the visible surgical
margins.

Vessel architecture imaging (VAI) MRI is a technique that non-
invasively measures parameters to describe structural hetero-
geneity of brain microvasculature.*’~*° The different gradient echo
(GE) and spin echo (SE) images produce an apparent different
variation in the MRI readout based on the structural and
physiological properties of the vessels. Stadlbauer et al.*’
examined gliomas (n=60) using vascular architectural mapping



Imaging features

Original Scan

Radiomic pipeline

y % 0
ssesss s dibesse 0 20 40 60

Radiomics and radiogenomics in gliomas: a contemporary update
G Singh et al.

Unsupervised Clustering
Fd

p-value=0.000015

Survival Rate

Time (months)

=

Genomic pipeline

Better-informed Decisions

Fig. 1

(VAM). They introduced three new VAM biomarkers (i) microvessel
type indicator (MTI), (ii) vascular-induced bolus peak time shift
(VIPS), and (iii) the curvature (Curv) and adapted known
parameters, microvessel radius (RU) and density (NU). MTI and
VIPS parameters were helpful in detecting neovascularisation,
especially in the tumour core of the HGGs, whereas curvature
showed peritumoral vasogenic oedema which correlated with
neovascularisation in the tumour core of HGGs. These biomarkers
gave insight into complexity and heterogeneity of vascular
changes in gliomas to differentiate HGGs versus LGGs.>
Furthermore, combining multiparametric quantitative blood
oxygenation level-dependent approach (qBOLD) with VAM para-
meters helped distinguish LGGs versus HGGs and identify
isocitrate dehydrogenase (IDH) mutation status with higher
sensitivity.” Stadlbauer et al.>" also performed analysis of vascular
hysteresis loop (VHLs) in combination with the VAM biomarkers to
assess response of glioblastoma to anti-angiogenic therapy. MTI
was found to be useful to predict responding versus non-
responding regions, whereas, Curv was better to assess severity of
vasogenic oedema. Price et al.>? used diffuse tensor imaging (DTI)
with MR perfusion and MRS imaging to determine changes in the
invasive versus non-invasive margins of glioblastomas to better
predict treatment efficacy and overall survival.>>**

Semantic features

Semantic features, such as tumour location, shape, and geometric
properties on structural MRI,'®>* are qualitative features used by
neuroradiologists to describe the tumour environment. Previous
studies have found that semantic features are related to the
genetic phenotype of brain tumours.>® The Visually AcceSAble
Rembrandt Images (VASARI) project by TCIA established a feature
set to enable consistent description of gliomas using a set of
defined visual features and controlled vocabulary.”” Studies have
shown that these features are highly reproducible and provide
meaningful guidance in glioblastomas.® Semantic features are also
robust to changes in image acquisition parameters and noise and
can be used along with more sophisticated radiomic features in
machine learning settings.>?

Radiomics and Radiogenomics workflow. Use of Radiomics and Radiogenomics pipelines in personalized medicine.

DIAGNOSTIC APPLICATIONS
Differentiating tumours based on texture analysis
Many studies have shown the application of textural analysis for
differentiating HGGs from LGGs. Skogen et al”® applied a
filtration-histogram technique for characterising tumour hetero-
geneity. In a cohort of 95 patients (27-grade Il, 34-grade ll, and 34-
grade IV), by using standard deviation (SD) at a fine texture scale,
they were able to distinguish LGGs from HGGs with sensitivity and
specificity of 93% and 81% (AUC 091, P<0.0001). Tian*® et al.
applied textural analysis on multiparametric MRI of 153 patients
and reported an accuracy of 96.8% for classifying LGGs from HGGs
and 98.1% for classifying grade Ill from grade IV using an SVM
classifier. Xie et al.%® evaluated five GLCM features from (DCE)-MRI
of 42 patients with gliomas. They reported that entropy (AUC =
0.885) and IDM (AUC = 0.901) were able to differentiate grade IlI
from grade IV and grade Il from grade Ill gliomas, respectively.
Suh et al®' used MRI radiomics-based machine-learning
algorithms in differentiating central nervous system lymphoma
(PCNSL; n = 54) from non-necrotic atypical glioblastoma (n = 23).
Over 6000 multi-sequence and multi-regional radiomic features
including shape, volume, and texture were first obtained. AUCs
achieved statistical significance for each of the three machines
used, demonstrating a higher diagnostic performance than three
radiologists.

Characterising tumour molecular subtypes of low-grade gliomas
(LGG)

Adult LGGs with IDH1 mutation are associated with a better
prognosis and longer survival than are IDH1-wild-type adult LGGs
(i.e, negative for IDH1 mutation), which act much more
aggressively.” 1p/19q codeletion has been associated with good
response to chemotherapy and a very favourable prognosis. Non-
invasive radiogenomic molecular phenotyping may allow for
personalised therapeutic decisions in LGG.

Multiple groups have evaluated radiomic features to determine
molecular phenotype of gliomas.®? Zhang et al®® extracted 15
optimal radiomic features (n=152) using SVM-recursive feature
elimination (SVM-RFE) that could detect IDH mutation with
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accuracy of 82.2%. Han et al.®* extracted radiomic features from 42

patients with histopathologically confirmed gliomas. They showed
joint variables derived from T1-weighted image (T1WI), T2
weighted image (T2WI), and contrast-enhanced T1WI imaging
histograms and GLCM features could be used to detect IDH1-
mutated gliomas. The AUC of joint variabler;w.c for predicting
IDH1 mutation was 0.984, and the AUC of joint variabler;y, for
predicting the IDH1 mutation was 0.927. Jakola et al.%®> reported
that textural homogeneity could discriminate between LGG
patients with IDH mutation and IDH wild-type (P=0.005). The
AUC for combined parameters (tumour homogeneity and tumour
volume) was 0.940 for predicting IDH mutation. However, this
method could not differentiate LGG with IDH mutation with or
without 1p19q codeletion. Bahrami et al.°® measured tissue
heterogeneity and edge contrast (EC) on FLAIR images of 61
patients and reported that patients with IDH wild-type tumours
showed higher signal heterogeneity (P =0.001) and lower EC (P =
0.008) compared with IDH mutant type. Among patients with IDH
mutant tumours, 1p/19q codeleted tumours had greater signal
heterogeneity (P=0.002) and lower EC (P =0.005), and MGMT-
methylated tumours showed lower EC (P = 0.03).

Metabolic alteration of D-2-hydroxyglutarate (D-2HG) produc-
tion is a hallmark for IDH mutation in gliomas.®” Recently, a
number of groups have demonstrated reliable detection of D-2HG
using in vivo 'H MRS.537° Andronesi et al.%® reported apparent
in vivo detection of D-2HG using 2D correlation spectroscopy
(COSY) and J-difference spectroscopy in IDH1-mutated gliomas.
Rohle et al.”! identified a selective R132H-IDH1 inhibitor via a
high-throughput screening, which in a dose-dependent manner
can inhibit the production of R-2HG, providing further avenues for
targeted therapies.

Differentiating treatment effects (radiation necrosis,
pseudoprogression) and tumour recurrence

A major challenge in the management of glioblastoma is the
difficulty of accurately assessing the response to treatment with
several entities that can mimic tumour recurrence or progression
on structural MRI, namely pseudoprogression and radiation
necrosis (RN).2%7277* Visual diagnosis is often ambiguous and
remains extremely challenging, clinically.”> Functional MRI, such as
MR perfusion and MRS improves the diagnostic accuracy;
however, this may not be universally available and are often
difficult to reproduce.”>’57° Radiomics provides a non-invasive
approach to reliably distinguish tumour recurrence from treat-
ment effects and can potentially help prevent unnecessary
biopsies.2¢368°

By combining 3D shape and surface radiomic features extracted
from both T1WIl-enhancing lesions and T2WI/FLAIR hyperintense
perilesional area, Ismail et al.>® were able to differentiate between
true progression and pseudoprogression with 90.2% accuracy (n
=105). The two most discriminative features were found to be
local features capturing total curvature of the enhancing lesion
and curvedness of the T2WI/FLAIR hyperintense peritumoral
region. The differential expression patterns may be attributed to
the alteration of white matter structure via infiltration, resulting in
surface shape irregularities.

Similar to pseudoprogression, distinguishing brain tumour
recurrence (RT) from RN can be challenging on routine MRI due
to the lack of objective methods of assessment. A texture analysis in
conjunction with support vector machine approach presented by
Larroza et al.”* could differentiate brain metastasis from RN (n =
115) with an AUC of >0.9. CoLIAGe features were shown to express
differentially across different grades of RN and tumours.**2! A novel
aspect of this study was the inclusion of pure cerebral RN from
nasopharyngeal carcinoma. CoLIAGe entropy values were found to
be skewed toward higher values for the predominant tumour cases
compared with the pure cerebral RN or predominant cerebral
RN*48182 prasanna et al.®' further demonstrated that incorporating

CoLIAGe features from pure RN in the training set resulted in
improved classification performance of the predominant RN/RT,
compared with using features from the predominant RN/RT alone.
This potentially demonstrates, to some extent, the similarity in
structural and morphological properties between pure RN and its
mixed presentations.

Hu et al.® presented an automated technique to identify RN at
high spatial resolution using multi-parametric MR features. The
classification feature vector comprised eight parameters derived
from the multiple sequences, including contrast-enhanced T1, T2,
FLAIR, PD, ADC, rCBF, rCBV and MTT. The mean AUC obtained on
n=31 (RT=15 RN=16) cases was 0.94. Interestingly, the
performance using ADC features was significantly better than
those using conventional MRI measures. Combining textural
measures of heterogeneity with tracer uptake kinetics was shown
to be more effective in distinguishing brain metastasis recurrence
from radiation injury.®® The diagnostic accuracy when  using
tumour-to-brain ratios (TBRs) of '°F-FET uptake was 83% which
increased to 85% upon combining with textural parameters such
as coarseness, short-zone emphasis, or correlation.®® This shows
the potential complementary diagnostic information that the
texture attributes may provide along with other modalities.

PROGNOSTIC APPLICATIONS
Survival stratification in glioblastomas
Over 40% of glioblastoma patients do not respond to conven-
tional chemo-radiation therapy and show progression within
6-9 months.® Hypoxia in glioblastoma multiforme is a key
pathway known to promote tumour neovascularisation and
invasion of healthy tissue as well as driving treatment resistance
leading to poor prognosis.®> Multiple pathways such as cellular
proliferation, apoptosis and increased angiogenesis are also
known to contribute towards poor progression-free survival
(PFS) outcome. Currently, there is a lack of well-validated
biomarkers to monitor levels of hypoxia and predict treatment
response to anti-angiogenic agents.®® Beig et al.®” showed that
surrogate radiomic descriptors can capture the extent of hypoxia
of glioblastoma on pre-treatment MRI and predict survival (Fig. 2).
In this radiogenomic study, the authors used microarray expres-
sion data from 85 glioblastoma patients to construct a hypoxia
enrichment score (HES). Next, a radiomic model was trained that
correlated with HES, and then used to stratify glioblastoma based
on their overall survival (OS). On a validation set of n = 30 patients,
the radiomic features which were strongly associated with HES,
could also distinguish short-term survivors (OS <7 months) from
long-term survivors (OS> 16 months) (P = 0.003). Another study
by Kickingereder et al.® (n = 119) extracted over 12,190 radiomic
features of glioblastoma and concluded that an 11-feature
radiomic signature allowed for the prediction of PFS and OS.
Jain et al.®® investigated imaging, genomic, and haemodynamic
parameters obtained from the non-enhancing region (NER) of
glioblastoma on multi-sequence enhanced MRI. Increased relative
cerebral blood volume of the NER (rCBVyggr) and NER crossing the
midline were found to be associated with poor survival. Wild-type
EGFR mutation was the only genomic alteration that was associated
with significantly poor survival in patients with high rCBVgr.
Prasanna et al.*® discussed how mass effect-induced deforma-
tion heterogeneity (MEDH) from glioblastoma on multi-sequence
MRI affects survival. High expression of MEDH in the areas of
language comprehension, social cognition, visual perception,
emotion, somatosensory, cognitive and motor-control functions
were found to be associated with worse survival (Fig. 3). McGarry
et al.®® were able to use multi-sequence MRI radiomic profiles
(RPs) of newly diagnosed glioblastoma in order to further stratify
patient prognosis. Each voxel examined was assigned an RP. Five
such RPs were predictive of overall survival prior to therapy
initiation.
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Fig. 2 Construction of Hypoxia Enrichment Score. a—c show a 2D Gd-T1w MRI slice with expert-annotated necrosis (outlined in green),
enhancing tumour (yellow) and oedematous regions (brown) in three different GBM patients that exhibited low, medium, and high hypoxia
enrichment score (HES) respectively. The corresponding inverse difference moment (Haralick) feature map has been overlaid on the manually
annotated tumour regions, for HESo,, (d), HESmedium (@), and HEShign (f). g Unsupervised clustering of the RNAseq data from the 21 hypoxia
associated genes clustered as high hypoxia (HES,gh—shown in navy blue, medium hypoxia (HESmeqium—shown in teal) and low hypoxia
(HES|ow—shown in yellow). The x axis in the clustergram represents the 21 genes and y axis represents the patient population of 97 GBM
cases. Figure from Beig et al.?’; licensed under a Creative Commons Attribution (CC BY) license.
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Fig. 3 Deformation Radiomics. a, b Deformation vectors representing tissue displacement are shown as volume rendered 3D quivers
overlaid on an image slice of right-hemispheric GBMs. The deformation magnitude is proportional to the size of quivers. Higher value of
deformation magnitude is represented by ‘red’ and lower value by “blue” colour respectively. The quivers also show the direction of tissue
displacement. ¢ The AAL regions in which, the MEDH negatively correlated with survival with P < 0.05 for right-hemispheric tumour group
(neurological view). The colormaps show the negative correlation values (shown as positive for easier representation). Figure from Prasanna
et al.*5; licensed under a Creative Commons Attribution (CC BY) license.

Survival stratification in lower-grade gliomas

Liu et al.”" developed a radiomics signature to predict PFS in LGGs.
The radiomic risk score (RRS) was calculated and the genetic
characteristics of the group with high-risk scores were identified
by radiogenomic analysis. Biological processes of cell adhesion,
cell proliferation, differentiation and angiogenesis were identified
to be positively associated with the RRS. A nomogram combining
the RRS with other clinical features improved patient stratification
and resulted in better assessment of PFS.

Zhou at al.>? built radiomic models using automated texture
analysis and VASARI features to predict IDH1 mutation (AUC =
0.86), 1p/19q codeletion status (AUC = 0.96), histological grade
(AUC=0.86) and tumour progression (AUC=0.80) in patients
(n =165) with diffuse low- and intermediate-grade gliomas. They
found that on MRI images no enhancement and a smooth non-
enhancing margin were predictive of longer PFS; smooth non-

enhancing margins were also a significant predictor of longer OS
in LGGs.

Li et al.” selected nine radiological features that could predict
Ki-67 expression level and achieved accuracies of 83.6% and
88.6% in the training (n=78) and validation (n=39) sets,
respectively. Only spherical disproportion (SDp) feature was found
to be a prognostic factor with patients in the high SDp group. Ki-
67 expression level and SDp were independent prognostic factors
in the multivariate Cox regression analysis.

APPLICATIONS IN SELECTING OPTIMAL THERAPY

Stratifying anti-angiogenic treatment response for recurrent
glioblastomas

Anti-angiogenic treatment is the treatment of choice for
recurrent glioblastoma. Kickingereder et al.”* investigated imaging
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biomarkers that may be able to predict treatment outcome. By
utilising multi-sequence MRI with recurrent glioblastoma prior to
anti-angiogenic treatment with bevacizumab, radiomic MRI
features were extracted and analysed from 172 patients. Using
these radiomic features, a model was created to predict median
PFS and OS in low-risk and high-risk groups. The authors
concluded that radiomics might be able to identify patients who
would most benefit from bevacizumab therapy.

Bahrami et al.®® evaluated 33 HGG patients before and after
initiation of bevacizumab treatment. They segmented volume of
interest (VOI) within FLAIR hyperintense region and extracted
edge contrast (EC) magnitude for each VOI using gradients of the
3D-FLAIR images. They reported that lower EC of the FLAIR
hyperintense region was associated with poor PFS (P = 0.009) and
OS (P=0.022). Other relevant literature has been summarised in
Tables 1-3.

DISCUSSION

Conventional structural MRI, although popular as a universally
available imaging modality, has often failed in distinguishing
tumour recurrence, pseudoprogression and radionecrosis with
classic criteria such as enhancement, mass effect and perilesional
oedema."’ The enhancement patterns like ‘soap bubble’, ‘Swiss
cheese, and moving wave front are considered therapy-induced,
but they lack reproducibility and mandate further texture analysis,
spectroscopy or blood flow studies for validation.”® The dilemmas
and delays in detection of progression versus pseudoprogression
versus mixed lesions can delay treatment or cause discontinuation
of treatment.?%3¢

Presently, stereotactic brain biopsy remains the gold standard for
histological and genetic classification. However, the high tumour
heterogeneity in gliomas may decrease the accuracy of biopsies
and render pathological diagnosis inconclusive in about 7-15% of
patients.”” The ability to assess local imaging presentations of
tumours, based on the underlying genotype, could potentially
mitigate bias associated with tissue sampling during biopsy
procedures. The potential for radiomic analysis to distinguish
glioma molecular subtypes non-invasively would not only provide
additional prognostic information, but would also assist in the
selection of targeted chemotherapy in patients with multiple
genetic mutations and potentially high-grade tumour types.®*

The median survival of glioblastoma with surgical debulking is
15 months, with the clinical outcome depending on the extent of
initial resection and response to chemo-radiation therapy.”®
Radiomic risk models can therefore be utilised to better predict
treatment response, PFS and OS. By obtaining the radiogenomic
profile of a tumour non-invasively,®” the effect of anti-angiogenic
therapies, such as bevacizumab, can be assessed without harm to
the patient.'® To date, the efficacy of anti-angiogenic therapies is
primarily monitored with MRI and MRS. Tumour pseudo response
to anti-angiogenic therapies becomes problematic in that
standard enhancement characteristics of a tumour may appear
falsely reduced after the administration of anti-angiogenic
medications.'’ The rapid decrease in contrast enhancement
and vasogenic oedema suggests anti-angiogenic response when
the tumour may be stable or has progressed. The alterations in MR
characterisation of tumours after anti-angiogenic therapy is
primarily related to changes in blood-brain barrier permeability.
By utilising radiomics in such cases, the actual tumour response
may be monitored, and treatment strategies can be further
tailored prior to tumour progression.

Gliomas are genetically highly heterogenous. The broad genetic
alterations, coupled with microenvironment biochemistry, man-
ifest in characteristic appearances both on gross histology and on
the radiological scale. In addition to the work reviewed in the
boarder context of IDH, MGMT and EGFR differences, other
associations have also been supported. Contrast enhancement has

been shown to be associated with genes implicated in
hypoxia-angiogenesis pathway,'®? such as vascular endothelial
growth factor (VEGF). Radiomic attributes capturing abnormal
intensity patterns in the internal capsule have been shown to be
correlated with MYC oncogene expression.'® Interestingly, multi-
ple radiogenomic correlation experiments have revealed strong
associations of imaging phenotypes with pathways that are
implicated in extracellular matrix destruction, cell invasion and
metabolism.

Furthermore, radiomics offers an opportunity to perform an
analysis on complete tumour that could mitigate the limitation of
sampling errors and inability of complete molecular and
histopathological assessment by neuropathologists given the lack
of tumour sample.’®*% With quantitative mutation values rather
than binary designations, radiomics can help neuro-oncologists
and neurosurgeons make personalised therapy decisions and
reliably predict response to therapies.

Limitations

A major feature limiting radiomic quantification is poor reprodu-
cibility secondary to variability and lack of consistency attributed
to the absence of standardised acquisition parameters and
radiomic approaches.'” The accuracy of radiomic signatures
typically varies when tested on different datasets. Multiple studies
have addressed impact of different acquisition parameters on
textural analysis. Magnet strength, flip angles, different spatial/
matrix size, TR/TE variations in TIWI and T2WI, and different
scanner platforms can affect texture features.'”®''? Molina
et al."'? found that no textural measures were robust under
dynamic range changes, entropy was the onlgy robust feature
under spatial resolution changes. Buch et al.'® concluded that
some of the features were more robust and some of the features
were more susceptible to different acquisition parameters,
necessitating the need for standardised MRI techniques for
textural analysis. Furthermore, variation in usability of textural
analysis software add complexity to standardisation and reprodu-
cibility. Multiple studies used indigenous software with varying
algorithms making reproducibility and repeatability of these
studies almost impossible. Future studies are needed to assess
accuracy of these results from different type of software to help
with standardisation.

Scarcity of publicly available databases with annotated radi-
ological studies for specific clinical domains limit capability of
researchers to conduct large sample size studies. Small sample
size and a high number of prediction variables often leads to
overfitting, a major limitation in machine learning models. To
prevent overfitting, it is recommended to have sample size 6-10
times larger than the analysed variables or conducting analysis
with a few preselected robust variables only. Collaboration among
research universities is required to create professionally annotated
standardised datasets for larger cohort studies which can be split
into training, testing, and validation datasets to avoid overfitting.
This would also allow the researchers to test their algorithms on
external cohorts and validating robustness of their solutions. A
recent development towards achieving this is the use of federated
learning which facilitates multi-institutional validation of machine
learning models without explicit sharing of data using a
distributed framework.'"®

Variability in the selection of appropriate regions of interest for
feature extraction can affect certain radiomic attributes, such as
shape-based measures. There are no existing guidelines for
radiologists to report quantitative imaging features, making huge
existing image repositories inaccessible for curation. For generat-
ing high-quality data with segmented and annotated appropriate
regions of interest, radiologists need to be integral part of data
quantification and curation.'™*

The lack of routinely acquired gene expression profiles and
tissue sampling errors impose limitations to the application of
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radiogenomics in current clinical workflow.''® It is difficult for a
single institute to create a large imaging database with auxiliary
data such as genomic profile, demographics, treatment informa-
tion and their outcomes. The Cancer Genome Atlas (TCGA) has
made cancer datasets publicly available with a comprehensive
catalogue of genomic profiles to address this issue. The clinical
translation of radiogenomics is also hindered by spatial and
temporal heterogeneity within a given brain tumour. However,
ability of radiomics to perform an analysis on complete tumour
might address this limitation.

Deep learning algorithms that facilitate automated feature
learning have recently shown great promise in tasks ranging from
tumour segmentation''® to survival prediction.'”” Methods
combining radiology and pathology datasets have been proposed
to distinguish gliomas into oligodendroglioma and astrocytoma
classes.''® Such methods, however, require large datasets for
training purposes besides often lacking transparency and inter-
pretability. Uncertainty and interpretability of deep learning
networks in the field of medical imaging is an active area of
research. A significant challenge for the translation of radiomics
and deep learning algorithms into clinical workflow as clinical
decision support systems stems from a regulatory perspective.
US Food and Drug Administration (FDA) has closely regulated
CAD (computer-aided detection) systems that rely on machine
learning and pattern-recognition techniques; machine learning
models present new regulatory challenges and require
specialised guidance for submissions seeking approval (https://
www.fda.gov/medical-devices/software-medical-device-samd/
artificial-intelligence-and-machine-learning-software-medical-
device). Furthermore, new Al models keep evolving even after
going to market as they are exposed to more data. It is vital to
adopt periodic testing requirements over specific time intervals to
make sure the adaptive changes of these models follow
forecasted projections.

Future directions

Recent initiatives such as the image biomarker standardisation
initiative have proposed certain %;uidelines based on results
obtained on radiomics phantoms.''® Test-retest experimental
settings have also been widely proposed to facilitate selection of
stable and robust radiomic measures. In one of the first studies of
this kind, the repeatability of CT radiomics was ascertained in a
“coffee-break” test-retest setting with scans obtained from the
same scanner within an interval of 15 min.'?° Similar settings are
warranted for brain imaging to identify suitable radiomic features
for clinical applications. The Cancer Imaging Archive hosts
imaging datasets of brain tumour collections (HGGs and LGGs),
among other cancers, obtained from several institutions. Such
datasets have been widely used by the research community to
develop and validate radiomics and radiogenomics tools.

One obvious deficiency in virtually all the retrospective radio-
genomic studies is lack of information regarding the location of the
biopsy sample vis-a-vis pixels in the patient’s images.'?' Image-
localised biopsies and subsequent imaging-pathology co-registra-
tion are essential steps in mitigating biases associated with locating
biopsy region on MRI. Hu et al.'?? have previously co-registered MRI
scans and corresponding texture maps with biopsy locations to
study regional genetic variation with spatially matched imaging
descriptors. In a follow-up study, Hu et al.'** have proposed a
Gaussian process and transductive learning based probabilistic
model to quantify spatial uncertainty in radiogenomic pipelines.
The sparse availability of ground truth labels in radiogenomic
models can be modelled as a ‘weak supervision’ or ‘incomplete
supervision’ task. Multi-instance learning techniques may be
implemented to address this limitation.'**

The field of radiomics promises to elevate the role of medical
imaging by enabling objective tumour characterisation. In
oncology, radiomics can provide prognostic information non-

Radiomics and radiogenomics in gliomas: a contemporary update
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invasively via biomarker utilisation.'® In neurosurgery, it can be
used for improved pre- and post-operative treatment planning.
Emerging companies are now providing software that delivers
web-based radiological analysis with the PACS viewing system.'>
Support from academic institutions, such as the American College
of Radiology, is growing. Such efforts can readily facilitate the
transition of radiomic research to clinical practice.

CONCLUSIONS

Radiomics is not intended to replace radiologists in the future, but
rather improve disease diagnosis and characterisation with greater
precision. It is imperative for the future of neuroradiology,
neurosurgery and neuro-oncology to utilise advances in radiomics
and radiogenomics in order to provide less invasive and tumour-
specific precision treatment strategies and to ultimately optimise
patient care. In order for this field to continue evolving and make
its way into clinical practice, it is vital to develop more
standardised and reproducible methods of data interpretation,
maintain publicly available databases of radiological studies, and
conduct prospective large-scale multi-institutional clinical trials. In
the future, the fields of radiomics and radiogenomics promise to
improve the utility of already available imaging modalities and
channel them towards personalised medicine.
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