Skip to main content
. 2021 Aug 16;9(8):e24762. doi: 10.2196/24762

Table 3.

Comparison of performance in stroke volume estimation between the deep learning model and FloTrac algorithm.

Measure Deep learning model, mean (SD) FloTrac, mean (SD) Statistical test

Count, n P value
Error (mL)

Overall (n=56) –7.9 (20.7) –8.4 (22.1) 158725 <.001

Cardiac surgery (n=16) –1.7 (15.2) 2.7 (18.3) 65260 <.001
Liver transplantation (n=40) –9.0 (21.3) –10.3 (22.2) 93465 <.001
Absolute error (mL)

Overall (n=56) 16.5 (14.8) 18.3 (15.1) 158725 <.001

Cardiac surgery (n=16) 11.1 (10.5) 14.3 (11.8) 65260 <.001

Liver transplantation (n=40) 17.4 (15.3) 19.0 (15.4) 93465 <.001
Percentage error (%)

Overall (n=56) –4.4 (26.9) –5.6 (28.6) 158725 <.001

Cardiac surgery (n=16) 1.8 (29.9) 9.5 (34.9) 65260 <.001

Liver transplantation (n=40) –5.5 (26.2) –8.3 (26.5) 93465 <.001
Absolute percentage error (%)

Overall (n=56) 20.3 (18.3) 22.5 (18.5) 158725 <.001

Cardiac surgery (n=16) 19.3 (22.9) 25.4 (25.7) 65260 <.001

Liver transplantation (n=40) 20.4 (17.4) 22.0 (16.9) 93465 <.001