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Abstract

Purpose: We have previously proposed an intelligent automatic treatment planning (IATP) 

framework that builds a virtual treatment planner network (VTPN) to operate a treatment planning 

system (TPS) to generate high-quality radiation therapy (RT) treatment plans. While the potential 

of IATP in automating RT treatment planning has been demonstrated, its poor scalability caused 

by an almost linear growth of network size with the number of treatment planning parameters 

(TPPs) is a bottleneck, preventing its application in complicate, but clinically relevant treatment 

planning problems. The decision-making behavior of the trained network is hard to understand. 

Motivated by the decision-making process of a human planner, this study proposes a hierarchical 

IATP framework.

Methods and Materials: The hierarchical VTPN (HieVTPN) consists of three networks, 

i.e. Structure-Net, Parameter-Net, and Action-Net. When interacting with a TPS, the networks 

are employed in a sequential order in each step to decide the structure to adjust, the TPP 

to adjust for the selected structure, and the specific adjustment manner for the parameter, 

respectively. We developed an end-to-end hierarchical deep reinforcement learning (DRL) scheme 

to simultaneously train the three networks. We then evaluated the effectiveness of the proposed 

framework in the treatment planning problems for prostate cancer intensity modulated RT 

(IMRT) and stereotactic body RT (SBRT). We benchmarked the performance of our approach 

by comparing plans made by VTPN of a parallel architecture, and the human plans submitted 

for competition in the 2016 American Association of Medical Dosimetrist (AAMD)/Radiosurgery 

Society (RSS) Plan Study. We analyzed scalability of the network size with respect to the number 

of TPPs. Numerical experiments were also performed to understand the rationale of the decision­

making behaviors of the trained HieVTPN.

Results: Both HieVTPNs for prostate IMRT and SBRT were trained successfully using 10 

training patient cases and 5 validation cases. For IMRT, HieVTPN was able to generate high­

quality plans for 59 testing patient cases that were not included in training process, achieving an 
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average plan score of 8.62 (±0.83), with 9 being the maximal score. The score was comparable 

to that of the VTPN, 8.45 (±0.48). For SBRT planning, HieVTPN achieved an average plan score 

of 139.07 on five testing patient cases compared to the score of 132.21 averaged over the human 

plans summited for competition in AAMD/RSS plan study. Different from VTPN with network 

size linearly scaling with the number of TPPs, the network size of HieVTPN is almost independent 

of the number of TPPs. It was also observed that the decision-making behaviors of HieVTPN were 

understandable and generally agreed with the human experience.

Conclusions: With the scalability and explainability, the hierarchical IATP framework is more 

favorable than the previous framework in terms of handling treatment planning problems involving 

a large number of TPPs.

1. Introduction

Treatment planning is one of the most critical steps for modern cancer radiation therapy 

(RT) (Oelfke and Bortfeld, 2001; Webb, 2003). It is often performed by an experience 

human planner using a treatment planning system (TPS). For a given patient case, the 

human planner defines a set of treatment planning parameters (TPPs), based on which the 

TPS solves an optimization problem to generate a plan. Typical TPPs include weighting 

factors, dose limits, and volume constraints defined for treatment targets and organs at risk 

(OARs), and often other structures created for optimization purpose. The values of these 

parameters critically affect the resulting plan quality. Due to the patient-specific nature of 

the treatment planning process, the optimal TPP values vary from patient to patient, and 

the human planner often needs to repeatedly interact with TPS to adjust TPPs. After the 

adjustment is applied, the TPS runs the plan optimization step again to update the plan. Such 

an interaction between the human planner and the TPS is continued, until a satisfactory plan 

is generated. The whole planning process is usually time consuming and labor intensive, and 

the resulting plan quality is affected by a number of human factors, such as experience level 

of planner and available time for planning (Das et al., 2008; Nelms et al., 2012). Hence, 

fully automated treatment planning approaches to automatically generate patient-specific 

high-quality plans are strongly desired.

To date, extensive research efforts have been devoted to solving this problem, and a number 

of methods have been successfully developed, such as greedy approaches (Xing et al., 1999; 

Lu et al., 2007; Wu and Zhu, 2001; Wang et al., 2017), heuristic approaches (Yang and Xing, 

2004; Wahl et al., 2016; Yan and Yin, 2008), fuzzy inference (Yan et al., 2003a; Yan et al., 
2003b; Holdsworth et al., 2012; Holdsworth et al., 2010), and statistics-based methods (Lee 

et al., 2013; Boutilier et al., 2015; Chan et al., 2014). Recently, deep learning based methods 

(Shen et al., 2020c) have been widely applied in the context of automatic treatment planning 

(Nguyen et al., 2020; Nguyen et al., 2019; Shen et al., 2019; Fan et al., 2019; Mahmood 

et al., 2018; Shen et al., 2020b; Shen et al., 2020a; Zhang et al., 2020; Hrinivich and Lee; 

Li et al., 2020). In particular, an intelligent automatic treatment planning framework (IATP) 

(Shen et al., 2020b; Shen et al., 2020a; Shen et al., 2019) has been proposed. Within this 

framework, a virtual treatment planner network (VTPN) was built to model the intelligent 

human behaviors of interacting with the TPS in the treatment planning process. Trained via 

an end-to-end deep reinforcement learning (DRL) technique, the VTPN was able to operate 
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a TPS in lieu of a human planner to generate high-quality plans. Specifically, similar to a 

human planner, the VTPN takes a state, i.e. the dose-to-volume histogram (DVH) of a plan 

generated by the optimization engine with given TPPs, as input and determines the action 

of adjusting TPPs to improve plan quality. Such a process is repeated, until the plan quality 

reaches a satisfactory level. The feasibility of IATP has been demonstrated in exemplary 

problems of high-dose-rate (HDR) brachytherapy for cervical cancer (Shen et al., 2019) and 

intensity modulated RT (IMRT) for prostate cancer (Shen et al., 2020b).

Despite its success, there are two issues in the IATP framework. The first one is the 

scalability of VTPN. Under the current formulation, VTPN consists of a number of 

subnetworks with each being responsible for one TPP in the TPS. Such a VTPN architecture 

is feasible, when operating a TPS for relatively simple treatment planning problems with 

only a small number (e.g. ~5) of adjustable TPPs, such as those in the in-house developed 

TPSs in previous studies (Shen et al., 2019; Shen et al., 2020b). However, to handle a more 

complicated treatment planning problem in a more sophisticated TPS, such as the planning 

for head and neck cancer volumetric modulated arc therapy (VMAT) using Varian Eclipse 

TPS (Varian Medical System, Palo Alto, CA), tens of TPPs may be involved, yielding a 

~10 times of growth in the number of subnetworks in VTPN. Training such a VTPN may 

become infeasible due to the huge computation and memory requirement. The second issue 

is explainability. While it was observed that the trained network was able to decide which 

TPPs to adjust to improve plan quality, the reasons behind this behavior were still not clear. 

Understanding the reasons would help us to confidently use the developed system in clinical 

applications(Jia et al., 2020).

Motivated by the hierarchical decision-making behavior of human planner in the treatment 

planning process, in this paper, we explored the feasibility of building a hierarchical 

VTPN (HieVTPN) to address the poor scalability and explainability of VTPN model. 

We developed a novel end-to-end hierarchical DRL (HieDRL) scheme to jointly train the 

three networks. We first focused on a proof-of-principle planning problem for seven-beam 

prostate cancer IMRT planning with the conventional fractionation scheme as the testbed 

allowing comparison between HieVTPN and the VTPN to benchmark the performance. 

We will also analyze the behaviors of the trained network to interpret the decision-making 

capability. Then, we applied the HieVTPN to a more realistic planning task for prostate 

cancer stereotactic body radiation therapy (SBRT), i.e. a similar seven-beam IMRT with a 

hypofractionation scheme and higher dose in each fraction compared to the conventional 

fractionation, on an Eclipse-like in-house TPS to demonstrate its feasibility to handle 

complex clinical treatment planning tasks. To simplify the notation, in the rest of the paper 

IMRT will be used to refer the conventional fractionation scheme, while SBRT will be used 

for hypofractionation unless otherwise specified.

2. Methods and Materials

2.1 Problem overview

IATP framework (Shen et al., 2020b; Shen et al., 2020a; Shen et al., 2019) generally follows 

the typical inverse treatment planning workflow. In contrast to the conventional planning 
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process where a human planner is needed to interact with a TPS, IATP builds and applies a 

VTPN, an intelligent computer agent, to operate the TPS automatically.

In this paper, we would like to investigate the feasibility of training HieVTPN with a novel 

hierarchical architecture to perform automatic treatment planning in the IATP framework. 

We considered two example treatment planning problems, i.e. a proof-of-principle prostate 

IMRT planning and a realistic prostate SBRT planning, as testbeds. Due to the practical 

challenges interfacing the IATP framework with a commercial TPS efficiently, we developed 

two in-house TPSs for training and evaluation purposes. For the proof-of-principle prostate 

IMRT planning task, we considered exactly the same optimization engine used in (Shen et 
al., 2019; Shen et al., 2020b) to benchmark the performance of HieVTPN since it allows 

direct comparison against the previously developed VTPN of a parallel architecture. This 

optimization problem formulated for the prostate IMRT planning can be explicitly give as 

follows

min
x ≥ 0

1
2 Mx − dp −

2 + λ
2 Mx − dp +

2 + λbla
2 Mblax − τbladp +

2 + λrec
2 Mrecx −

τrecdp
+

2
,

s . t . D95%(Mx) = dp

(1)

x ≥ 0 denotes the beam fluence map to be determined, while M, Mbla, and Mrec indicates the 

dose deposition matrix for PTV, bladder, and rectum, respectively. dp denotes prescription 

dose and τbla and τrec are threshold values controlling the dose limits to bladder and rectum. 

‖ · ‖+ and ‖ · ‖− are l2 norms computed for only positive and negative elements to penalize 

on the overdose and under-dose, respectively. For a clear presentation, we name them as 

upper objective and lower objective respectively in the rest of the paper. Note that the 

treatment targets, such as the PTV, may have both upper and lower objectives in planning, 

while the OARs typically have only the upper objectives as the goal is to spare the OARs 

as much as possible. λ, λbla, and λrec are the weighting factors reflecting the priorities 

of the dosimetric structures of interest. The optimization problem in Eq. (1) consists of 

four planning objectives (two for PTV, one for bladder and one for rectum). Under such 

a formulation, this TPS involves five TPPs, i.e. the weighting factor λ, λbla, and λrec to 

penalize overdose to PTV, bladder, and rectum, and the dose limits τbla and τrec to adjust 

dose to bladder and rectum.

For the realistic prostate SBRT planning problem, we built an Eclipse-like TPS for the 

planning purpose. The inverse planning optimization implemented in this in-house TPS 

exactly followed that of the Eclipse TPS, based on the detailed documentation of plan 

optimization method in (Eclipse, 2015). More specifically, we incorporated a DVH-based 

objective function which can be explicitly given as

min
x ≥ 0

∑
i

λi
2 Mix V i − τidp +/ −

2
(2)

Mi denotes the corresponding dose deposition matrix of the i-th planning objective involved 

in planning. In addition to the weighting factors λi and dose limits τi, this optimization 

Shen et al. Page 4

Phys Med Biol. Author manuscript; available in PMC 2021 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



problem also involves volumes Vi as tunable TPPs. The impact of these TPPs to the final 

plan quality is the same as they are in the Eclipse TPS. Compared to the proof-of-principle 

IMRT case, this planning problem is more realistic and clinically relevant. It involves more 

planning objectives, and thereby more TPPs to adjust in planning process, and hence is more 

complicated from the planning point of view. Table 1 lists all the planning structures and 

objectives considered. We included in total 13 commonly used planning structures. Most 

of these structures have only one planning objective set up for plan optimization purpose 

except for the PTV (one upper and one lower objectives), bladder (two lower objectives), 

and rectum (two lower objectives). Consequently, the planning optimization problem for 

prostate SBRT involves 16 planning objectives (two lower and 14 upper) while each one of 

them is controlled by three TPPs, i.e. one for weighting factor, one for volume and one for 

dose limits, resulting in 48 TPPs in total.

Note that for both TPSs, the TPPs involved critically affect the final plan quality, and 

hence need to be fine-tuned for clinically acceptable plans. The optimization problems of 

prostate IMRT and SBRT were solved using a gradient-based optimization algorithm, which 

iteratively updates the fluence map by enforcing the gradient of the objective function to be 

close to zero in each step.

2.2 Hierarchical formulation of virtual treatment planner network

VTPN established previously (Shen et al., 2020b; Shen et al., 2020a) utilized a parallel 

architecture to determine a TPPs to adjust, see Fig. 1(a). Depending on N, the number of 

TPPs involved in the optimization problem, a number of N subnetworks was needed with 

each being dedicated to one TPP. As a consequence, the size of VTPN grew proportionally 

with N. Its practical value was hence limited by the extensive number of computations and 

load memory it may require, especially for complicated treatment planning problems in real 

patient cases solved by a commercial TPS.

In contrast to this parallel form, when a human planner operates the TPS and decides how 

to adjust TPPs, the planner in fact tackles the problem via a hierarchical decision-making 

process. More precisely, based on the observed plan generated by the TPS, the planner 

first determines which structure needs further improvement. Then among all the TPPs 

affecting this structure, one of them is chosen. Finally, the specific way of adjusting this 

TPP is determined, such as increasing or decreasing the value of this parameter. Motivated 

by such a hierarchical decision-making behavior of a human planner in the planning 

process, we proposed to build a hierarchical VTPN (HieVTPN). The detailed architecture 

of HieVTPN can be found in Fig. 1(b). It consists of three networks, i.e. Structure-Nets(d, 

s; θS), Parameter-Net P(d, s, p; θP), and Action-Net A(d, s, p, a; θA), with θS, θP, and 

θA representing their network parameters. These three networks are responsible to make 

decisions at the structure, parameter, and adjustment action levels, respectively, and are 

applied sequentially to improve the plan quality, each time when HieVTPN is interacting 

with the TPS. Specifically, S(d, a; θS) first takes d, the DVH of a plan, as input, and outputs 

the maximal accumulated future gains in plan quality associated to adjusting different 

structures for the current TPP adjustment step. Once this network is trained, the structure to 

choose for the current step can be decided by selecting the one that maximize the output, 
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i.e. s∗ = argmaxsS(d, s; θS). Then with the structure fixed, P(d, s∗, p; θP) further predicts 

the maximal accumulated future gains in plan quality corresponding to adjusting different 

parameters controlling this objective, such as dose limit and weighting factors of the selected 

structure s∗. Similarly, the parameter to be adjusted at this step is determined via p∗ = 

argmaxpP(d, s∗, p; θP). Finally, given the structure and the corresponding parameter to 

adjust, A(d, s∗, p∗, a; θA) outputs the maximal accumulated future gain in plan quality 

of applying each adjustment action. The optimal action to improve the plan quality is 

determined as a∗ = argmaxaA(d, s∗, p∗, a; θA). As such, a parameter adjustment action can 

be uniquely determined as {s∗, p∗, a∗}.

The detailed architectures of the three networks in HieVTPN are presented in Fig. 2. 

In general, each network consists of four convolutional blocks followed by three fully 

connected blocks. A convolutional block (m, n) is built with two 1D convolutional layers, 

each followed by a LeakReLU (α = 0.1) as the activation function, and a 1D Maxpooling 

layer. m and n specify the convolutional filter size and number employed in the 1D 

convolution layer, respectively. A fully connected block (k) contains a fully-connected layer 

and a LeakReLU (α = 0.1) activation with k being the number of nodes output from the fully 

connected layer. Structure-Net takes DVH of a plan as input and predicts the gain in plan 

quality associated to adjusting TPPs of each structure. Based on its output, a structure-coded 

DVH (SC-DVH) as an indicator of the selected structure will be computed and fed to 

Parameter-Net as input. The SC-DVH has the same dimensionality as the original DVH. 

The DVH of the structure selected by Structure-Net is kept exactly the same in SC-DVH, 

while DVHs of all other structures are set to be zero. Parameter-Net takes both DVH and 

SC-DVH as input to predict the gain in plan quality associated with each parameter. After 

that, a one-hot vector is generated as the indicator of the selected parameter. The entry 

corresponding to the selected parameter is set to 1 and all the rest are set to 0. This vector, 

together with DVH and SC-DVH are fed to Action-Net to predict the gain in plan quality 

associated to each parameter adjustment action.

HieVTPNs established for both IMRT and SBRT in this study consist of three networks 

regardless of the large difference in the number of TPPs involved (5 vs. 48) due to the 

hierarchical architecture employed. However, their network sizes are slightly different. More 

specifically, planning for prostate IMRT involves only three planning structures while SBRT 

handles 13. In addition, for the IMRT case, the number of TPPs is one for PTV and two 

for each of the bladder and rectum, while in SBRT, the number of TPPs is six for each 

of the PTV, bladder, and rectum (three parameters for each planning objectives and two 

planning objectives for each structure) and three for each of the rest structures (one planning 

objectives for each). The number of planning structure determines the detailed architecture 

of Structure-Net while it affects the architectures of Parameter-Net and Action-Net together 

with the number of TPPs of each planning structure. In the next section, we will provide 

more detailed description on how the numbers of planning structures and TPPs impact the 

network sizes of HieVTPN with comparison made against the previously developed VTPN 

framework.
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2.3 Scalability analysis of HieVTPN

Consider a treatment planning task with ms structures, each with mp parameters, and 

the total number of TPPs to be adjusted is N. To construct a VTPN to handle this 

treatment planning problem, the same number of subnetworks are needed with each being 

dedicated to one TPP. All the subnetworks follow a similar architecture, with the number 

of trainable network parameters in the first convolution layer and the last fully-connected 

layer dependent on ms and mp, respectively. Compared to the variations in the number 

of parameters in the first and the last layer, the growth in the number of subnetwork 

dominants the total number of network parameters in VTPN. As a consequence, its size 

grows in approximately a linear fashion with the number of TPPs involved. A huge VTPN 

is therefore needed for complicated treatment planning problems. In contrast, the number 

of networks in HieVTPN is independent of N. It always consists of three subnetworks. 

Only certain layers of Structure-Net, Parameter-Net, and Adjust-Net need to be adjusted 

accordingly. More specifically, the numbers of parameters in the first convolution layer 

and the final fully-connected layer of Structure-Net changes with ms. In Parameter-Net, 

ms determines the number of network parameters in the first convolution layer, while mp 

affects the final fully-connected layer. For Action-Net, ms affects the number of network 

parameters in the first convolution layer while mp additional neurons are added to the input 

of all the fully connected layers, affecting the number of network parameters in these layers. 

Such impacts of ms and mp to the total number of parameters in each subnetwork are 

actually negligible since the number of network parameters in majority of the layers remain 

unchanged. Compared to VTPN, the network size of HieVTPN scales much weaker with the 

changing number of TPPs. In Section 3.4, we will provide the exact numbers of network 

parameters calculated for VTPN and HieVTPN, respectively, when different numbers of 

TPPs are involved in the treatment planning problem for a direct and clear comparison.

2.4 Hierarchical Q-learning framework for HieVTPN

We employed the Q-learning framework (Watkins and Dayan, 1992) in this study to train 

HieVTPN. Specifically, we considered the following optimal action-value function:

Q*(d, C) = max
π

rl + γrl + 1 + γ2rl + 2 + ⋯ ∣ dl = d, Cl = C, π . (3)

Q∗ is a function of state, i.e. the observed DVH d, and action set C = {s, p, a}, i.e. the 

decision regarding TPP adjustment policy formulated in a hierarchical manner. dl and Cl 

stand for the state and action set at the l-th TPP adjustment step, respectively. rl is the 

reward obtained at step l, which is given by a predefined reward function related to clinical 

objectives. A positive reward is obtained, if the clinical objectives are better met by applying 

the action Cl on the state dl, and negative otherwise. The detailed definition of the reward 

function in this study will be provided in Section 2.5.1. γ ∈ [0, 1] is a discount factor used 

to emphasize more on the current reward as opposed to future rewards. π = P(C|d) denotes 

the policy of TPP adjustment: taking an action C based on the observed state d. Note that 

the optimal action-value function satisfies the well-known Bellman equation (Bellman and 

Karush, 1964), which can be expressed in the form of
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Q* dl, Cl = rl + γQ* dl + 1, Cl + 1 . (4)

The general form of the Q∗ function is unknown and hence we train HieVTPN to 

parametrize it with deep neural networks. More precisely, Structure-Net is employed to 

represent the maximal accumulated future gain in plan quality for adjusting different 

structures and therefore we require.

S d, s; θS* = max
a, p ∈ C

Q*(d, C), (5)

where θS* indicates the optimal network parameters of the fully trained Structure-Net. 

Parameter-Net outputs the maximal accumulated gain in plan quality associated to adjusting 

different TPPs with a structure given. In other words, the training goal of Parameter-Net is to 

find a set of optimal network parameters θP* , such that

P d, s, p; θP* = max
a ∈ C

Q*(d, C), (6)

Furthermore, with the structure and TPP specified, the Action-Net is set up to predict the 

maximal accumulated gain in plan quality associated to different adjustment action. In this 

regard, let θA*  represent the optimal parameters of Action-Net, we have

A d, s, p, a; θA* = Q*(d, C) . (7)

Eq. (5)–(7) explicitly describe the way of formulating HieVTPN into the Q-learning 

framework to parametrize Q∗ function on the structure, parameter, and action levels, 

respectively. It also reveals a hierarchical relationship among Structure-Net, Parameter-Net, 

and Action-Net, which can be represented in a sequential form

S d, s; θS = max
p

P d, s, p; θP = max
a, p

A d, s, p, a; θA (8)

By taking into account the property of Q∗ function characterized by Bellman equation in (4), 

we are able to combine equations (5)–(8) and reorganized them as

S dl, sl; θS* = max
p

P dl, sl, p; θP* = max
a, p

A dl, sl, p, a; θA* ,

P dl, sl, pl; θP* = max
a

A dl, sl, pl, a; θA* ,

A dl, sl, pl, al; θA* = rl + γ max
s

S dl + 1, s; θS*
(9)

This set of equations derived in (9) motivate the training scheme for HieVTPN, which will 

be introduced in the following section.
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2.5 Training HieVTPN

2.5.1. Reward function—Before going into the detailed training scheme of HieVTPN, 

we will first present the way of computing reward r reflecting the impact of TPPs adjustment 

action in plan quality for prostate cancer IMRT and SBRT, respectively. The key is to define 

a plan quality evaluation function ψ (higher is better) to quantify the plan quality, such that 

the reward function can be calculated as r = ψ(d′) − ψ(d). Such a reward explicitly measures 

the change in plan quality between the two states d to d′ before and after TPP adjustment. A 

positive reward implies improvement in plan quality, and negative otherwise.

For the prostate cancer IMRT, we followed our previous works (Shen et al., 2020b; Shen et 
al., 2020a) to use the scoring system of ProKnow (ProKnow Systems, Sanford, FL, USA) 

for prostate cancer IMRT plan as ψ to quantify plan quality. In this scoring system, the 

score of a plan is calculated as equally-weighted sum over 9 selected scores for different 

clinical criteria including DPTV(0.03cc), Vbladder(80Gy), Vbladder(75Gy), Vbladder(70Gy), 

Vbladder(65Gy), Vrectum(75Gy), Vrectum(70Gy), Vrectum(65Gy), and Vrectum(60Gy). The 

score for each criterion is computed using carefully defined piece-wise linear function, 

which can be found in Table A1 of Appendix. Consequently, the score of any plan ranges 

between 0 and 9, with a higher score indicating better plan quality.

For the prostate cancer SBRT, we incorporated the scoring system used as plan evaluation 

criteria in the ProwKnow 2016 American Association of Medical Dosimetrist (AAMD) / 

Radiosurgery Society (RSS) Plan Study, an international planning challenge for prostate 

cancer SBRT. This scoring system consists of 15 metrics to evaluate the plan quality based 

on the dose to different dosimetric structures of interest. All the metrics and the detailed 

ways to compute them have been listed in Table A2 in Appendix. Final score of a prostate 

SBRT plan is obtained by the summation of the scores from all the metrics. It falls in the 

range between 0 and 150, and the higher the score is, the better the plan quality is.

2.5.2 Hierarchical deep reinforcement learning scheme—The goal of training 

HieVTPN is to determine the values of network parameters θS, θP, and θA for Structure-Net, 

Parameter-Net, and Action-Net, respectively. According to Equations (5)–(9), the three 

networks are coupled with each other in the formulation of the proposed framework, and 

existing training schemes developed for DRL fail to handle such a scenario. To address this 

problem, we have developed a hierarchical DRL (HieDRL) scheme to split the problem 

and sequentially tackle the training of each individual network in an iterative manner. Note 

that if S(d, s; θS) is fixed, the training of A(d, s, p, a; θA) can be performed using the 

standard Q-learning scheme (Watkins and Dayan, 1992; Shen et al., 2020b). Specifically, 

with randomly initialized TPPs, an initial state d can be obtained for each training patient 

case by executing plan optimization in TPS. Then an ϵ-greedy algorithm can be employed 

to sample actions C at structure, parameter, and adjustment levels sequentially to modify 

values of TPPs in the TPS. Plan optimization will be performed again to generate a new plan 

d′. Comparing its quality score ψ(d′) with ψ(d) results in the reward r corresponding to 

applying the sampled TPP adjustment action to the plan d. A training pair, i.e. {d, d′, C, r} is 

then generated for A(d, s, p, a; θA) and stored in a training pool Ω. Repeating such a process 
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for all the training patients will produce a large number of training pairs, such that A(d, s, p, 

a; θA) can be updated by solving the problem

min
θA

∑
d, d′, C, r ∈ Ω

A d, s, p, a; θA − r − γ max
s

S d′, d; θS
2
2, (10)

which is derived based on the last equation in (9). Such an optimization problem can be 

solved via the commonly used stochastic gradient descent algorithm (LeCun et al., 1998). 

On the other hand, with A(d, s, p, a; θA) fixed, the training of S(d, s; θS) and P(d, s, p; 

θP) can be formulated as the standard supervised learning scheme. As such, the optimization 

problems for updating θS and θP can be expressed respectively as

min
θS

∑
d, C ∈ Ω

S d, s; θS − max
p, a

A d, s, p, a; θA
2
2,

min
θP

∑
d, C ∈ Ω

P d, s, p; θP − max
a

A d, s, p, a; θA
2
2 .

(11)

Similarly, we can use the stochastic gradient descent algorithm to tackle these two 

optimization problems. These three networks will be updated alternatively following the 

aforementioned strategies in the HieDRL, until convergence is established. The detailed 

algorithm has been summarized in Algorithm 1.

2.5.3 Implementation details—We followed the scheme in Algorithm 1 to perform 

training of HieVTPN for both MRT and SBRT planning. For the proof-of-principle planning 

problem of prostate IMRT, A cohort of 74 patient cases were collected for training, 

validation, and testing purposes. Among them, 10 patient cases were randomly picked for 

training, while another five patients were chosen as validation data. All the patients left 

were employed as testing data to evaluate our model. For prostate SBRT, we collected 20 

patient cases. We randomly selected 10 for training, five for validation, and the rest five for 

testing purpose. Note that we could not use the patient cases collected for IMRT planning 

for SBRT since only the contours of bladder and rectum were recorded as OARs for the 

simple proof-of-principle IMRT planning problem, while other critical structures considered 

in SBRT, such as penile bulb and neurovascular bundles, were missing. DRL automatically 

generates a huge number of training data in the ϵ-greedy process, and it was found that 10 

patients were sufficient to train a working model as demonstrated by (Shen et al., 2020b; 

Shen et al., 2020a). The maximal training episode number NE was set to 300 for IMRT and 

1,000 for SBRT treatment planning. In each episode, we started with all TPPs randomly 

set for all training cases. For each training case, a sequence of TPPs adjustment steps were 

performed following the Algorithm 1. We terminated the TPPs adjustment and moved on to 

the next patient if the number of adjustment steps reached the maximum of NT1 = 30 for 

IMRT, or NT1 = 100 for SBRT. For both IMRT and SBRT, in each step, we selected {s, p, 

a} to adjust a TPP using the ϵ-greedy algorithm. Specifically, with a probability of ϵ (initial 

ϵ =0.99), we randomly picked the structure, parameter, and adjustment action uniformly 

among all possible choices; otherwise, {s, p, a} that attained the highest output value of 

Structure-Net, Parameter-Net, and Action-Net, respectively was chosen. The probability ϵ 
decayed with a decay rate of 0.99/episode along the training process, because we gained 
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more and more confidence about the trained HieVTPN. Once {s, p, a} were fixed, the 

TPPs were adjusted accordingly and then were fed to the in-house developed TPS for plan 

optimization. DVHs of the plans before and after the TPP adjustment were used to compute 

the reward function r. The states prior to and after TPP adjustment, the chosen action, and 

the reward r computed based on the states together formed a training sample which was 

stored in the training pool Ω. For training Action-Net, the experience replay strategy was 

employed to update the network using batches of 16 randomly selected training sample 

in order to overcome the strong correlation among sequentially generated training samples 

(Mnih et al., 2015). In addition, Structure-Net and Parameter-Net were trained using states 

stored in the training pool via the standard supervised training scheme while the number of 

training steps NT2 in each episode was set to be 1,000.

The HieDRL framework was implemented using Python with TensorFlow (Abadi et al., 
2016) on a desktop workstation with eight Intel Xeon 3.5 GHz CPU processors, 32 GB 

memory and two Nvidia Quadro M4000 GPU cards.

Algorithm 1.

HieDRL algorithm to train HieVTPN.

Initialize network coefficients θS, θP, and θA;

for episode = 1, 2, …, NE

 for k = 1, 2, …, NP do

  2. Initialize TPPs

   Solve optimization problem (1)/(2) with initial TPPs for d1;

  for l = 1, 2, …, NT1 do

   3. Select an action CI = {sI, pI, aI} with ϵ-greedy:

    Case 1: with probability ϵ, select sI, pI, and aI randomly;

    Case 2: otherwise sl = argmax
s

S dl, s; θS ,

     pl = argmax
p

P dl, sl, p; θP , and

     al = argmax
a

A dl, sl, pl, a; θA ;

   4. Update TPPs using CI;

   5. Solve optimization problem (1)/(2) with updated TPPs for dI+1;

   6. Compute reward rI = Φ(dI+1) − Φ(dI);

   7. Store state-action pair {dI, CI, rI, dI+1} in training data pool Ω;

   8. Train Action-Net with experience replay:

    Randomly select N53678 training data from training data pool Ω;

    Update θA by solving the optimization problem in (10);

  end for

 end for

 for k = 1, 2, …, NT2 do

  9. Train θS and θP:

   Randomly select Nbatch states from training data pool Ω;
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   Forward evaluate Action-Net using the selected states as input:

    Compute A(d, s, p, a; θA) for all possible choices of s, p, and a;

    Compute max
p, a

A d, s, p, a; θA  and max
a

A d, s, p, a; θA ;

   Update θS and θP, respectively, by solving the optimization problems in (11)

  end for

end for

OutputθS, θP and θA.

2.6 Evaluations

For both IMRT and SBRT cases, we chose the models achieving the best performance on 

validation data and evaluated them on the corresponding testing cases. For model evaluation, 

we set all TPPs to be unity at the beginning of the treatment planning process for each case 

and used the trained HieVTPNs to operate the Eclipse-like in-house TPS. The repetitive TPP 

adjustment was continued, until one of the following three criteria was met: the plan reached 

the maximal score (9 for IMRT and 150 for SBRT), HieVTPNs decided to keep all TPPs 

unchanged, or a maximal number of adjustment steps (50 for IMRT and 150 for SBRT) was 

reached. We compared the quality of the final plans with that of the initial plans generated 

using the initial TPP values. For prostate IMRT, we also compared with the scores of the 

plans generated by VTPN of the parallel architecture trained via the standard DRL (Shen 

et al., 2020b) to benchmark the performance of HieVTPN. We didn’t try VTPN for SBRT 

since the computational demands exceed the capability of the workstation.

2.7 Understanding the decision-making behaviors of HieVTPN

In addition to evaluating the performance of HieVTPN in terms of quality of the generated 

plans, we analyzed its decision-making behaviors in the treatment planning process for 

interpretability of the trained network model. We focused on the HieVTPN established for 

the proof-of-principle prostate cancer IMRT planning task for clear presentation and easy 

understanding of the results. For each patient case in the testing dataset, we generated 500 

treatment plans using the in-house developed TPS with randomly selected TPPs values. As 

the TPPs were not purposely set to ensure plan quality, the corresponding plans under these 

set of TPPs would cover a wide range of scenarios in terms of quality. These treatment plans 

were then fed to HieVTPN one by one, and we observed the way HieVTPN determined 

to adjust TPPs based on the observed plan. The plan scores and the corresponding TPP 

adjustment actions were recorded and analyzed to understand the rationale of the decision­

making behaviors of the established HieVTPN in the treatment planning process.

3. Results

3.1 Training results

Training of HieVTPNs for prostate IMRT and SBRT were successfully performed using 

the HieDRL algorithm (Algorithm 1). In Fig. 3, we depict the rewards obtained during 

the training process, respectively. The effectiveness of the proposed training framework is 

indicated by the overall increasing trend in rewards along the training steps for both cases.
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Note that we selected the model established at the episode 288 for IMRT and episode 872 

for SBRT, as the final models (highlighted by red circle in Fig. 3), since they achieved the 

best performance on the corresponding validation datasets among all the models saved along 

training steps. For IMRT, the selected HieVTPN obtained an average plan score of 8.76 (out 

of 9) on validation dataset, while the HieVTPN chosen for SBRT achieved a score of 137.89 

(out of 150).

3.2 HieVTPN guided intelligent automatic treatment planning

We let the trained HieVTPNs for IMRT and SBRT to operate the TPS to automatically 

generate treatment plans for their corresponding training and testing patients. Using IMRT 

planning as an example, we show shows the complete planning process of HieVTPN for one 

representative case in the testing dataset in Fig. 4. The whole planning process involved 9 

steps. At the beginning of the planning process, the plan was produced by setting all TPPs 

to 1 and performed the optimization. After that, HieVTPN first decided to decrease the 

threshold values of rectum in the first step to spare more dose to the rectum. With dose to 

rectum significantly decreased, it then focused on adjusting PTV weighting factor in the next 

5 steps to improve PTV coverages. In step 7, τbladder controlling the dose limit to balder, was 

adjusted, which successfully decreased the bladder dose. Afterwards, HieVTPN continued to 

increasing weighting factor of PTV to further enhance the PTV homogeneity, until in step 

10 it decided to keep all TPPs unchanged which concluded the planning process. In this 

process, the ProKnow score of the generated plan was increased from 2 to 8.35, which was 

close to the maximal score of 9.

In Table 2, we report the average performance of HieVTPN in prostate IMRT and SBRT 

planning, and compare the achieved average plan scores with those of the initial plans. 

For IMRT planning, we also compared the performance with VTPN established using the 

standard DRL approach (Shen et al., 2020b). For IMRT planning, both HieVTPN and VTPN 

were able to automatically operate the TPS to generate high-quality plans, as evidenced by 

the high average plan quality scores of 8.62 and 8.43, respectively on testing data while in 

SBRT planning, the HieVTPN successfully improved the plan score from 95.56 of the initial 

plans to 139.07.

To further benchmark the performance, for IMRT treatment planning, we asked a human 

planner with a good understanding of the optimization engine and extensive experience in 

treatment planning to plan for the testing cases. The human planner was able to achieve 

an average plan score of ~8.5, which is comparable to the performance of HieVTPN, and 

VTPN. On average, the planning time needed for each patient using HieVTPN was around 

3 min, similar to that of VTPN, while it took around the same time for human planner to 

complete the planning process.

For SBRT case, we compared the achieved plan score with that reported in the results of 

the 2016 AAMD/RSS Plan Study for prostate SBRT (Nelms and Mobile). The proposed 

HieVTPN was able to outperform the averaged plan score of 132.21. Note that these plans 

were made by experienced human planners and were submitted for competition in the 

planning challenge. This further illustrates the effectiveness of the prosed framework. The 

average planning time needed for HieVTPN to perform SBRT planning is ~8 min. Note 

Shen et al. Page 13

Phys Med Biol. Author manuscript; available in PMC 2021 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that most of the planning time for both IMRT and SBRT was spent on plan optimization, 

as determining the way to adjust TPPs only required forward evaluation of the established 

network, which can be achieved in almost real-time.

3.3 Decision-making behaviors of HieVTPN for prostate cancer IMRT

Using IMRT planning as an example, we studied what the trained HieVTPN decided to 

perform in response to a plan. As such, we randomly generated a number of plans by 

feeding random TPPs to the TPS and then observed how the HieVTPN responded to the 

plans. The results are shown in Fig. 5. In Fig. 5(a), we plot the frequency of actions that 

adjust PTV-related parameters or OAR-related parameters in response to observed scores in 

the plan. Note that there are multiple adjustable parameters for PTV or each of the OARs. 

When counting the frequency, we did not further differentiate among parameters for the 

PTV or each OAR. Among all the scores for different dosimetric measures for PTV and 

OARs, all the scores for the OARs (bladder and rectum) add up to maximally 8, which 

hence sets the range of the OAR score. The PTV score ranges from 0 to 1. If we ignore 

the color of the bars in both Fig. 5(a) and (b), the value of the vertical axis of each bar 

shows how many among the randomly generated plans obtained the plan scores specified 

by the coordinates of the other two axis. In general, the value of Z-axis is quite uniform 

with across the different plan scores mainly due to the random TPPs employed in the plan 

generation process. This actually highlights the need of careful TPPs adjustment, since 

random TPPs may end up to a treatment plan with arbitrary quality. It has a large chance to 

generate unacceptable plans with low plan scores. The key information in Fig. 5 is encoded 

by the color of the bars. Note that the color on the top of each bar shows the dominant 

actions taken by the HieVTPN by observing those plans receiving the specific plan scores, 

while the ratio between the two colors in each bar reflects the ratio of the actions taken 

by HieVTPN. In Fig. 5(a), it was apparent that HieVTPN tended to adjust the TPPs of 

OARs for plans with poor OAR sparing. Once the OAR score reached a reasonable level 

~5, it focused on tuning the parameter of PTV. Fig 5(b) shows the frequency of decisions 

made by HieVTPN in responses to bladder and rectum scores, when it decided to adjust 

TPPs for these OARs. In general, HieVTPN tended to pick the one receiving the lower 

score among the two organs. There is visually a diagonal line in the rectum-bladder score 

plane. On the side corresponding to higher bladder scores, HieVTPN preferred to adjust 

rectum TPPs to improve scores for the rectum, and bladder TPPs for the other side. These 

behaviors indicated that the HieVTPN was trained to make reasonable decisions to improve 

plan quality.

We further investigated the rationale of HieVTPN’s decision-making behaviors of in terms 

of choosing between adjusting dose limit and weighting factors. Fig. 6 gives the histograms 

showing the frequencies of HieVTPN taking different actions for each TPPs with respect to 

the score of the structure. The strategy learnt by the HieVTPN appeared to be in general 

agreement with a planner’s intuition. For instance, when the PTV or OAR receives a low 

score, HieVTPN increased the weighting factor of the structure to enhance its importance 

in the objective function, as indicated by the blue bars in in Fig. 6(a), (c1) and (c2). On the 

other hand, when a high score had already been achieved for the structure, e.g. a score close 

to 1 for PTV or close to 4 for each of the OARs, HieVTPN decided to reduce the weights. 
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As for adjusting the dose limits to an OARs, as indicated by Fig. 6(b1) and (b2), when 

better OAR sparing was desired, the decision of reducing the dose limit was made. When the 

scores for OARs were high enough, it allowed increasing the dose limits to sacrifice dose to 

the OAR to improve on other dosimetric metrics.

3.4 Comparisons of network parameter numbers of VTPN and HieVTPN

In this section, we compare the number of learnable network parameters in HieVTPN 

architecture with that of VTPN constructed in (Shen et al., 2020b; Shen et al., 2020a). 

In Table 3, we considered not only the scenarios of the proposed study which involved 

5 (highlighted using *) in IMRT planning and 48 TPPs (highlighted using **) in SBRT 

planning, but also three others when 3, 30, and 60 TPPs involved in different treatment 

planning problems. We found that the network sizes of VTPN and HieVTPN are actually 

very close to each other, when there are only three TPPs involved. This is expected since 

in this case both networks consist of three subnetworks. To handle the IMRT planning, 

building VTPN needs ~66.6% more network parameters than constructing HieVTPN, while 

the number of network parameters needed by VTPN for SBRT planning is ~16 times of that 

needed by HieVTPN. In general, as the number of TPPs increases, the number of network 

parameters in VTPN grows in a linear fashion with the number of TPPs, while the network 

size of HieVTPN does not have any substantial changes. For instance, with the number 

of TPPs increasing from three in IMRT to 48 in SBRT, the network size of VTPN grows 

16 times, while there is only a very small increment of ~0.1% in the number of trainable 

parameters in HieVTPN. This clearly illustrates the advantage of HieVTPN in scalability.

4. Discussion

Due to the hierarchical formulation, HieVTPN possesses a much better scalability compared 

to VTPN. The overall model size of HieVTPN was not significantly affected by the 

number of TPPs in a TPS, as opposed to the VTPN where the size of network grows 

approximately linearly with the number of TPPs. In this regard, the proposed HieVTPN has 

a great potential to accomplish the intelligent automatic treatment planning task for more 

complicated, but clinically relevant treatment planning problems in modern RT, which may 

often involve tens of TPPs to adjust.

In addition to numerical experiments performed for the purpose of demonstrating the 

performance of HieVTPN, we also studied the rationale of the decision-making behaviors 

of the established HieVTPN. By feeding a large number of treatment plans optimized with 

random TPPs into HieVTPN, we investigated the correlations between the plan scores and 

the decisions made by HieVTPN. Based on the results, it appeared that the behaviors learnt 

by the HieVTPN were in general agreement with the human experience. In most of the 

cases, it selected appropriate parameters and actions to address the issues in the treatment 

plan, and hence improve the plan quality. We would like to emphasize that these behaviors 

were spontaneously discovered by the HieVTPN in the HieDRL training process. Such 

reasonable decision-making behaviors gained us confidence in the successful deployment of 

HieVTPN framework for real clinical applications in future.
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The current study has several limitations. First, for the purpose of demonstrating the 

feasibility of building HieVTPN via the proposed HieDRL, this paper used simple reward 

functions derived from the ProKnow scoring systems for prostate cancer IMRT and SBRT, 

respectively. They may not fully represent the planning objectives used in real clinical 

practice. Model criteria of more clinical relevance, e.g. physician’s judgement, as reward 

function is necessary for building a clinically translatable HieVTPN. One possible solution 

is to incorporate the inverse deep reinforcement learning (Wulfmeier et al., 2015) to jointly 

learn the physicians judgement and TPS operating policy simultaneously in a unified 

framework. Second, we considered a relatively simple treatment planning problem of 

prostate cancer IMRT using an in-house TPS. To bring clinical impact, it is needed to 

develop intelligent automatic treatment planning systems to handle planning problems of 

more complicated treatment sites using commercially available TPSs. Future work will be 

performed along this direction. In addition, the proposed framework dose not incorporate 

any roll-back mechanism, which is common in human practice. This is mainly because that 

our formulation trains HieVTPN would pick the action that maximizes the total gain in 

plan quality in all subsequent TPPs adjustment steps, as we focused on the overall future 

reward with a discount rate (0.99 in our experiments) in the Q-learning process, see Eq. (3). 

However, from a practical point of view, a roll-back mechanism can be valuable as it allows 

to return to the previous plan if a serial of TPPs adjustment actions taken by HieVTPN 

fail to improve, or continuously degrade the plan quality. Effective integration of roll-back 

mechanism into the proposed framework will be an interesting future direction to explore.

5. Conclusion

This paper introduced a new hierarchical formulation of VTPN, i.e. HieVTPN, for the 

purpose of having a scalable network structure in the IATP framework to automatically 

operate a TPS for high-quality treatment planning. Compared to the conventional VTPN, 

which grows linearly with the number of TPPs involved in treatment planning problem, 

the network size of HieVTPN does not change significantly as the TPP number increases. 

In this regard, HieVTPN is more suitable to handle complicate clinical treatment planning 

tasks. Using prostate cancer IMRT and SBRT treatment planning as the testbeds, we showed 

that HieVTPNs can be successfully trained to automatically generate high-quality treatment 

plans by operating an in-house developed Eclipse-like TPS. The resulting IMRT plans were 

comparable to those made by conventional VTPN of parallel architecture, while for SBRT 

planning, the average plan score achieved by HieVTPN slightly outperformed that of the 

human plans submitted for 2016 AAMD\RSS Plan Study for prostate SBRT. The success of 

HieVTPN in these two planning tasks illustrated the effectiveness of the proposed scheme.
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Appendix

Table A1.

Criteria in the ProKnow scoring system for prostate IMRT plan quality evaluation.

Quantity of interest Scoring Criterion

PTV D[0.03cc] (Gy)
(DPTV [0.03cc])

Score =

1, if DPTV[0.03cc] < 84.4 Gy
DPTV[0.03cc] − 87.12Gy

84.4Gy − 87.12Gy , if 84.4Gy ≤ DPTV[0.03cc] ≤ 87.12Gy

0, if DPTV[0.03cc] > 87.12Gy

Bladder V[80Gy] (%)
[Vbla[80Gy] ]

Score =

1, if Vbla[80Gy] < 15%
Bladder Vbla[80Gy] − 20%

15% − 20% , if 15% ≤ Vbla[80Gy] ≤ 20%

0, if Vbla[80Gy] > 20%

Bladder V[75Gy] (%)
(Vbla[75Gy])

Score =

1, if Vbla[75Gy] < 25%
Vbla[75Gy] − 30%

25% − 30% , if 25% ≤ Vbla[75Gy] ≤ 30%

0, if Vbla[75Gy] > 30%

Bladder V[70Gy] (%)
( Vbla[70Gy])

Score =

1, if V bla [70Gy] < 35%
Vbla [70Gy] − 40%

35% − 40% , if 35% ≤ Vbla [70Gy] ≤ 40%

0, if Vbla [70Gy] > 40%

Bladder V[65Gy] (%)
(Vbla[65Gy])

Score =

1, if Vbla [65Gy] < 50%
Vbla [65Gy] − 55%

50% − 55% , if 50% ≤ Vbla [65Gy ] ≤ 55%

0, if Vbla [65Gy] > 55%

Rectum V[75Gy] (%)
(Vrec[75Gy])

Score =

1, if Vrec [75Gy ] < 15%
Vrec [75Gy] − 20%

15% − 20% , if 15% ≤ Vrec [75Gy] ≤ 20%

0, if Vrec [75Gy] > 20%

Rectum V[70Gy] (%)
(Vrec[70Gy] )

Score =

1, if Vrec[70Gy] < 25%
Vrec[70Gy] − 30%

25% − 30% , if 25% ≤ Vrec[70Gy] ≤ 30%

0, if Vrec[70Gy] > 30%

Rectum V[65Gy] (%)
(Vrec[65Gy])

Score =

1, if Vrec [65Gy] < 35%
Vrec [65Gy] − 40%

35% − 40% , if 35% ≤ Vrec [65Gy] ≤ 40%

0, if Vrec [65Gy] > 40%

Rectum V[60Gy] (%)
(Vrec[60Gy])

Score =

1, if Vrec[60Gy] < 50%
Vrec [60Gy] − 55%

50% − 55% , if 50% ≤ Vrec[60Gy] ≤ 55%

0, if Vrec[60Gy] > 55%
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Table A2.

Criteria in the 2016 AAMD/RSS Plan Study for prostate SBRT.

Quantity of 
interest Scoring Criterion

PTV 
V[36.25Gy] 

(%))
(VPTV[36.25Gy])

Score =

35, if VPTV [36.25Gy] ≥ 95%
5 × VPTV[36.25Gy] − 93%

95% − 93% + 30, if 93% ≤ VPTV[36.25Gy] < 95%
30 × VPTV[36.25Gy] − 90%

93% − 90% , if 90% ≤ VPTV[36.25Gy] < 93%

0, if VPTV[36.25Gy] < 90%

Prostate 
V[40Gy] (%)
(Vpros[40Gy])

Score =

2 × Vpros [40Gy] − 95%
100% − 95% + 18, if Vpros[40Gy] ≥ 95%

18 × Vpros[40Gy] − 90%
95% − 90% , if 90% ≤ Vpros[40Gy] < 95%

0, if Vpros[40Gy] < 90%

PTV D[0.03cc] 
(Gy)

(DPTV[0.03cc])
Score =

10, if DPTV[0.03cc] ≥ 36.25Gy
2 × DPTV[0.03cc] − 32.625Gy

36.25Gy − 32.625Gy + 8, if 32.625Gy ≤ DPTV[0.03cc] < 36.25 Gy
8 × DPTV[0.03cc] − 29Gy

32.625Gy − 29Gy , if 29Gy ≤ DDPTV[0.03cc] < 32.625Gy

0, if DPTV[0.03cc] < 29Gy

Conformation 
number (Conf) Score =

10 × (Conf − 0.6)
1 − 0.6 , if Conf ≥ 0.6

0, if Conf < 0.6

Rectum 
V[36Gy] (cc))
(Vrec[36Gy])

Score =

15 −
1.5 × Vrec [36Gy]

1cc , if Vrec [36Gy] ≤ 1cc

13.5 −
13.5 × Vrec [366y] − 1cc

1cc , if 1cc < Vrec [36Gy] ≤ 2cc

0, if Vrec [36Gy] > 2cc

Bladder 
V[37Gy] (cc) )
(Vbla[37Gy])

Score =

15 −
1.5 × Vbla [37Gy]

3cc , if Vbla [37Gy] ≤ 3cc

13.5 −
13.5 × Vbla[37Gy] − 3cc

5cc − 3cc , if 3cc < Vrec[36Gy] ≤ 5cc

0, if Vbla[37Gy] > 5cc

Rectum D[40%] 
(Gy)

(Drec [40%])
Score =

12, if Drec[40%] ≤ 10Gy

12 −
2 × Drec[40%] − 10Gy

15Gy − 10Gy , if 10Gy < Drec[40%] ≤ 15Gy

10 −
10 × Drec[40%] − 15Gy

20Gy − 15Gy , if 15Gy < Drec[40%] ≤ 20Gy

0, if Drec[40%] > 20Gy

Urethra D[20%] 
(Gy)

(Dure [20%])
Score =

10, if Dure [20%] ≤ 40Gy

10 −
10 × Dure [20%] − 40Gy

44Gy − 40Gy , if 40Gy < Dure [20%] ≤ 44Gy

0, if Dure [20%] > 44Gy
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Quantity of 
interest Scoring Criterion

Bowel D[1cc] 
(Gy)

(Dbow[1cc])

Score =
5 × 30Gy − Dbow [1cc]

30Gy , if Dbow [1cc] ≤ 30Gy

0, if Dbow [1cc] > 30Gy

Penile bulb 
D[0.1cc] (Gy)
(DPB[0.1cc]) Score =

3, if DPB[0.1cc] ≤ 10Gy

3 −
3 × DPB[0.1cc] − 10Gy

29.5Gy − 10Gy , if 10Gy < DPB[0.1cc] ≤ 29.5Gy

0, if DPB[0.1cc] > 29.5Gy

Neurovascular 
Bundles D[50%] 

(Gy)
(DNB[50%])

Score =

3, if DNB[50%] ≤ 37.5Gy

3 −
3 × DNB[50%] − 37.5Gy

40Gy − 37.5Gy , if 37.5Gy < DNB[50%] ≤ 40Gy

0, if DNB[50%] > 40Gy

Right femoral 
head D[max] 

(Gy)
(DRFH[max])

Score =

3, if DRFH[max] ≤ 10Gy

3 −
0.3 × DRFH[max] − 10Gy

14Gy − 10Gy , if 10Gy < DRFH[max] ≤ 14Gy

2.7 −
2.7 × DRFH[max] − 14Gy

27.5Gy − 14Gy , if 14Gy < DRFH[max] ≤ 27.5Gy

0, if DRFH[max] > 27.5Gy

Left femoral 
head D[max] 

(Gy)
(DLFH [max])

score =

3, if DLFH[max] ≤ 10Gy

3 −
0.3 × DLFH[max] − 10Gy

14Gy − 10Gy , if 10Gy < DLFH[max] ≤ 14Gy

2.7 −
2.7 × DLFH[max] − 14Gy

27.5Gy − 14Gy , if 14Gy < DLFH[max] ≤ 27.5Gy

0, if DLFH[max] > 27.5Gy

Skin D[max] 
(Gy)

(Dskin [max])
Score =

3, if Dskin [max] ≤ 10Gy

3 −
3 × Dskin [max] − 10Gy

30Gy − 10Gy , if 10Gy < Dskin [max] ≤ 30Gy

0, if Dskin[max] > 30Gy

Testes D[max] 
(Gy)

(Dtes[max]) Score =
3 × 2Gy − Dtes[max]

30Gy , if Dtes[max] ≤ 2Gy

0, if Dtes[max] > 2Gy
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Figure 1. 
Architecture comparison between VTPN and HieVTPN. (a) VTPN. (b) HieVTPN.
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Figure 2. 
Network structure of the Structure-Net, Parameter-Net, and Action-Net.
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Figure 3. 
Rewards of HieVTPNs for prostate IMRT (a) and SBRT (b) along training episodes. Red 

circles highlight the reward of the selected final model established at episode 288 for IMRT 

and 872 for SBRT.
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Figure 4. 
(a) Evolution of DVHs and dose distributions (Top: initial and steps 1–4; Bottom: steps 5 to 

9). (b) Evolution of TPP values. (c) Evolution of ProKnow scores in the planning process of 

a testing patient case.
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Figure 5. 
Histograms of decisions made by HieVTPN at structure level. (a) Adjusting PTV parameters 

vs. adjusting OAR parameters. (b) Adjusting bladder parameters vs. adjusting rectum 

parameters.
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Figure 6. 
Histograms of decisions made by HieVTPN on action level. Blue histograms: increase 

parameter values. Red: decrease parameter values. (a) Histograms of the PTV weighting 

factor. (b) Histograms of the bladder dose limit (b1) and weighting factor (b2), respectively. 

(c) Histograms of the rectum dose limit (c1) and weighting factor (c2), respectively.
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Table 1.

The planning structures and objectives set for prostate cancer SBRT treatment planning.

Planning structure PTV Prostate Ring structure Bladder Rectum Urethra Penile bulb

Upper objective 1 0 1 2 2 1 1

Lower objective 1 1 0 0 0 0 0

Planning structure Bowel Left femoral head Right femoral head Testes Neurovascular bundle Skin Total

Upper objective 1 1 1 1 1 1 14

Lower objective 0 0 0 0 0 0 2
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Table 2.

Average scores (±standard deviation) of plans generated by HieVTPNs.

Plan score

Initial HieVTPN VTPN

Prostate IMRT

Training 4.04 (±2.36) 8.47 (±0.90) 8.46 (±0.50)

Testing 4.97 (±2.02) 8.62 (±0.83) 8.45 (±0.48)

Overall 4.84 (±2.07) 8.60 (±0.84) 8.45 (±0.48)

Prostate SBRT

Training 97.43(±10.62) 139.88((±3.19) -

Testing 95.56(±9.74) 139.07(±3.35) -

Overall 96.81(±10.02) 139.61(±3.15) -
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Table 3.

Comparisons of total numbers of network parameters in VTPN and HieVTPN when different numbers of 

TPPs are involved in a treatment planning task

TPPs # 3 5* 30 48** 60

Network Parameter #
VTPN 9,022,473 15,037,455 90,243,930 144,390,288 180,583,860

HieVT PN 9,024,506 9,024,670 9,028,560 9,033,411 9,036,645

(* and ** indicate the TPPs setup for prostate IMRT and SBRT, respectively).
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