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A B S T R A C T   

The association between depressive disorders and measures reflecting myelin content is underexplored, despite 
growing evidence of associations with white matter tract integrity. We characterized the T1w/T2w ratio using 
the Glasser atlas in 39 UD and 47 HC participants (ages = 19–44, 75% female). A logistic elastic net regularized 
regression with nested cross-validation and a subsequent linear discriminant analysis conducted on held-out 
samples were used to select brain regions and classify patients vs. healthy controls (HC). True-label model 
performance was compared against permuted-label model performance. The T1w/T2w ratio distinguished pa-
tients from HC with 68% accuracy (p < 0.001; sensitivity = 63.8%, specificity = 71.5%). Brain regions 
contributing to this classification performance were located in the orbitofrontal cortex, anterior cingulate, 
extended visual, and auditory cortices, and showed statistically significant differences in the T1w/T2w ratio for 
patients vs. HC. As the T1w/T2w ratio is thought to characterize cortical myelin, patterns of cortical myelin in 
these regions may be a biomarker distinguishing individuals with depressive disorders from HC.   

1. Introduction 

Depressive disorders, also collectively referred as unipolar depres-
sion (UD), is a leading cause of disability worldwide (World Health 
Organisation, 2017), with an economic burden of $210 billion dollars in 
the United States alone (Greenberg et al., 2015). Despite its impact, 
treatments for the disorder remain ineffective for many patients 
(Cuijpers et al., 2020). Thus, there is a pressing need to understand the 
neurobiological etiology of UD to facilitate the development of 
improved treatments and prevention strategies. 

Unipolar depression is characterized by dysfunctional affective and 
cognitive processing (Gotlib and Joormann, 2010), including reduced 
executive functioning (Snyder, 2013), biased emotional processing 
(Suslow et al., 2020), and impaired reward processing (Halahakoon 
et al., 2020). Correspondingly, individuals with UD show aberrant 
activation during tasks which recruit these processes, including activa-
tion in the striatum, hippocampus, amygdala, orbitofrontal cortex, 
prefrontal cortex, insula, cingulate, and occipital cortex (Hamilton et al., 
2012; Ng et al., 2019; Stuhrmann et al., 2011; Wang et al., 2015). In 

addition, a growing body of literature has reported structural abnor-
malities associated with depression in many of these same regions 
described above, both in grey matter (Ho et al., 2020; Schmaal et al., 
2017; 2016) and in white matter (Manelis et al., 2021; Shen et al., 2017; 
van Velzen et al., 2020) Meta-analyses of diffusion weighted imaging 
(DWI) studies have repeatedly found evidence for lower fractional 
anisotropy (FA) in depressed populations (Liao et al., 2013; Murphy and 
Frodl, 2011; Wise et al., 2016). More recently, studies using very large 
samples (i.e., the UK Biobank), as well as meta-analyses combining both 
published and unpublished data (i.e., the ENIGMA consortium), have 
observed widespread and replicable reductions in FA (Shen et al., 2017; 
van Velzen et al., 2020). Notably, white matter integrity in identified 
regions has been shown to correlate with the cognitive processes dis-
rupted in depression, including processing speed (Chopra et al., 2018; 
Penke et al., 2010), emotion regulation (Eden et al., 2015; Welton et al., 
2020), and reward learning (de Boer et al., 2020). 

Emerging evidence suggests that cortical myelin may be impacted in 
individuals with UD and that it may partially mediate some of the 
cognitive processes that are impaired in affected individuals. For 
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example, studies of post mortem brain tissue from donors with UD have 
observed reduced myelination, a reduction in the number of oligoden-
drocytes and other glia (cells whose functions include generating and 
maintaining myelin (Simons and Nave, 2016)), and reduced expression 
of oligodendrocyte lineage genes (Boda, 2021; Tham et al., 2011). A 
study of individuals with treatment resistant depression revealed a 
reduced magnetization transfer ratio (MTR), which is thought to reflect 
lower myelin levels, in the cingulate cortex and insula (Zhang et al., 
2009). A recent study using R1 (1/T1) as a measure of myelination 
observed reduced whole-brain myelin, but no significant difference in 
cortical myelin in a handful of a priori bilateral regions between in-
dividuals with depression and healthy controls (HC) (Sacchet and Got-
lib, 2017). 

Developments in magnetic resonance imaging (MRI) methodology 
permit the examination of cortical myelin via the T1w/T2w ratio 
(Glasser and van Essen, 2011; Shafee et al., 2015). While the T1w/T2w 
ratio does not solely reflect cortical myelin (Fukutomi et al., 2018; 
Hagiwara et al., 2018; Tardif et al., 2017; Yasuno et al., 2017), it has 
been shown to correlate with several white matter metrics (Ganzetti 
et al., 2014; Glasser and van Essen, 2011; Ritchie et al., 2018; Shams 
et al., 2019), indicating that it is sensitive to cortical myelin. Studies in 
population-based samples using this metric have found that lower 
myelin in the cingulate, orbitofrontal cortex, and middle temporal cor-
tex correlated with poor sleep quality (Toschi et al., 2020), lower 
frontal-pole myelin and greater myelin in the occipital cortex correlated 
with neuroticism (Toschi and Passamonti, 2019), and lower myelin in 
the motor and higher myelin in the insular, cingulate, prefrontal, and 
superior parietal cortices correlated with trait anxiety (Norbom et al., 
2019). While poor sleep, high neuroticism, and trait anxiety might 
represent concurrent symptoms of depression, prior studies have not 
systematically examined cortical myelin in participants with depression 
as compared to HC. 

The goals of the present study were (1) to ascertain whether the 
T1w/T2w ratio is predictive of UD, and (2) to characterize the brain 
regions that are predictive of case/control status. Based on the prior 
studies mentioned above, we hypothesized that the T1w/T2w ratio 
would distinguish individuals with UD from HC and that these differ-
ences will be especially pronounced in the prefrontal cortical (PFC), 
cingulate, parietal and occipital regions that support reward and 
emotional processing, which are dysregulated in UD (Dalili et al., 2015; 
Ng et al., 2019). 

2. Methods 

2.1. Participants 

The study was approved by the University of Pittsburgh Institutional 
Review Board. Participants were recruited from the community, uni-
versities, and counseling and medical centers. They gave written 
informed consent, were right-handed, fluent in English, and were 
matched on age and sex. Individuals with unipolar depression (UD) met 
DSM-5 criteria for major depressive or persistent depressive disorders. 
Healthy controls (HC) had no personal or family history of psychiatric 
disorders. Exclusion criteria included a history of head injury, metal in 
the body, pregnancy, claustrophobia, neurodevelopmental disorders, 
systemic medical illness, premorbid IQ < 85 per the National Adult 
Reading Test (Nelson, 1982), current alcohol/drug abuse, Young Mania 
Rating Scale scores > 10 (YMRS (Young et al., 1978)) at scan, or meeting 
criteria for any psychotic-spectrum disorder. Data were drawn from an 
ongoing longitudinal study that includes neuroimaging sessions at 
baseline and 6-month follow-up and clinical evaluations at baseline, 6- 
months, and 12-months. The present report includes baseline data 
available for 55 HC and 50 UD. Participants were excluded from ana-
lyses due to (1) previously undetected brain abnormalities of potential 
clinical relevance: 2 UD, (2) diagnosis conversion during the course of 
the study: 1 HC was diagnosed with major depressive disorder, and 1 UD 

was diagnosed with bipolar disorder; (3) scanner or movement-related 
artifacts in MRI data (4 HC, 7 UD), and (4) poor-quality myelin maps 
(see Section 2.4.2.1 Subject-level processing; 3 HC, 1 UD). The final 
sample included 47 HC and 39 UD. 

2.2. Clinical assessment 

All diagnoses were made by a trained clinician and confirmed by a 
psychiatrist according to DSM-5 criteria using SCID-5 (First, 2015). 
Additional information collected included illness onset and duration, 
number of current episodes, comorbid psychiatric disorders, current 
depression symptoms using the Hamilton Rating Scale for Depression 
(HRSD-25) (Hamilton, 1960), current mania symptoms using the Young 
Mania Rating Scale (YMRS) (Young et al., 1978), and lifetime depression 
and hypo/mania spectrum symptomatology using the Mood Spectrum 
Self Report (MOODS-SR) (Dell’Osso et al., 2002). A total psychotropic 
medication load was calculated for each participant with UD, with 
greater numbers and doses of medications corresponding to a greater 
medication load (Hassel et al., 2008; Manelis et al., 2016). 

2.3. Neuroimaging data acquisition 

The neuroimaging data were collected at the University of Pitts-
burgh/UPMC Magnetic Resonance Research Center using a 3 T Siemens 
Prisma scanner with a 64-channel receiver head coil and named ac-
cording to the ReproIn convention (Visconti di Oleggio Castello et al., 
2020). The DICOM images were converted to BIDS dataset using heu-
diconv (Halchenko et al., 2019) and dcm2niix (Li et al., 2016). High- 
resolution T1w images were collected using the MPRAGE sequence 
with TR = 2400 ms, resolution = 0.8x0.8x0.8 mm, 208 slices, FOV =
256, TE = 2.22 ms, flip angle = 8◦. High-resolution T2w images were 
collected using TR = 3200 ms, resolution = 0.8x0.8x0.8 mm, 208 slices, 
FOV = 256, TE = 563 ms. Field maps were collected in the AP and PA 
directions using the spin echo sequence (TR = 8000, resolution =
2x2x2mm, FOV = 210, TE = 66 ms, flip angle = 90◦, 72 slices). 

2.4. Data analyses 

2.4.1. Clinical data analysis 
HC and UD groups were compared on demographic and clinical 

variables using t-tests and chi-square tests. All analyses were conducted 
in R (https://www.r-project.org/). 

2.4.2. Neuroimaging data processing 

2.4.2.1. Subject-level preprocessing. Data quality was examined using 
mriqc version 0.15.1 (Esteban et al., 2017) and visually inspected (Sup-
plemental Methods). Each participant’s cortical myelin was character-
ized with the T1w/T2w ratio (Glasser et al., 2016, 2013; Glasser and van 
Essen, 2011) using the PreFreeSurfer, FreeSurfer, and PostFreeSurfer 
minimal preprocessing pipelines for the human connectome project 
(Glasser et al., 2013). Workbench v1.4.2 and HCPpipelines-4.1.3 were 
installed system-wide on a workstation with GNU/Linux Debian 10 
operating system. The spin echo field maps collected in AP and PA phase 
encoding directions were used for bias field correction in PreFreeSurfer. 
Registration to standard space was achieved via MSMSulc (Robinson 
et al., 2018) in PostFreeSurfer. If FreeSurfer images and myelin maps had 
artifacts and gross errors (e.g., large regions of apparent low myelin in 
the occipital cortex due to the transverse sinus interfering with accurate 
identification of the pial surface), the data were removed from analyses. 
The resulting myelin maps were parcellated in Workbench using the 360 
region Glasser Atlas (Glasser et al., 2016). Further data quality assurance 
resulted in the removal of 11 outlier parcels (Supplemental Methods), 
leaving 349 parcels. 
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2.4.3. Neuroimaging data analysis 

2.4.3.1. Elastic net and linear discriminant analysis. Neuroimaging data 
decoding studies can capitalize on complex relationships between var-
iables, but their large numbers can present a challenge in deriving a 
generalizable model. The elastic net approach has emerged as a flexible 
tool for use with neuroimaging data (Jollans et al., 2019) as it is able to 
reduce the influence of overly large coefficients and reducing the 
number of variables while generating multivariate models predictive of 
complex behaviors (Acuff et al., 2019; Bertocci et al., 2016; Manelis 
et al., 2020). Elastic net is a regularized regression which combines lasso 
and ridge regression (i.e., L1- and L2- norm regularization) (Zou and 
Hastie, 2005). Ridge regression penalizes overly large coefficients, while 
lasso regression removes variables with small coefficients. 

We used logistic elastic net regularized regression (Friedman et al., 
2010) to select variables (brain parcels) that were most predictive of 
case/control status. Elastic net has two parameters: alpha (α) controls 
the balance between the ridge and lasso regularizations, and lambda (λ) 
controls the strength of regularization. To provide equal contribution of 
each penalty to the loss function, we used α = 0.5. To avoid model 
overfitting and bias, we implemented nested cross-validation to identify 
the optimal λ parameter. A linear discriminant analysis (LDA) (Venables 
and Ripley, 2002) model was subsequently trained using selected vari-
ables to make out-of-sample prediction on held-out participants. This 

strategy is illustrated in Fig. 1A and described in detail in Supplemental 
Methods. For each repetition of the nested cross-validation loop, two 
participants (1 UD and 1 HC) were held out. The rest of the sample was 
used to identify the optimal λ parameter which were then used to fit the 
elastic net model and select variables whose myelin levels were pre-
dictive of UD/HC status. These variables were then used to train an LDA 
model, which was tested on held-out participants. Results (model fit, 
variable selection, prediction accuracy) were evaluated against results 
from a permuted-label analysis (Fig. 1B and Supplemental Methods). To 
contribute to the ongoing discussion regarding best-practices for nested 
cross-validation with neuroimaging data sets (Vabalas et al., 2019; 
Varoquaux, 2018), post-hoc analyses systematically varied cross- 
validation parameters (i.e., the size of the held-out sample and the 
number of folds used to fit the elastic net model) and examined their 
impact on prediction accuracy and variable selection. 

2.4.3.2. Post-hoc analyses 
2.4.3.2.1. The relationship between true-label and permuted-label 

sample demographics. To ensure that the permuted results were not 
due to changes in the internal structure of the permuted samples in terms 
of demographic variables (i.e., age, sex and IQ), we compared the age, 
sex and IQ values in the permuted samples with that in the true-label 
samples. 

Fig. 1. Diagram of analysis steps. Conceptual depiction of analysis steps including: (1) a unique pair of one UD and one HC participant is held-out; (2) an elastic net 
regression is used to select variables; (3) the retained variables are used an LDA model predicting case/control status; (4) the LDA model is tested on the held-out 
sample; (5) this process is repeated for each of the n = 1833 pairs of subjects; (6) for each held-out pair, the training procedure is repeated with 100 unique 
permutations. 
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2.4.3.2.2. Association of LDA accuracy and cortical myelin with de-
mographic and clinical characteristics. To further characterize the parcels 
selected by the logistic elastic net regression, we compared cortical 
myelin in UD vs. HC while controlling for age, sex, and IQ. To assess the 
potential influence of confounding variables on model fit, we tested 
whether demographic or clinical characteristics were predictive of 
classification accuracy. Regressions tested whether the joint effect of 
group, the variable in question, or their interaction, was associated with 
participant-wise accuracy (Dinga et al., 2020). Additional models tested 
whether clinical characteristics of UD participants were associated with 
model accuracy. To assess the influence of confounding variables on 
variable selection, regressions similarly tested the association of de-
mographic and clinical variables with cortical myelin, controlling for 
age, sex, and IQ. Results for each variable were separately corrected for 
multiple comparisons using false discovery rate (FDR). 

2.4.3.3. Exploratory analysis of a HC participant who was diagnosed with 
major depressive disorder 12 months from the baseline scan. One partici-
pant entered the study as a HC but was diagnosed with major depressive 
disorder sometime between 6 and 12 months after study onset. At the 
study visit at 12 months the participant had mild depressive symptoms. 
While this participant was excluded from all primary analyses described 
above, exploratory analyses investigated whether the myelin was pre-
dictive of the participant’s conversion from HC to UD. This analysis used 
the primary 86 participants and the variables selected in primary ana-
lyses (cortical myelin in 33 parcels and IQ) to train an LDA model. UD/ 
HC status was then predicted at study onset and at the 6-month follow- 
up (both time points were prior to conversion). 

3. Results 

3.1. Sample demographics 

Individuals with UD did not differ by age or sex but had higher IQ 
and current and lifetime depression severity compared to HC (Table 1). 

3.2. UD vs. HC LDA nested cross-validation classification accuracy 

The T1w/T2w ratio and IQ distinguished UD from HC in subjects 
held-out during cross-validation, with an average accuracy of 68% 
(Fig. 2A; sensitivity (UD): 63.8%, specificity (HC): 71.5%). The mean 
participant-wise accuracy across 84 classification loops ranged from 0% 
to 100%, and 84% of participants were classified either quite accurately 
(>80% n = 53) or inaccurately (<20% n = 19). When demographic 

variables were excluded from the LDA classification, nested cross- 
validation achieved 69% accuracy (UD: 65.2%, HC: 73%).While the 
mean classification accuracy was higher in the HC group, this difference 
was not statistically significant (t = 0.88, p = 0.38). Notably, post-hoc 
analyses found that accuracy, sensitivity, and specificity were always 
significantly above chance across all cross-validation schemes examined 
(i.e., varying the size of the held-out sample and the number of folds 
used to fit the elastic net model) (Supplemental Fig. 3). 

In permutation analyses, no variable was selected in 66.9% of 
183,300 models. Within each participant, the proportion of models that 
did not select any variables ranged from 65.4% to 68.7%. Excluding 
instances when no variables were selected, the average participant-wise 
LDA accuracy in permutation analyses ranged from 41.2% to 59.2%, 
with an average accuracy of 50.5% (i.e., chance level). The test of 
whether age, sex and IQ in permuted samples differed from that in the 
sample with true labels showed that the demographics of the permuted 
groups differed (p < 0.05, uncorrected) from the true-label groups only 
in 1.7% of cases. 

3.3. Elastic net variable selection 

True-label nested cross-validated elastic net models predicting diag-
nostic status (UD vs. HC) with 349 parcels, age, sex and IQ, selected 90 
myelin parcels (Supplemental Table 1) and IQ in at least one model 
(Fig. 2B). Each model selected between 9 and 68 variables, with a me-
dian of 17 variables. Permuted-label nested cross-validated elastic net 
models selected all predictor variables at least once, but no variable was 
selected by>3% of the models. In addition, 66.9% of models with 
permuted labels did not select any variable at all. Within permuted-label 
models where at least one variable was selected, the number of selected 
variables ranged from 1 to 113, with a median of 17 variables selected. 

Given that the variable selection frequency in the models with 
permuted labels likely represents noise, we applied the criterion of the 
median + 3.5*IQR across all permuted variables (3.77%) as the cutoff 
value to separate the potential noise variables from ‘signal’ variables in 
the nested cross-validated elastic net with true labels. This latter analysis 
identified 33 out of 90 parcels, plus IQ, across the true-label nested 
cross-validated elastic net models that were above the cutoff line 
(Table 2, Fig. 2B). These 33 parcels included multiple regions in the 
orbitofrontal cortex, insula, cingulate, and frontal operculum, as well as 
regions in the auditory and visual cortices (Supplemental Fig. 3). No 
model retained the age and sex variables. Notably, post-hoc analyses 
which tested different cross-validation schemes found that these 34 
variables were selected across all parameter variations (Supplemental 
Fig. 4). 

Table 1 
Demographic and clinical characteristics.   

HC (mean/sd or count/percent) UD (mean/sd or count/percent) t-test or chi-squared test HC vs. UD 

N 47 (54.7%) 39 (45.3%)  
Gender (number females) 36 (76.6%) 29 (74.6%) χ2(1) = 0, p = 1 
UD diagnoses (MDD/PDD) na 26/13 na 
Age (years) 28.55 (6.15) 29.07 (6.88) t(84) = -0.37, p = 0.71 
IQ (NART) 106.72 (6.24) 110.2 (7.49) t(84) ¼ -2.35, p ¼ 0.02 
Illness Onset (year of age) na 15.05 (5.02) na 
Lifetime episodes of depression na 3.25 (1.5) na 
Current depression severity (HRSD-25) 1.74 (2.16) 12.69 (6.77) t(84) ¼ ¡10.48, p < 0.01 
Lifetime depression (MOODS-SR) 2.15 (2.27) 18.41 (4.36) t(84) ¼ ¡22.21, p < 0.01 
Number taking Antidepressants na 22 (56.4%) na 
Number taking Mood stabilizers na 3 (7.7%) na 
Number taking Antipsychotics na 1 (2.6%) na 
Number taking Benzodiazepines na 5 (12.8%) na 
Number taking Stimulants na 3 (7.7 %) na 
Mean number of psychotropic medications na 1.05 (1.12) na 
Mean total medication load na 1.33 (1.53) na 
Number with comorbid diagnoses na 27 (69.2%) na 

Note: Comparison of demographic and clinical characteristics between healthy controls (HC) and individuals with Unipolar Depression (UD). Tests were run as t-tests 
or chi-squared tests, as specified. Bold = p < 0.05. na = not applicable. 
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Post-hoc analyses tested the association of diagnostic status with the 
T1w/T2w ratio in the 33 selected parcels (Table 2, Fig. 3). These parcels 
include both regions where UD participants have a lower mean T1w/ 
T2w ratio than HC and regions where UD participants have a greater 
mean T1w/T2w ratio, as well as regions where the two groups do not 
differ. After FDR-correction for multiple comparisons, fourteen of the 

parcels showed evidence of significant differences between UD and HC 
participants (Table 2). An additional 8 parcels showed nominally sig-
nificant differences between UD and HC participants (Table 2; p < 0.05 
uncorrected). Parcels that showed a greater absolute mean difference 
between the groups were selected more frequently in the nested cross- 
validation analysis (r = 0.7, p = 4 × 10− 6). 

Fig. 2. Classification accuracy and variable selection. A) Average subject-wise nested cross-validation classification accuracy in both healthy controls (HC) and 
participants with unipolar depression (UD). B) Variable selection frequency (percent of models where a given parcel was retained) in the true data (light blue) and 
permutations (green). The n = 90 parcels which were retained at least once are shown. IQ, the only demographic variable selected, is labeled. Solid black lines 
represent the median of the variable selection frequency for all n = 350 variables +/- 3.5 × the interquartile range (IQR). See Supplemental Table 2 for the full list of 
variable selection frequencies. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
The comparison of the T1w/T2w ratio in selected parcels in individuals with UD vs. HC.  

Parcel t p p-FDR Selection Frequency Extended Description 

Left 11 l − 3.056  0.003  0.032  100.00 BA 11 (orbital and polar frontal) 
Left 7PC 3.081  0.003  0.032  100.00 BA 7 (superior parietal cortex) 
Left MST 2.892  0.005  0.032  100.00 Medial superior temporal area 
Left p10p − 2.536  0.013  0.038  100.00 BA 10 (frontopolar margin of orbital prefrontal cortex) 
Right FOP2 − 2.574  0.012  0.038  100.00 Frontal Opercular area 2 (posterior opercular cortex) 
Right FFC − 2.534  0.013  0.038  100.00 Fusiform face complex 
Left STSdp − 2.036  0.045  0.071  99.95 Auditory association cortex 
Right TE2p 2.928  0.004  0.032  99.89 Lateral temporal complex 
Left LBelt − 2.713  0.008  0.038  99.35 Lateral belt complex (auditory) 
Left a24pr − 3.003  0.004  0.032  99.29 Ventral anterior cingulate cortex. 
Right 7AL − 2.512  0.014  0.038  99.18 BA 7 (superior parietal cortex) 
Left d23ab − 2.157  0.034  0.060  95.53 Ventral posterior cingulate cortex 
Left 6a − 2.291  0.025  0.054  95.25 BA 6 (premotor subdivisions) 
Left 24dv − 2.556  0.012  0.038  59.36 Ventral anterior cingulate cortex. 
Right V3A 1.795  0.076  0.097  47.52 Visual area V3A 
Left V4t − 1.650  0.103  0.117  39.44 Visual area V4t 
Right LBelt − 2.122  0.037  0.061  33.99 Lateral belt complex (auditory) 
Left p32 2.179  0.032  0.060  33.66 BA 32 (pregenual anterior cingulate) 
Right PH 2.152  0.034  0.060  22.97 Posterior temporal visual region 
Right POS2 1.921  0.058  0.082  19.97 Parieto-occipital sulcus area 2 
Right FOP1 − 1.816  0.073  0.096  19.31 Frontal Opercular area 1 (posterior opercular cortex) 
Right RI 1.559  0.123  0.135  18.22 RetroInsular cortex 
Left 47 m − 1.735  0.086  0.102  15.77 BA 47 (orbital part of inferior frontal gyrus) 
Left s32 − 2.442  0.017  0.040  12.22 BA 32 (subgenual anterior cingulate) 
Left MT 2.176  0.033  0.060  11.95 Middle temporal area 
Left RI − 2.520  0.014  0.038  11.78 RetroInsular cortex 
Right OP1 − 1.237  0.220  0.220  8.89 Parietal operculum (secondary somatosensory cortex) 
Left PeEc − 1.429  0.157  0.162  6.98 Perirhinal ectorhinal cortex 
Left FOP4 − 2.489  0.015  0.038  6.66 Frontal Opercular area 4 (posterior opercular cortex) 
Right RSC − 2.009  0.048  0.072  6.22 RetroSplenial complex 
Right 52 1.493  0.139  0.148  6.06 BA 52 (parainsular) 
Right 7Pm 1.913  0.059  0.082  5.18 BA 7 (superior medial parietal cortex) 
Right 5 m − 1.777  0.079  0.097  3.98 BA5 (paracentral lobule) 

The association of UD with the T1w/T2w ratio in the n = 33 selected variables. Tests were run as linear regressions, testing the association of case/control status with 
the T1w/T2w ratio, controlling for age, sex, and IQ. Positive t-values indicate greater T1w/T2w ratio (and, consequently, greater cortical myelin level) in UD vs. HC. 
We report both uncorrected and FDR-corrected p-values. 
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The 33 selected parcels included 13 parcels in regions important for 
executive functioning and cognitive control, located in the anterior 
cingulate (left a24pr, left 24dv, left p32, and left s32), orbitofrontal 
cortex (left 11 l, left p10p, and left 47 m), posterior cingulate (right RSC, 
and left d23ab), frontal operculum (right FOP1 and left FOP4), and 
parietal cortex (right POS2 and right 7Pm). UD was largely associated 
with a reduced T1w/T2w ratio in these regions, except in one region of 
the anterior cingulate (left p32), and the two regions in the parietal 
cortex (right POS2 and right 7Pm), where it was associated with an 
increased T1w/T2w ratio. An additional 19 of the identified parcels play 
roles in visual, somatomotor, and auditory processing. Visual processing 
regions included extrastriate regions (right V3A, left V4t, and left MT), 
ventral stream regions (right FFC and right TE2p), and dorsal stream 
regions (left MST, right PH, left 7PC, right 7AL). Auditory processing 
regions included regions in the auditory cortex (left LBelt, right LBelt, 
left RI, and right RI) and regions implicated in language (left STSdp, left 
FOP2, and right 52). Somatomotor regions included regions implicated 
in somatosensation (right 5 m and right OP1) and a region in the pre-
motor cortex (left 6a). UD was largely associated with a reduced T1w/ 
T2w ratio in auditory and somatomotor regions, except for two auditory 
regions (right 52 and right RI) where it was associated with an increased 
T1w/T2w ratio. In contrast, participants with UD had a greater T1w/ 
T2w ratio in 6 visual regions and had a reduced T1w/T2w ratio in 3 
regions (left V4t, left FFC, and left 7AL). 

3.4. Post-hoc analyses 

3.4.1. Association of the T1w/T2w ratio with demographic and clinical 
variables 

The association of the T1w/T2w ratio in the 33 selected parcels with 
demographic and clinical variables (see Table 1) was not statistically 
significant (Supplemental Table 4). Across all participants neither sex, 
IQ, nor MOODs-SR score were correlated with cortical myelin in selected 
parcels, nor did they interact with group (HC/UD) to predict cortical 
myelin. There was evidence for associations between age and the T1w/ 
T2w ratio in two regions (p-fdr < 0.05), driven by a positive correlation 
in right LBelt, and a negative correlation in left a24pr. In individuals 
with UD, no clinical variable was correlated with the T1w/T2w ratio in 

selected parcels. However, taking antidepressants was nominally asso-
ciated (p < 0.05 uncorrected) with an increased T1w/T2w ratio in right 
OP1, left 24dv, and left p32, and a decreased T1w/T2w ratio in right 
LBelt (Supplemental Table 4, Supplemental Figure 5). 

3.4.2. Association of LDA accuracy with demographic and clinical 
variables 

Analyses found that no demographic or clinical variable was pre-
dictive of classification accuracy (Table 3). Similarly, within the UD 
participant group, no clinical or medication variable was associated with 
classification accuracy (Table 3). 

3.4.3. Exploratory analysis of classification in a participant who converted 
from HC to UD 

The LDA trained on the whole sample of 86 participants, with IQ and 
the 33 parcels identified in the previous analyses as predictors classified 
this participant as ‘UD’ both times: 12 months and 6 months before 
illness onset. 

Fig. 3. Association of diagnostic status with the T1w/T2w ratio in parcels selected by elastic net. A) The t-statistic for the association of unipolar depression (UD) 
with T1w/T2w ratio in the n = 33 selected parcels. Regions where individuals with UD had a greater average T1w/T2w ratio than HC are in red, and regions where 
HC had a greater average T1w/T2w ratio than individuals with UD are in blue. B) The percent of models in which each parcel was retained. Regions are individually 
labeled (note that FFC is not visible, as it lies on the ventral surface). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Table 3 
Association of demographic and clinical variables with classification accuracy.  

Sample Variable F p 

All IQ × Group  0.5  0.68 
All Age × Group  1.65  0.18 
All Sex × Group  2.44  0.07 
All HRSD-25 × Group  0.73  0.54 
All MOODS-SR × Group  1.13  0.34 
UD Only Antidepressants  0.17  0.69 
UD Only Age of illness onset  0.39  0.53 
UD Only Illness duration  0.43  0.52 
UD Only Lifetime episodes of depression  1.67  0.2 
UD Only Number of comorbid diagnoses  0.13  0.72 
UD Only UD Diagnosis (MDD/PDD)  2.04  0.16 
UD Only Medication load  0.46  0.5 

Joint regressions were run as Group × Variable + Group + Variable, predicting 
classification accuracy. No test was significant (all ps > 0.05). Medications other 
than antidepressants were not examined, as too few participants were taking 
them (Table 1). 
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4. Discussion 

The T1w/T2w ratio distinguished healthy control participants (HC) 
from individuals with unipolar depression (UD) with 68% accuracy. The 
elastic net regression selected regions implicated in executive function 
and reward processing, as well as those involved in visual, auditory, and 
somatomotor processing. The pattern of T1w/T2w ratio distinguishing 
UD from HC was associated with a lower T1w/T2w ratio in some regions 
and a higher T1w/T2w ratio in other regions. As the T1w/T2w ratio 
partially reflects cortical myelin, these results demonstrate that aberrant 
levels of cortical myelin may be a biomarker of depressive disorders. 

The 33 selected parcels included 13 parcels in regions important for 
executive functioning, cognitive control, and reward processing, 
including the anterior and posterior cingulate, orbitofrontal cortex, 
frontal operculum, and parietal cortex. There is abundant evidence that 
these processes are disrupted in depression (Ng et al., 2019; Snyder, 
2013). The present results converge with mounting evidence of dis-
rupted myelination (Zhang et al., 2009), thickness (Schmaal et al., 
2017), connectivity (Weiskopf et al., 2006), and activation (Ng et al., 
2019) of these regions in those with depression. In addition to regions 
traditionally reported in neuroimaging studies of depression, we found 
that parcels located along the dorsal and ventral visual pathways, so-
matosensory and auditory processing regions and regions implicated in 
language also contributed to UD vs. HC classification. While depression 
is not typically considered a disorder of dysfunctional sensory process-
ing, some studies report visual (Grange and Rydon-Grange, 2020) and 
auditory (Zweerings et al., 2019) processing deficits in depression. In 
addition, somatosensory symptoms (e.g., motor retardation) are among 
the diagnostic criteria for this disorder and have been well described 
(Simon et al., 1999). Our results add to a growing body of literature 
documenting associations of depression with altered structure (Schmaal 
et al., 2017) and functional connectivity (Chen et al., 2019; Korgaonkar 
et al., 2020) in sensory regions. Broadly, our results contribute to the 
consensus that the neurobiology of regions that play important roles in 
cognitive processes and information transfer are disrupted in depres-
sion, which may contribute to the etiology of the disorder. 

It is notable that in contrast to studies of the major white matter 
tracts, where depression is associated with lower integrity (van Velzen 
et al., 2020), we observed both a decreased and an increased T1w/T2w 
ratio in individuals with UD relative to HC. Additionally, the anterior 
cingulate, the superior parietal cortex, the retroinsular cortex, and visual 
processing regions included a combination of proximal regions with 
T1w/T2w ratio decreases and increases. While the relationship between 
the T1w/T2w ratio and functional activation or connectivity remains 
under-explored, these observations suggest that cortical myelin imbal-
ance, rather than a uniform reduction, could drive some of the observed 
functional differences in depression, such as disrupted network inte-
gration (Chen et al., 2019; Zheng et al., 2018) and patterns of both hypo- 
and hyper- connectivity (Kaiser et al., 2015; Yu et al., 2019). 

Intriguingly, while classification accuracy was bimodal, in permu-
tations participants were classified at chance (50%). This suggests that 
participants who were consistently misclassified differed from those 
who were correctly classified in their demographic or clinical features. 
However, post-hoc analyses did not reveal any associations between 
classification accuracy and demographic or clinical variables, thus 
suggesting that misclassification could reflect the presence of environ-
mental or genetic risk factors that are not captured by clinical measures. 
These factors could alter the myelin content in selected regions thus 
creating predisposition to depression at the brain level. As a preliminary 
exploration of this idea, we explored the T1w/T2w ratio in a participant 
who experienced the onset of UD during the course of the study and was 
not used in primary analyses. This participant completed two MRI scans: 
at baseline and 6 months follow-up with both time points occurring prior 
to UD onset. Remarkably, this participant was classified as UD on both 
scans, despite not yet meeting criteria for a UD diagnosis at the time of 
scan. This preliminary result suggests that the T1w/T2w ratio in frontal, 

sensorimotor and extended visual cortices may be a biological risk 
marker predictive of UD diagnosis in the future. Further longitudinal 
studies are needed to test this hypothesis. 

While the present results demonstrate that the T1w/T2w ratio is 
disrupted in UD, the cause of the disruption remains unknown. Post-hoc 
analyses suggest the T1w/T2w ratio is not correlated with medication 
use, lifetime depression severity, or illness duration. However, the T1w/ 
T2w ratio may reflect other risk factors for UD. For instance, sleep 
disturbance, which is a well-established risk factor and symptom of UD 
(Franzen and Buysse, 2008), was recently shown to correlate with 
cortical myelin in several of the same regions found in the present study, 
including the cingulate and middle temporal cortex (Toschi et al., 2020). 
Stress is also associated with reduced white matter integrity in depres-
sion (Ho et al., 2017; van Velzen et al., 2020; Ziegler et al., 2020). After 
stress, remyelination can occur (Bonnefil et al., 2019) thus resulting into 
altered patterns of myelination across the cortex (Orthmann-Murphy 
et al., 2020). This ‘remyelination’ hypothesis could potentially explain 
our observations of both decreased and increased cortical myelin in 
unipolar depression. 

Limitations of this work includes the need to replicate our findings in 
an independent sample. To partially address this limitation, our analyses 
used robust machine learning methods involving model testing using 
held-out samples. The major strength of this approach is that it helps to 
reduce model bias, which occurs when the same participants are used to 
train and test a model (Davatzikos, 2019). It has been suggested that 
model performance with nested cross-validation is close to the accuracy 
that would be achieved on fully independent data (Varma and Simon, 
2006). The second limitation concerns measurement noise due to sus-
ceptibility artifacts. Several regions with documented relevance to 
depression, including the bilateral hippocampus, entorhinal cortex, and 
posterior orbitofrontal cortex complex, were not included in the present 
analyses, as these regions showed an excess of between-person vari-
ability (see Supplemental Methods). Future research should explore the 
association of the T1w/T2w ratio in these regions with unipolar 
depression. 

In summary, the T1w/T2w ratio can distinguish participants with UD 
from HC, even when clinical and demographic variables are not 
included in analyses. Regions that were most important for this classi-
fication include several that play key roles in reward and emotion pro-
cessing as well as a host of regions important for sensory processing. This 
result highlights that the association of UD with sensory processing 
bears further investigation. Notably, UD was associated with both a 
decreased and an increased T1w/T2w ratio, suggesting that observa-
tions of reduced integrity of major white matter tracts in UD may not 
fully extend to the cortex. These results suggest that cortical myelin 
holds promise as a biomarker of unipolar depression and may be an early 
predictor of risk for this disorder. 
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Krämer, B., Gruber, O., Couvy-Duchesne, B., Rentería, M.E., Strike, L.T., Mills, N.T., 
de Zubicaray, G.I., McMahon, K.L., Medland, S.E., Martin, N.G., Gillespie, N.A., 
Wright, M.J., Hall, G.B., MacQueen, G.M., Frey, E.M., Carballedo, A., van Velzen, L. 
S., van Tol, M.J., van der Wee, N.J., Veer, I.M., Walter, H., Schnell, K., Schramm, E., 
Normann, C., Schoepf, D., Konrad, C., Zurowski, B., Nickson, T., McIntosh, A.M., 
Papmeyer, M., Whalley, H.C., Sussmann, J.E., Godlewska, B.R., Cowen, P.J., 
Fischer, F.H., Rose, M., Penninx, B.W.J.H., Thompson, P.M., Hibar, D.P., 2016. 
Subcortical brain alterations in major depressive disorder: Findings from the 
ENIGMA Major Depressive Disorder working group. Mol. Psychiatry 21 (6), 
806–812. https://doi.org/10.1038/mp.2015.69. 

Shafee, R., Buckner, R.L., Fischl, B., 2015. Gray matter myelination of 1555 human 
brains using partial volume corrected MRI images. NeuroImage 105, 473–485. 
https://doi.org/10.1016/j.neuroimage.2014.10.054. 

Shams, Z., Norris, D.G., Marques, J.P., Lundberg, P., 2019. A comparison of in vivo MRI 
based cortical myelin mapping using T1w/T2w and R1 mapping at 3T. PLoS ONE 14 
(7), e0218089. https://doi.org/10.1371/journal.pone.0218089. 

Shen, X., Reus, L.M., Cox, S.R., Adams, M.J., Liewald, D.C., Bastin, M.E., Smith, D.J., 
Deary, I.J., Whalley, H.C., McIntosh, A.M., 2017. Subcortical volume and white 
matter integrity abnormalities in major depressive disorder: Findings from UK 
Biobank imaging data. Sci. Rep. 7 (1) https://doi.org/10.1038/s41598-017-05507- 
6. 

Simon, G.E., VonKorff, M., Piccinelli, M., Fullerton, C., Ormel, J., 1999. An International 
Study of the Relation between Somatic Symptoms and Depression. N. Engl. J. Med. 
341 (18), 1329–1335. https://doi.org/10.1056/NEJM199910283411801. 

Simons, M., Nave, K.A., 2016. Oligodendrocytes: Myelination and axonal support. Cold 
Spring Harbor Perspect. Biol. 8, 1–16. https://doi.org/10.1101/cshperspect. 
a020479. 

Snyder, H.R., 2013. Major depressive disorder is associated with broad impairments on 
neuropsychological measures of executive function: A meta-analysis and review. 
Psychol. Bull. 139 (1), 81–132. https://doi.org/10.1037/a0028727. 

Stuhrmann, A., Suslow, T., Dannlowski, U., 2011. Facial emotion processing in major 
depression: A systematic review of neuroimaging findings. Biol. Mood Anxiety 
Disorders 1 (1), 10. https://doi.org/10.1186/2045-5380-1-10. 

Suslow, T., Hußlack, A., Kersting, A., Bodenschatz, C.M., 2020. Attentional biases to 
emotional information in clinical depression: A systematic and meta-analytic review 
of eye tracking findings. J. Affect. Disord. 274, 632–642. https://doi.org/10.1016/j. 
jad.2020.05.140. 

Tardif, C.L., Steele, C.J., Lampe, L., Bazin, P.L., Ragert, P., Villringer, A., Gauthier, C.J., 
2017. Investigation of the confounding effects of vasculature and metabolism on 
computational anatomy studies. NeuroImage 149, 233–243. https://doi.org/ 
10.1016/j.neuroimage.2017.01.025. 

Tham, M.W., Woon, P.S., Sum, M.Y., Lee, T.-S., Sim, K., 2011. White matter 
abnormalities in major depression: Evidence from post-mortem, neuroimaging and 
genetic studies. J. Affect. Disord. 132 (1-2), 26–36. https://doi.org/10.1016/j. 
jad.2010.09.013. 

Toschi, N., Passamonti, L., 2019. Intra-cortical myelin mediates personality differences. 
J. Pers. 87 (4), 889–902. https://doi.org/10.1111/jopy.v87.410.1111/jopy.12442. 

Toschi, N., Passamonti, L., Bellesi, M., 2020. Sleep quality relates to emotional reactivity 
via intracortical myelination. Sleep. doi:10.1093/sleep/zsaa146. 

Vabalas, A., Gowen, E., Poliakoff, E., Casson, A.J., Hernandez-Lemus, E., 2019. Machine 
learning algorithm validation with a limited sample size. PLoS ONE 14 (11), 
e0224365. https://doi.org/10.1371/journal.pone.0224365. 

van Velzen, L.S., Kelly, S., Isaev, D., Aleman, A., Aftanas, L.I., Bauer, J., Baune, B.T., 
Brak, I.V., Carballedo, A., Connolly, C.G., Couvy-Duchesne, B., Cullen, K.R., 
Danilenko, K.V., Dannlowski, U., Enneking, V., Filimonova, E., Förster, K., Frodl, T., 
Gotlib, I.H., Groenewold, N.A., Grotegerd, D., Harris, M.A., Hatton, S.N., Hawkins, E. 
L., Hickie, I.B., Ho, T.C., Jansen, A., Kircher, T., Klimes-Dougan, B., Kochunov, P., 
Krug, A., Lagopoulos, J., Lee, R., Lett, T.A., Li, M., MacMaster, F.P., Martin, N.G., 
McIntosh, A.M., McLellan, Q., Meinert, S., Nenadić, I., Osipov, E., Penninx, B.W.J.H., 
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