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SUMMARY

Single-cell technologies are emerging as powerful tools for cancer research. These technologies 

characterize the molecular state of each cell within a tumor, enabling new exploration of 

tumor heterogeneity, microenvironment cell type composition, and cell state transitions that 

impact therapeutic response — particularly in the context of immunotherapy. Analyzing clinical 

samples has great promise for precision medicine but is technically challenging. Successfully 

identifying predictors of response requires well-coordinated, multi-disciplinary teams to ensure 

adequate sample processing for high-quality data generation, and computational analysis for 

data interpretation. Here, we review current approaches to sample processing and computational 

analysis regarding their application to translational cancer immunotherapy research.

Introduction

Single-cell analysis has become a widespread tool used in cancer research to characterize 

the cellular and molecular composition of tumors (Marx, 2021; Sandberg, 2014; Zhu et al., 
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2020). Technologies to profile single-cells are currently able to measure tumor heterogeneity 

across molecular levels, including DNA (Navin and Hicks, 2011), RNA (Tang et al., 2009), 

protein (Bandura et al., 2009), and epigenetics (Buenrostro et al., 2015). Whereas bulk 

technologies are limited to an averaged signal often representing the molecular states of 

the most abundant cell populations, single-cell approaches resolve the cellular composition 

of the tumor microenvironment (TME). This characterization holds particular promise for 

the field of tumor immunology, as comprehensive profiling can determine the cell types 

and pathways involved in anti-tumor responses and immune evasion. In addition, recent 

spatial transcriptomics and proteomics approaches preserve tissue architecture, enabling the 

analysis of cell-to-cell interactions and cellular neighborhoods reflective of the interactions 

in immune responses (Schürch et al., 2020). Samples derived from immunotherapy clinical 

trials can benefit from using single-cell-based technologies to capture the nuances of 

therapeutic immune cell responses in cancer. The development of immune checkpoint 

inhibitors (ICIs) enhanced cancer therapy by providing clinical benefits to a portion of 

previously incurable cancers; however, most patients do not respond to ICIs (Ribas and 

Wolchok, 2018). Understanding the complex immune cell composition and molecular 

pathways associated with cell state transitions during these therapies can potentially identify 

mechanistic predictors of response and elucidate new druggable targets to overcome 

immunotherapy resistance (Giladi and Amit, 2018).

Current single-cell technologies span a wide array of rapidly advancing methodologies, 

with the most common examples for tumor immunotherapy including single-cell RNA­

sequencing (scRNA-seq) for transcriptional profiling (Tang et al., 2009), mass cytometry 

(CyTOF) for proteomics profiling (Bandura et al., 2009), and spatial molecular profiling 

(Giesen et al., 2014; Marx, 2021; Ståhl et al., 2016) (Figure 1). Each of these 

technologies provides a high-dimensional molecular profile for individual cells, which can 

be computationally sorted into distinct cell populations. These technologies profile more 

than the canonical cell type markers that are commonly measured in multi-parameter flow 

cytometry experiments, for example. The high-dimensional nature of these approaches 

can enable more refined annotation of cell types, inference of cellular state transitions, 

and association of molecular pathways. These characterizations require complementary 

computational techniques to determine the pathways that drive the behavior of each distinct 

cell type and infer the intra- and inter-cellular interactions associated with transitions in 

cell states. The inference of these pathways mirrors the current clinical research in tumor 

immunology, where precision medicine strategies are being developed to use combination 

therapeutics to rewire the tumor microenvironment to enable immunotherapy sensitization 

(Gohil et al., 2021).

While single-cell approaches hold promise for precision immunotherapy, the selection of 

profiling technology and computational analysis methods influence the features that can be 

characterized from tumor samples. In the case of clinical samples, single-cell study designs 

must balance cost, requirements for sample preservation, labor-intensity of the protocols, 

and information content. This review describes technology and analysis approaches for 

single-cell analysis in clinical cancer research, with a focus on tumor immunology. 

Specifically, we describe the steps involved in single-cell analysis from sample collection to 

computational analysis, including recent spatial transcriptomics and proteomics approaches. 
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We cover the capabilities of different approaches and discuss additional factors that can 

bias the biological interpretation of single-cell data. Overall, this review aims to highlight 

the experimental and computational best practices, using benchmarked technologies and 

computational tools, in order to ensure that clinical data captures biologically relevant and 

reproducible findings.

Single-cell and spatial technologies for immune profiling

Single-cell and spatial approaches can be used to examine tumors in great detail, 

characterizing cell type composition and tumor heterogeneity by gene or protein expression 

(Berglund et al., 2018; Patel et al., 2014). These approaches have already been implemented 

to profile the tumor microenvironment of multiple cancer types, including leukemia, 

melanoma, breast, lung, and gastrointestinal, among others.

Here, we summarize benchmarked technologies currently employed for high-dimensional 

characterization of tumors in the context of immunotherapy research (Table 1).

Single-cell proteomics

Fluorescent-based flow cytometry is currently the gold-standard method for cell type 

identification. It remains the most commonly used single-cell method for cell type 

annotation and sorting in immunology (Gadalla et al., 2019). Although this is a reproducible 

approach, fluorescent flow cytometry is limited by the number of features that can be 

simultaneously analyzed (up to 30 markers) due to the inherent limitations related to 

channel spillover and equipment throughput. Thus, a high-parameter study often requires 

complex compensation strategies or splitting panels into subpanels with redundancy of 

key markers to obtain high-dimensional single-cell proteomic characterization. Sampling 

strategies designed to increase the dimensionality of fluorescence-based characterization 

ultimately require larger numbers of cells, limiting application for patient biopsies, which 

have a limited number of cells (Gadalla et al., 2019).

As an alternative to fluorescent-based flow cytometry, CyTOF detects metal intensities 

from antibodies conjugated with isotopically enriched heavy-metal reporter ions. This 

design enables CyTOF to profile up to 50 markers simultaneously (Bendall et al., 2011). 

Based on the mass range of the reporter ions used when conjugating the antibody panel, 

CyTOF methods can theoretically be developed to detect >100 markers in the same cell 

to enable high-dimensional molecular profiling. Another advantage of the reliance on heavy­

metal conjugated antibodies over fluorescence-based technologies is the fact that they are 

rarely present in biological samples, eliminating analytical challenges resulting from false 

signals from intrinsic cellular background (Bandura et al., 2009; Bendall et al., 2011). As 

antibody-based technologies, both CyTOF and fluorescence-based cytometry can evaluate 

protein isoforms (e.g., CD45RO) and post-translational modifications (e.g., phosphorylation) 

(Bendall et al., 2011). CyTOF profiling relies on antibody panels that are ultimately limited 

by the number of isotopically enriched metals that can be reliably conjugated and is 

highly dependent on antibody quality. This reliance on pre-selected antibody panels restricts 

analysis to anticipated cell types, which limits the discovery of new cell types and molecular 

changes due to immunotherapy treatment (Hartmann and Bendall, 2020). Still, the metal 

Davis-Marcisak et al. Page 3

Cancer Cell. Author manuscript; available in PMC 2022 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reporters in CyTOF are robust to freezing and thawing, and to a variety of fixation protocols, 

making this technology versatile in application and storage needs when compared to other 

single-cell methods (Leipold et al., 2018; Sumatoh et al., 2017).

The multi-parameter profiling of CyTOF makes it a powerful technique to understand 

variations in immune cell composition before and after immunotherapy (Figure 1A). This 

technology has been used to model changes in the distribution of cell type abundances in 

preclinical models (Gubin et al., 2018) and peripheral blood mononuclear cells (PBMCs) 

of immunotherapy treated tumors (Krieg et al., 2018; Subrahmanyam et al., 2018; Wu et 

al., 2020a). Notably, application of a panel of 40 markers for analysis of PBMCs from 

melanoma patients before anti-CTLA-4 or anti-PD-1 therapies identified that PBMCs from 

anti-CTLA-4 responders were enriched for naive and effector T cells when compared to 

non-responders. Among anti-PD-1 responders, central memory and effector memory T cells 

were more frequent, suggesting that different cell type compositions are potential predictors 

of response to distinct immunotherapies (Subrahmanyam et al., 2018).

Single-cell transcriptomics

Single-cell sequencing approaches perform genome-wide profiling of individual cells. As 

a result, they are not limited by pre-determined markers and can be applied to globally 

characterize transcriptional profiles (scRNA-seq) (Tang et al., 2009), mutational burden 

(single-cell DNA-sequencing) (Navin et al., 2011), and chromatin states (single-cell ATAC­

sequencing) (Buenrostro et al., 2015). Of these technologies, gene expression profiling with 

scRNA-seq is the most commonly used to identify cell types in the tumor microenvironment. 

In contrast to previous studies with bulk RNA-seq data, scRNA-seq profiling does not 

require experimental protocols to sort cells before sequencing (Avila Cobos et al., 2020). 

The comprehensive, whole-transcriptome profiling of cell types with scRNA-seq allows for 

inference of cell state transitions, differential gene expression, and functional oncogenic and 

immunologic pathway analysis (Lim et al., 2020; Trapnell, 2015) (Figure 1B). Such analyses 

can be performed from scRNA-seq data directly using computational approaches.

Different technologies have been developed for scRNA-seq and the choice of which 

platform to apply depends on the biological questions that need to be addressed. SMART­

seq allows for single-cell analysis of full-transcripts of hundreds of cells that are FACS 

sorted into microtiter plates for library preparations (Ramsköld et al., 2012). Massively 

Parallel RNA Single-Cell Sequencing (MARS-seq) also requires cell sorting and sequencing 

is restricted to the 3’ end of the transcript. MARS-seq introduced transcript tagging with 

cell-specific barcodes and a unique molecular identifier (UMI) that allows sequencing 

counts to be assigned to the respective gene (Islam et al., 2014). Fluidigm C1 became 

an attractive option as its microfluidic platform automated cell capture and increased the 

number of cells profiled from a few hundred cells to nearly a thousand cells (Xin et 

al., 2016). This microfluidic platform allows full transcript sequencing or 3’ sequencing. 

The development of droplet-based methods such as inDrop (Klein et al., 2015), Drop-seq 

(Macosko et al., 2015) and the widely used 10X Genomics platform (Zheng et al., 2017b) 

increased the scalability of single-cell profiling. Droplet-based approaches allow thousands 

of single-cells to be sequenced from an individual sample. In these methods, cells are 
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captured and encapsulated in gel emulsion beads, inside which barcoding and UMI tagging 

occur. A limitation of these platforms is that sequencing will only capture the 3’ or 5’ 

ends of the transcripts. Still, the barcoding strategies of UMI-based approaches enable the 

adaptation to single-cell multi-omics profiling across numerous molecular scales (Lee et al., 

2020). Concurrent profiling of protein and RNA with CITE-seq (Stoeckius et al., 2017) as 

well as T and B cell receptor (TCR/BCR) sequencing and RNA (Goldstein et al., 2019; Tu et 

al., 2019) are particularly applicable to tumor immunology.

All scRNA-seq technologies can be used to characterize the cellular composition of tumors. 

Both the study cohort and underlying biological question should determine which platform 

to select for analysis. Methods covering full-transcripts (SMART-seq and Fluidigm C1) are 

ideal for identifying rare gene variants and splicing isoforms at a trade-off of profiling a 

relatively small number of cells. Therefore, these full-transcript technologies are ideally 

suited for high-resolution characterization of rare cell populations. UMI-based methods have 

higher cellular resolution, but lower molecular resolution and are subject to signal dropout 

that can result in failed detection of genes. Still, the high-dimensional cellular profiling 

makes these UMI-based technologies more suitable than full-transcript counterparts to 

annotate the diverse cell types in the tumor microenvironment and measure gene expression 

changes between treatment conditions (See et al., 2018).

Numerous scRNA-seq studies have examined tumor heterogeneity and identified new cell 

types or functional subtypes that are a result of tumor progression (Azizi et al., 2018; 

Bernard et al., 2019; Davidson et al., 2020; Guo et al., 2018; Li et al., 2017; Ma et al., 2019; 

Patel et al., 2014; Peng et al., 2019; Puram et al., 2017; Tirosh et al., 2016; Zhao et al., 

2020). Since tumor heterogeneity is crucial to understand tumor evolution and anti-tumor 

immune responses, scRNA-seq has been extensively applied to tumor-infiltrating leukocytes 

(TILs) in order to identify the immunosuppressive and effector cell types that populate 

different tumors and to associate cell types with specific transcriptional signatures to 

understand immune modulation (Azizi et al., 2018; Guo et al., 2018; Peng et al., 2019; Savas 

et al., 2018; Tirosh et al., 2016; Yost et al., 2019; Zheng et al., 2017a). ScRNA-seq analysis 

has also been used to uncover the mechanisms driving resistance to immunotherapy (Gubin 

et al., 2018; Jerby-Arnon et al., 2018; Sade-Feldman et al., 2018). For example, Gubin et 

al. performed both CyTOF and scRNA-seq profiling of tumors from a preclinical sarcoma 

model to assess the cellular composition and functional changes induced by different ICIs 

(anti-PD-1, anti-CTLA4, and the combination) (Gubin et al., 2018). The combined use of 

scRNA-seq and CyTOF allowed cross-validation of cell type abundances associated with ICI 

response in different data modalities. The measurement of additional molecular parameters 

through scRNA-seq enabled de novo discovery of cell state transitions conserved between 

mouse and human tumors in data reanalysis by Davis-Marcisak et al., which included a 

subset of activated NK cells associated with anti-CTLA4 response (Davis-Marcisak et al., 

2020).

Spatial analysis platforms

Single-cell approaches like CyTOF and scRNA-seq that are widely applied to characterize 

tumors rely on the profiling of dissociated tumor specimens, which results in the loss of 
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the spatial organization of cells within a sample. New technologies that maintain the spatial 

organization of cells are essential to infer cell-to-cell interactions within the TME. Thus, 

in recent years spatial proteomics and transcriptomics analysis are emerging as powerful 

tools to characterize the spatial distribution of cell types within a tumor. These technologies 

allow for direct measurement of spatial co-localization of cells, which is often associated 

with inter-cellular interactions. The emerging high-molecular coverage of these technologies 

enables further inference of the cellular and molecular pathways as well as cell-state 

transitions associated with interactions between cells (Ji et al., 2020).

Chromogenic immunohistochemistry (IHC) has been the gold-standard approach for clinical 

spatial proteomics profiling (Ramos-Vara and Miller, 2014). However, it has limited 

multiplexing capacity (4 markers), which represents a challenge for research into the 

comprehensive cellular composition of the TME. The development of fluorescent IHC 

increased the number of proteins that could be interrogated at the same time (8 markers), 

but similar to fluorescent-based flow cytometry the overlap between wavelengths limits the 

isolation of large numbers of proteins (Gorris et al., 2018; Viratham Pulsawatdi et al., 2020). 

Sequential IHC techniques were developed to profile up to 12 proteins simultaneously 

and then can be stripped to allow for restaining, which increases the molecular resolution 

(Tsujikawa et al., 2017), but the number of markers is still limited by the quality of the 

tissue after multiple cycles of antibody stripping which ultimately limits the resolution 

of these technologies. Recent advances have led to the development of protein multiplex 

technologies that allow the mapping of roughly 50 markers in the same section. Image mass 

cytometry (IMC) (Giesen et al., 2014), multiplexed ion beam imaging (MIBI) (Angelo et 

al., 2014), and cyclic imaging detection (CODEX, CyCIF, and MxIF) (Gerdes et al., 2013; 

Goltsev et al., 2018; Lin et al., 2015) are approaches that can measure protein levels of up 

to 50 markers at the same time and provide the spatial distribution of the signal as well as 

information on which cells are in contact with each other (cell neighbors) (Figure 1C).

High-dimensional spatial proteomics technologies have been applied to characterize cellular 

interactions in melanoma (Yan et al., 2019), breast (Jackson et al., 2020; Keren et al., 

2018), colorectal (Schürch et al., 2020), cutaneous squamous cell carcinoma (Ji et al., 2020), 

Hodgkin lymphoma (Aoki et al., 2020), liver (Ho et al., 2020), and lung tumors (Xiang et 

al., 2020). In the context of immunotherapy treatment, Ho et al. leveraged IMC to identify 

cellular neighborhoods containing B cells, helper T cells, and CD68+CD163− myeloid cells 

suggestive of an immune response in an immunotherapy responsive liver tumor (Ho et al., 

2020). In the case of immunotherapy treated melanoma, Jerby-Arnon et al. (Jerby-Arnon et 

al., 2018) used t-CyCIF to demonstrate that tumor cells can express markers that decrease 

T cell infiltration, creating immune cold cell neighborhoods that are detectable prior to 

immunotherapy initiation.

Similar to the comparison between CyTOF and scRNA-seq, spatial transcriptional (ST) 

profiling provides higher molecular resolution than spatial proteomics technologies and are 

reviewed in detail by Maniatis et al. 2021 (Maniatis et al., 2021). Approaches such as Slide­

seq and the 10X Genomics Visium platform enable whole-transcriptome characterization 

within spots on a slide that provide near single-cell resolution in fresh frozen samples 

(Figure 1D). These technologies use specially designed slides spotted with DNA-barcoded 
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beads (Slide-seq) (Rodriques et al., 2019) or oligo-dT/UMI tags (10X Genomics) (Islam et 

al., 2014) that will capture the tissue RNA on the slide. The barcoded spots are around 50 to 

100um in size, allowing 2 to 10 cells to be captured in each spot, and the sequencing counts 

will refer to the population of cells mapped to the slide spots. Computational deconvolution 

methods to estimate the molecular profile of single-cells from each spot are currently an 

active area of research. Even though the technology lacks single-cell resolution, it is still 

possible to identify cellular neighborhoods and the cell types frequently interacting within 

such niches directly from the expression profiles of the spots (Moncada et al., 2020) (Figure 

1D).

The development of high-dimensional RNA in-situ hybridization technologies led to single­

cell resolution ST analysis with near genome-wide capabilities. Although these in-situ 

approaches do not involve transcript sequencing, their ability to detect thousands of 

transcripts in tissues allows their classification as ST platforms (Marx, 2021). Lubeck et al. 

(Lubeck et al., 2014) developed SeqFISH that uses sequential hybridization and fluorescent 

signal detection for single-cell in situ RNA measurement of a few hundred pre-selected 

genes. The improved SeqFISH+ (Eng et al., 2019) allows for profiling up to 10,000 genes 

nearing the resolution of the whole transcriptome but still requires prior selection of the 

genes. Another in situ technique that provides accurate spatial single-cell resolution with 

genome-wide coverage is MERFISH (Xia et al., 2019). MERFISH requires multiple steps 

of hybridization and imaging, resulting in extensive experimental labor depending on the 

number of genes to be profiled (Xia et al., 2019). Emerging multi-omics technologies, such 

as DBit-seq allow for concurrent proteomics and transcriptomics spatial molecular profiling, 

merging the strengths of both spatial transcriptomics and spatial proteomics for cellular 

characterization (Liu et al., 2020).

Tumor sample processing for single-cell profiling in clinical research

Although single-cell profiling has spread rapidly in tumor immunology, the intensive sample 

processing required limits application to clinical specimens. Notably, the majority of non­

spatial single-cell technologies, such as scRNA-seq and CyTOF, require viably dissociated 

cells for profiling (Lafzi et al., 2018) (Figure 1A and B). The most commonly used methods 

for sample dissociation apply enzymatic-based digestion and heated incubation. The sample 

storage prior to dissociation, type of enzyme, and time of incubation all impact the single­

cell profiling and must be optimized carefully for each tumor type (Lafzi et al., 2018). 

Digested samples must consist of single-cells upon microscopy examination and accurate 

characterization of the molecular states can only be achieved for live cells, with viability 

greater than 70%. Nonetheless, dead cells can be filtered as part of preprocessing after 

analysis, allowing for lower cellular viability in the case of assays with high-throughput 

cellular characterization such as CyTOF. The requirement of viable cells for dissociation 

poses a further barrier for the analysis of samples that are most typically preserved non­

viably, such as biopsies. In a clinical environment, maintaining cell viability requires rapid 

sample acquisition from the surgical or clinical team, pathological assessment, transportation 

to the lab, tumor dissociation, sample resuspension, and sequencing library preparation. 

Thus, a highly coordinated routine is required to obtain, process, and preserve samples 

rapidly enough to maintain cellular viability — a challenging process for staff limited 
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groups and for multi-site clinical trials. An additional challenge posed by the need for this 

immediate profiling is that all single-cell technologies are subject to technical artifacts that 

arise from processing samples at different times, in distinct profiling batches, or by different 

technicians. In clinical research, biospecimens necessarily arise at the time of treatment 

making it impossible to control for technical artifacts in experimental design in cohort 

studies or time-course profiling during treatment. These batch effects can be overcome 

by optimizing preservation protocols so that samples can be processed simultaneously or 

including a control sample in each batch that can be used to correct for technical artifacts 

computationally. Alternative strategies such as flash freezing for nuclei isolation and single­

nuclei RNA sequencing (snRNA-seq) have been shown to compare to scRNA-seq and are 

emerging as alternatives for single-cell analysis of cryopreserved samples that can overcome 

some of these limitations (Denisenko et al., 2020; Slyper et al., 2020).

Spatial molecular profiling relies on slide-based technologies that retain the cellular 

architecture, without requiring tumor dissociation. Requirements for sample preservation 

and preparation in spatial proteomic assays depend on the technology. Spatial proteomics 

can be performed for both frozen and formalin-fixed paraffin-embedded (FFPE) samples 

(Figure 1C). Most current spatial transcriptomics approaches rely on frozen samples, with 

approaches to use FFPE samples under development (Gracia Villacampa et al., 2020) 

(Figure 1D). The ability to profile FFPE preserved samples enables clinical research on 

samples processed for long term storage.

Computational pipelines for single-cell and spatial analysis

The high-dimensional nature of single-cell data makes computational pipelines a critical 

component for obtaining cellular and molecular interpretation. Analysis methods are 

advancing in step with new technologies, providing a wide range of pipelines to choose 

from. These diverse analysis methods fall under several main classifications that together 

enable biological interpretation (Figure 2). First, the single-cell data from all platforms 

must be preprocessed from raw outputs into estimates of the molecular expression for 

each cell while removing poor quality cells. Subsequently, the data are clustered and 

visualized with marker genes for annotation of cell types in distinct clusters. Next, 

differential expression analysis can estimate changes in molecular markers among and 

within cell types between treatment groups. For single-cell transcriptomics, the increased 

number of molecular markers allows for in-depth analysis of cell state transitions and intra­

cellular gene regulatory networks. Single-cell network inference algorithms also include 

inter-cellular interactions, relying on indirect inference based on ligand-receptor pairs 

(Browaeys et al., 2020; Cherry et al., 2020; Efremova et al., 2020). Finally, spatial molecular 

analysis algorithms utilize additional spatial statistics and neighborhood analysis for cellular 

co-localization that can provide more direct evidence of inter-cellular interactions (Dries et 

al., 2019; Luecken and Theis, 2019; Van Gassen et al., 2015).

While commercial software for single-cell analysis exists, the majority of analysis 

approaches are implemented in free, open-source software. To ensure broad adoption, this 

software is often built upon bioinformatics ecosystems such as the R/Bioconductor project 

that provide community standards and peer-review (Amezquita et al., 2020) or community 
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curated pipelines in R (ie., Seurat, Monocle, and Giotto) (Butler et al., 2018; Cao et al., 

2019; Dries et al., 2019; Hao et al., 2020; McInnes et al., 2018; Qiu et al., 2017; Satija 

et al., 2015; Stuart et al., 2019; Trapnell et al., 2014) and Python (ie., Scanpy) (Wolf et 

al., 2018). Implementing these analysis pipelines can require extensive compute resources 

and computer programming experience. To make these pipelines more generally accessible, 

platforms such as Galaxy (Tekman et al., 2020) and GenePattern Notebook (Reich et al., 

2017) provide these methods in interactive, user-friendly interfaces for single-cell analysis 

with direct access to cloud computing. Further improvements in creating user-friendly 

databases, such as the developing CellxGene platform (Megill et al., 2021), remain an active 

area of development for the single-cell community.

Pre-processing and batch correction

The first step of single-cell and spatial data analysis is pre-processing the raw data output 

from each technology into measurements of protein or transcript abundances for each cell 

or spatial spot in the respective sample (Figure 2A). All downstream analyses rely on these 

data summaries, making preprocessing critical to the accuracy of the resulting findings. The 

pre-processing approaches depend on machine-specific data outputs and biases, requiring 

techniques that are tailored to each technology

Single-cell proteomics technologies typically output FCS files, following the standards of 

lower throughput flow cytometry experiments. Whereas these FCS files are the final output 

of CyTOF, in spatial proteomics (ie., IMC, CODEX) the data are obtained as images. 

Subsequently, a segmentation step is used to determine cellular boundaries prior to protein 

quantification and exported into the FCS file formats. The downstream analyses of FCS 

files require additional primary analysis steps to obtain protein abundances for each cell: 

bead-based normalization to standardize the intensities for each signal, de-barcoding to 

isolate the cells for each experiment in a single batch if multiplexed, and in some cases, 

compensation to account for spill-over of signal between channels (Nowicka et al., 2017). 

Altogether, this pipeline provides an estimate of normalized antibody intensities for each cell 

that can be carried forward to subsequent analysis of cell types.

Most single-cell transcriptomics technologies are sequencing-based and provide FASTQ 

files containing short reads. The preprocessing of FASTQ files involves alignment to the 

human transcriptome and quantification of reads for each transcript or UMI, depending 

on the technology. Some software also performs quality control while preprocessing the 

raw data (Gao et al., 2020). These alignment and preprocessing steps return a matrix 

containing barcodes specific to each cell captured and the counts for detected transcripts. 

Whereas single-cell proteomics relies on control beads to normalize the data, single-cell 

transcriptomics leverages the higher-dimensional nature of the data to derive a distribution 

for data normalization to correct for the overall differences in read depth for each cell 

(Hafemeister and Satija, 2019). In normalizing single-cell data, it is important to note that 

a value of zero read counts means either that a gene is not expressed in a cell or that 

it is randomly not detected among the sequencing short reads. Imputation methods were 

developed to estimate missing expression values and well suited to gene-level visualization. 

However, these methods can introduce false positives into the data, potentially introducing 

Davis-Marcisak et al. Page 9

Cancer Cell. Author manuscript; available in PMC 2022 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



statistical biases if they are used for downstream analysis (Hou et al., 2020). Another step in 

pre-processing scRNA-seq is ensuring that barcodes refer to a unique cell and not to more 

than one cell that was captured in the same droplet (doublet) or to empty droplets (no cell). 

Those barcodes must be detected and filtered prior to analysis (Luecken and Theis, 2019). 

Likewise, dead cells quantified through quantifying the fraction of mitochondrial transcript 

counts relative to the total transcript counts must also be filtered for accurate analysis (Ilicic 

et al., 2016).

Spatial technologies based on imaging require an initial cell segmentation step to isolate the 

cell boundaries in which protein or RNA abundances are estimated. Segmentation tools are 

under rapid development for both spatial proteomics and spatial transcriptomics, building 

upon frameworks developed for microscopy (Caicedo et al., 2017). After segmentation, 

many of the same pre-processing and analysis methods for single-cell technologies can 

then be applied directly to estimates of molecular abundances. Sequencing-based, spot-level 

spatial transcriptomics technologies rely on alignment and quantification of the short reads 

associated with the barcode for each spot. These transcriptional profiles yield a semi-bulk 

estimate for all the cells captured in an individual spot. Spot-based deconvolution processes 

are required to estimate the transcriptional profile at single-cell resolution (Elosua-Bayes et 

al., 2021).

Normalization procedures are being developed to correct for discrepancies in molecular 

abundances or signal variation to ensure that cells obtained from a single processing batch 

(CyTOF) or library (scRNA-seq) in single-cell assays are comparable. Nonetheless, different 

experimental covariates can introduce unwanted bias, or batch effects, into the estimated 

molecular profiles from each data modality. Batch effects can arise due to differences in 

incubation periods during dissociation, handling personnel, reagent lots, or timing of sample 

processing. Batch effects are pervasive in high-throughput datasets and have been long 

recognized in previous generations of bulk technologies (Leek et al., 2010). Technical noise 

is amplified in the case of single-cell technologies, requiring even greater attention to study 

design and batch correction methods to remove these technical artifacts (Hicks et al., 2018). 

The choice of normalization and batch correction methods can have a more substantial 

impact on the experimental results than the choice of downstream method for differential 

expression, making it a critical step in single-cell analysis pipelines (Bullard et al., 2010). 

Experimental designs that ensure each batch shares cells from the same biological condition 

allow remaining batch effects to be corrected computationally. Several batch correction 

tools have been designed to remove technical artifacts in the low-dimensional embeddings 

used to visualize single-cell data. Others correct the data itself by either leveraging the 

correlation structures between genes to preserve only biological variation or explicitly 

incorporating the batch as a covariate in the model. Batch-aware analysis pipelines should 

utilize batch correction techniques to standardize the data visualization and then model batch 

as a covariate for downstream differential expression analyses (Tran et al., 2020).

Visualization of data through low dimensional embeddings

Single-cell and spatial data pre-processing, filtering, and normalization methods yield high 

dimensional matrices representing an abundance of molecular species (proteins or transcripts 
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as rows) by cells (columns). In the case of spatial datasets, the tissue position is added as an 

additional layer to these complex matrices and is used for visualization purposes. The high 

dimensionality of the matrices limits the direct application of standard data visualization 

techniques that often rely on 2- or 3-dimensional plots. Typically, the number of markers 

measured with these technologies is higher than the number of distinct biological processes 

(e.g., cell types, cell state transitions, etc) captured. These features introduce correlations 

between the molecular species measured, which can be captured through a smaller number 

of features than the total number of markers in the data, enabling the use of dimensionality 

reduction techniques for visualization and analysis (Cleary et al., 2017; Stein-O’Brien et al., 

2019; Wagner et al., 2016).

The most commonly used dimension reduction techniques for single-cell data, and also 

for spatial datasets, are t-distributed stochastic neighbor embedding (tSNE) and uniform 

manifold approximation and embedding (UMAP) (Figure 2B). Dimensional reduction 

techniques are the first step in analysis to enable visual inspection and data interpretation. 

Briefly, these methods transform high-dimensional data into a lower dimension embedding 

for visualization. In the resulting plot, each point represents a single-cell that is plotted using 

a computational method that ensures the distance between cells along the coordinate axes 

corresponds to the distance they would have from one another if computed for the entire 

molecular profile. In computing these distances, UMAP balances the global structure of 

more distant points, whereas the balance between preserving the distance of nearby points 

and more distant clusters is a tunable parameter in t-SNE (Becht et al., 2018; van der Maaten 

and Hinton, 2008).

Both t-SNE and UMAP are well suited to visualizing clusters for distinct cell types within 

the data. Other manifold learning approaches, such as PHATE, have been designed with 

additional constraints to ensure that the embeddings not only model clusters but also 

preserve continuous transitions between cell states (Moon et al., 2019). Overall, these 

embeddings provide a visualization tool to explore the variation and structure of the data but 

require further analysis methods to infer biological insights from the representations. Most 

translational analyses select a single embedding, typically UMAP, that best distinguishes 

cell types and cell states in the tumor microenvironment. This embedding is used to anchor 

the visualization of results from subsequent analysis, coloring cells based on cell type 

annotations or expression values for genes or proteins that significantly change due to 

treatment. In spatial single-cell analysis, after applying the same dimensionality techniques, 

these low-dimensional visualizations are often paralleled by visualization of the selected 

features directly on the tissue image.

Annotation of cell types in the tumor microenvironment

Accurate cell type identification in scRNA-seq provides the first step to inferring changes in 

cell proportions between samples and from perturbations such as therapies. Gating strategies 

used to identify cell types in flow cytometry can also be applied to the proteins or genes 

in single-cell assays. However, gating approaches fail to realize the potential of the high­

throughput profiling to comprehensively identify cell types present in the data, characterize 

cellular heterogeneity, and discover new cell types. Mirroring the mathematical assumptions 
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of t-SNE and UMAP, cells of the same cell type can be expected to have similar gene 

expression profiles (Becht et al., 2018; van der Maaten and Hinton, 2008). Thus, clustering 

algorithms are effective tools for cell type identification (Figure 2B). The large scale of 

single-cell data can require specialized implementations of clustering algorithms to ensure 

that these algorithms can run quickly, without requiring extensive computing resources. 

Many clustering algorithms employed for single-cell analysis leverage tools from social 

network analysis to identify groups of cells with similar molecular profiles and to mitigate 

noise from rare cells in the analysis (Blondel et al., 2008; Van Gassen et al., 2015; Xu 

and Su, 2015). Genes or proteins that are uniquely expressed in each cluster serve as 

marker genes that can be used to annotate the cell types associated with those clusters. 

These cell type definitions and labels will depend on the number of clusters used for 

analysis. Determining this optimal number of clusters remains an open question. Indeed, 

the hierarchical nature of cell types (e.g., subclassification of lymphoid cells into B cells, T 

cells, and NK cells, and subsequent subclassification of CD8+ and CD4+ T cells) suggests 

that different dimensions will capture different granularity of cell type delineation, reflected 

in emerging methods for ensemble-based clustering (Mohammadi et al., 2020; Way et al., 

2020). Therefore, standard practice for cell type assignment currently relies on an iterative 

process of clustering cells at multiple dimensions and assessing the expression of marker 

genes for known immunological and stromal populations in the resident tissue type. To avoid 

the manual nature of this approach, several methods have emerged to leverage reference cell 

databases to infer identities of individual cells or clusters (Huang et al., 2020). By using 

curated signatures, cell type annotation becomes robust and reproducible across studies. 

However, these signature-based methods will not identify cell types that were not previously 

included in the signatures and the non-annotated cluster of cells will have to be manually 

verified and annotated.

As reference atlases of cell types emerge for tumors through projects such as the Human 

Tumor Atlas Network (Rozenblatt-Rosen et al., 2020), the first waves of annotation will 

rely heavily on prior biological knowledge for classifying cell types. However, as new 

relationships between cell types are discovered new tools will be necessary to help 

characterize novel biology and approaches to distinguish stable cell types from cell state 

transitions (e.g., between activated and exhausted T cells) remains an open area of research 

for single-cell analysis (Trapnell, 2015). The common lineages of tumor cells with their 

normal counterpart can make them difficult to identify through marker genes or clustering 

analysis alone. In order to distinguish cancer cells from normal cells in scRNA-seq, copy 

number variation (CNV) analysis is a robust approach that detects large chromosomal 

variations (gains and losses of large DNA segments) by examining the gene expression 

distribution along chromosomes. These methods use RNA expression levels to infer DNA 

copy number at a given genomic region, which can separate cells with extensive CNV 

alterations, such as cancer cells, from diploid cells (Fan et al., 2018; Gao et al., 2021; 

Patel et al., 2014; Tickle et al., 2019). In order to perform CNV inference, it is important 

to use methods designed to scale with the size of data being used. Early approaches for 

CNV inference (Fan et al., 2018; Patel et al., 2014) were developed using first-generation 

scRNA-seq technologies (Fluidigm C1, SMART-seq) (Ramsköld et al., 2012; Xin et al., 

2016), which have lower cell throughput than the more recent high-throughput technologies 
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(inDrop, Drop-seq, 10X Genomics platform) (Klein et al., 2015; Macosko et al., 2015; 

Zheng et al., 2017b). The development of computational tools with improved speed and 

accuracy for large-scale datasets with sparse molecular coverage remains a critical area of 

research, with new approaches, such as CopyKAT, starting to emerge that are compatible 

with widely used high-throughput platforms (Gao et al., 2021).

Analysis of cell-type dependent molecular changes

After cell type identification is performed, functional changes from perturbations such as 

treatment can be determined through differential expression analysis comparing treatment 

conditions within each cell type (Figure 2C). Briefly, these analysis methods compare the 

distribution of expression values for each protein or gene between treatment groups for the 

subset of cells annotated as a given cell type. The optimal statistical test for this differential 

expression analysis remains an open question, although approaches based upon negative 

binomial tests are emerging as providing the best model of the distribution of the molecular 

abundances of both scRNA-seq (Hafemeister and Satija, 2019; Risso et al., 2018) and 

CyTOF data (Crowell et al., 2020; Nowicka et al., 2017). Standard pathway analysis tools 

can then be applied to determine the molecular pathways that were altered based upon the 

results of these differential expression analyses (Irizarry et al., 2009; Subramanian et al., 

2005).

In patients with the same cancer type, tumor heterogeneity can contribute to dramatic 

differences in therapeutic outcomes. Thus, characterization of cellular heterogeneity within 

the tumor microenvironment is necessary to gain a deeper understanding of tumor 

progression and treatment. Metrics to assess differences in heterogeneity between sample 

groups detect molecular variability across overall transcriptional profiles (Azizi et al., 2018) 

or at the pathway level (Davis-Marcisak et al., 2019; Fan et al., 2016) within individual cell 

types. Immune cell populations within tumors can also be highly heterogeneous, making it 

valuable to use these methods to determine the heterogeneity among these cells as well.

Whereas differential expression analysis can infer molecular changes from cells of a 

pre-specified cell type, changes in molecular pathways and state transitions may occur 

for multiple cell types simultaneously resulting in incomplete identification through these 

analysis approaches. In contrast, non-negative matrix factorization (NMF) approaches seek 

potentially overlapping, but low-dimensional patterns that contribute additively to the 

sources of variation in the data. As a result, they capture patterns that may co-occur, 

better modeling hierarchies in cellular lineages. Each of the patterns learned from matrix 

factorization analysis can represent a distinct biological process, which can be interpreted 

biologically through the gene weights of the corresponding features (Stein-O’Brien et al., 

2018, 2019; Zhu et al., 2017). For example, NMF approach was used to identify NK cell 

activation in anti-CTLA4 response in our re-analysis of the scRNA-seq data from Gubin 

et al. (Davis-Marcisak et al., 2020; Gubin et al., 2018). The gene signatures from these 

NMF approaches are often robust across multiple datasets, allowing for transfer learning 

approaches to identify the gene signatures associated with these inferred cell states in new 

datasets (Stein-O’Brien et al., 2019). This approach has been leveraged for cross-species 

analysis relating pre-clinical and clinical models (Davis-Marcisak et al., 2020), and indeed 
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transfer learning is at the core of many supervised signature-based cellular annotations 

leveraging single-cell atlases. New non-linear approaches can also learn molecular changes 

from perturbations independent of cell type annotations (Burkhardt et al., 2021).

Trajectory inference and pseudotemporal ordering for cell state transitions

The heterogeneous nature of single-cell data allows us to observe not only the diverse 

cell types in the sample but also a range of molecular states within each cell type. While 

scRNA-seq data represents a single snapshot of the overall sample, it can still contain 

individual cells that correspond to a broad range of molecular states (Ji and Ji, 2016). 

Trajectory inference methods computationally order the individual cells along a biological 

process according to their molecular states (Figure 2B) (Qiu et al., 2017; Setty et al., 2016; 

Shin et al., 2015). Many trajectory inference methods also assign a “pseudotime” value to 

each cell that represents its relative position along the trajectory. This process allows us to 

observe gene expression dynamics and identify cell states on a continuum along biological 

processes more directly than the inferences of cell state transitions from NMF methods. 

Numerous trajectory inference methods have been developed in recent years, and they differ 

on the basis of their underlying algorithms, required prior information, and the expected 

topology (e.g., cyclic, linear, bifurcating) of the output trajectories. Although some recent 

methods (Qiu et al., 2017) also infer the topology of the trajectory, most methods order 

cells along an assumed topology (Setty et al., 2016; Shin et al., 2015). Thus, the accuracy 

of the inferred trajectories is dependent on the choice of appropriate analysis method for 

the dataset and its associated biological process (Saelens et al., 2019). Since cancer datasets 

contain a heterogeneous mix of cell types, trajectory inference methods cannot be directly 

applied to the data. Instead, the common approach is to isolate certain cell types (Savas et 

al., 2018) and perform trajectory inference only with respect to these cell types.

The determination of cellular state in these analyses relies on successful trajectory inference. 

The key challenge for successful trajectory inference is its dependence on the embedding 

from techniques such as UMAP. As a result, they only follow cell state transitions in cells 

if the shape of that embedding matches the topology of the trajectory. Other dimension 

reduction approaches that explicitly model cell state transitions could be better suited for 

this inference. For example, RNA velocity (La Manno et al., 2018) uses the spliced and 

unspliced mRNAs to calculate a high-dimensional vector representing the time-derivative 

of the gene expression state of each cell in the dataset. RNA velocity has recently been 

generalized to model gene-specific kinetics (Bergen et al., 2020) and cellular transport 

mechanisms for spatial transcriptomics data (Xia et al., 2019). Estimates from RNA velocity 

can be used for more detailed visualization of the kinetic state of each cell using directional 

arrows in the low-dimensional embeddings. The length and direction of these arrows 

correspond to the high dimensional RNA velocity vector of the cell. scMomentum (Soto 

et al., 2020) incorporates RNA velocity estimates computed by scVelo for predicting cell­

type-specific directed gene regulatory networks. For every cell-type-specific network, an 

energy landscape is generated, where a cell’s energy represents its differentiation potential. 

Extending the concept of RNA velocity, the first and second-order kinetics of protein 

translation in single-cell multi-omics datasets can be estimated using protein velocity and 

acceleration (Gorin et al., 2020). Whereas the unspliced mRNA level of a cell is said 
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to represent its future spliced mRNA levels, the current protein expression in a cell can 

represent the past spliced mRNA levels. The combination of protein and RNA velocity can 

be visualized as a curve calculated from the three points corresponding to past, present, and 

future values of the spliced mRNA which represent the kinetics of the cell state. Overall, 

the trajectory inference or velocity analyses are relevant for identifying cell state dynamics 

and predicting cell fates from the analyses of a single “snapshot” in time, with potential to 

estimate the evolution of tumor and immune cells during cancer immunotherapy.

Inferring intra- and intercellular interaction networks from single-cell and spatial 
technologies

Gene regulatory network (GRN) inference is a key step to understand the interactions 

between genes within and between cells, allowing for inference of the biological processes 

underlying molecular regulation (Figure 2E). Numerous GRN inference methods have been 

developed in single-cell data with the goal of learning the structure of gene networks from 

data directly. Many approaches have been adapted from techniques that were originally 

developed for bulk transcriptomics analysis, which quantify network structure based upon 

the correlation between pairs of genes (Langfelder and Horvath, 2008) or use machine 

learning methods to determine which genes can modify expression the profile of one another 

(Huynh-Thu and Sanguinetti, 2015; Huynh-Thu et al., 2010). Newer methods have extended 

these approaches to specifically model the heterogeneity of single-cell data (Chan et al., 

2017), including explicit extensions for time-course data (Papili Gao et al., 2018). Notably, 

the temporal ordering of cells by trajectory inference methods enables further inference 

of GRNs that can use the relative timing of gene expression changes to infer which gene 

controls the expression of another based on which is expressed first (Deshpande et al., 2019; 

Matsumoto et al., 2017; Specht and Li, 2017).

Whereas data-driven methods for GRN analysis infer intra-cellular signaling networks, 

regulatory processes may also occur between cells as through paracrine signaling or direct 

cell-to-cell interactions. Consider the case of interactions between dendritic cells (DCs) 

and T cells as an example of interacting cell types during immune response. DCs are 

antigen presenting cells that stimulate the clonal expansion and cytotoxic function of T 

cells (Wculek et al., 2020). To estimate these interactions from scRNA-seq data, a number 

of approaches attempt to infer intercellular interactions by identifying co-expressed ligand­

receptor pairs (Cherry et al., 2020; Efremova et al., 2020; Kumar et al., 2018) between 

cell types. The incomplete ability of transcriptional data to model receptor activation 

and the noisy nature of single-cell data pose limitations to the inference of inter-cellular 

signaling networks from single-cell data alone. Spatial molecular technologies provide a 

promising source of information to enhance these estimates by modeling inter-cellular 

interactions more directly through observations of cellular co-localization. To that end, 

recently developed methods (Li et al., 2020; Yuan and Bar-Joseph, 2020) use spatial 

transcriptomic data to identify spatially informed GRNs and intercellular signaling genes. 

Other interpretations of networks include spatially proximal or interacting cell types to 

recognize pairs of cells that have a higher likelihood of colocalization and spatially informed 

identification of co-expressed ligand-receptor pairs (Dries et al., 2019). Thus, it is possible 

to infer the interactions between DC and T cells from single-cell data through ligand 
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receptor network methods, while the direct visualization of cellular colocalization from 

spatial datasets can confirm such interactions.

Single-cell multi-omics

One of the advantages of UMI-based scRNA-seq is the ability to attach additional 

oligonucleotides barcodes to cells to allow for concurrent measures of multiple molecular 

modalities in the same cell with single-cell multi-omics technologies (Zhu et al., 

2020). A notable multi-omics technology for studying the TME is Cellular Indexing of 

Transcriptomes and Epitopes by Sequencing (CITE-seq) (Stoeckius et al., 2017) (Figure 

2D). CITE-seq simultaneously obtains antibody-based proteomics and transcriptional 

profiling, combining the benefits of a priori identification of cell types using proteomics 

with the unsupervised analysis of scRNA-seq. This technology has been applied to 

monitor the temporal changes in PBMC composition during chronic lymphocytic leukemia 

(CLL) therapy with the targeted agent ibrutinib, demonstrating clonal heterogeneity among 

leukemic cells and therapeutic perturbations in cancer and immune cells (Cadot et al., 2020).

The behavior of certain immune cells can also be traced from multi-omics by using 

genetic identifiers. T cells and B cells undergo germline DNA recombination that results 

in a broad repertoire of T and B cell receptors (TCRs, BCRs). Multi-omics technologies 

enable simultaneous transcriptional profiling of T cells and B cells and their respective 

receptors (Figure 2D). TCR sequences can be acquired directly from platforms such as 10x 

Genomics TCR/BCR and paired transcriptome sequencing, or they can be inferred from 

raw sequencing reads of scRNA-seq data by computational algorithms such as TraCeR 

(Stubbington et al., 2016), BraCeR (Lindeman et al., 2018), and VDJPuzzle (Eltahla et al., 

2016; Rizzetto et al., 2018). The availability of combined scRNA-seq and scTCR-seq data 

in these approaches enables the association of cellular states with clonal expansion. In these 

analyses, the specific TCR and BCR profiling generates information about antigen-specific 

anti-tumor responses (Azizi et al., 2018; Sade-Feldman et al., 2018; Yost et al., 2019).

Paired scRNA and TCR-seq is gaining traction and being applied to a variety of cancers. 

A recent pan-cancer study of ICI-treated patients used this combined analysis to identify 

the clonal expansion of effector T cells in patients that respond to anti-PDL1 therapy 

(Wu et al., 2020b). In addition, expanded clonotypes were detectable across tumor, normal 

adjacent tissue, and peripheral blood, suggesting a potential minimally invasive biomarker 

of immunotherapy response (Wu et al., 2020b). Clonotype information can also complement 

trajectory inference analysis of intratumoral T cells and B cells to track the dynamic 

relationships of these lymphocytes as they mount anti-tumor responses and respond to 

therapy. For example, a recent study using paired TCR- and RNA-seq to profile CD8+ 

CAR-T cells from the blood of patients undergoing CD19 CAR-T immunotherapy found 

distinct clonal transcriptional dynamics and expansion after adoptive transfer (Sheih et 

al., 2020). In basal cell carcinoma, combined scRNA-seq of CD8+ T cells treated with 

anti-PD-1 found an increased presence of activated and exhausted populations, as well as 

a hybrid population expressing activation and exhaustion markers (Yost et al., 2019), an 

expected effect of anti-PD-1 therapy (Sade-Feldman et al., 2018; Wei et al., 2017). TCR 

analysis indicated that the largest clones presented exhaustion gene signatures. Also using 
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TCR clonality, the authors were able to track those clones in pre- and post-treatment samples 

and observed that anti-PD-1 therapy did not convert exhausted T cells to a non-exhausted 

state. There was no expansion of the exhausted T cell clones but new clonotypes, absent in 

the pre-treatment samples, were detected suggesting that anti-PD-1 therapy attracts new T 

cells to the tumor with the potential to identify a new panel of antigens (Yost et al., 2019). 

These findings provide an immense contribution to understanding responses to ICIs and 

indicate that these therapeutic agents enhance the ability of tumors to attract additional T 

cells as opposed to reactivating exhausted T cells already present in the tumor (Yost et al., 

2019).

While the ability to sequence both TCR chains provides an advantage over bulk single-chain 

methods, determining the antigen specificity of captured T cells remains a critical area of 

research. Advances into new multi-omics technologies are also actively being developed, 

with emerging methods for various combinations of proteomics, transcriptomics, spatial, and 

immune receptor profiling. These advances include technologies for resolve the multi-scale 

pathways in the tumor microenvironment, including intracellular phospho-proteomic states 

(Gerlach et al., 2019), intranuclear sequencing of transcription factors (Chung et al., 2021), 

chromatin (Cao et al., 2018), CRISPR-based screens (Hill et al., 2018), barcoding for 

lineage tracing of single-cells (Al’Khafaji et al., 2018; Kong et al., 2020), and concurrent 

spatial profiling of RNA and protein (Liu et al., 2020).

Future perspectives

Single-cell and spatial molecular profiling technologies and complementary computational 

analysis pipelines are rapidly advancing as tools for cancer research. The inferences from 

these technologies rely on the study design, sample processing, and analysis pipelines 

selected for profiling. Due to the rapid advance of these technologies, many of the 

computational pipelines that enable interpretation of this data are still being developed. As 

single-cell data evolve as translational tools, computational methodologies will play a role 

in driving new discoveries. While powerful, these high-throughput technologies primarily 

serve as profiling tools to generate new hypotheses about the tumor microenvironment 

and therapeutic modalities. Therefore, complementary mechanistic bench studies remain an 

important complement to translate single-cell research into actionable therapeutic targets.

In translational immunotherapy research, the ultimate test of mechanism is that a therapeutic 

intervention yields the hypothesized immune modulation on the tumor microenvironment 

within a patients’ tumor. While single-cell technologies can be applied to measure these 

effects, full mechanistic characterization requires time-course profiling that would involve 

serial sample collection from the same patient which are unethical and unfeasible to 

perform. Although monitoring the immune cell repertoire from a patient’s peripheral blood 

is more feasible for time-course studies, single-cell studies comparing the immune cell 

composition of human tumors and peripheral blood have identified intrinsic differences 

(Azizi et al., 2018). Therefore, future studies are needed to provide a more comprehensive 

comparison between the tumor immune landscape and that of the periphery to enable the 

use of single-cell technologies as therapeutic biomarkers. The heterogeneity between patient 

tumors and inability to test more than one treatment regimen in a patient further challenges 
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mechanistic single-cell studies in translational research. Single-cell atlas studies pooling 

clinical trials studies and perturbation studies from preclinical models can provide important 

references to support such human profiling studies. Single-cell profiling of pre-clinical 

models treated with immunotherapies can point to the cell types and pathways relevant to 

therapeutic response, while cross-species analysis of human samples treated with the same 

therapies can reveal which therapeutic responses are conserved. Emerging computational 

tools to identify shared responses in mice and humans from single-cell datasets can further 

support model selection for preclinical analysis to inform the design of human clinical trials 

(Davis-Marcisak et al., 2020; Peng et al., 2021) (Figure 3).

Single-cell experiments must be carefully designed to achieve the desired depth of immune 

characterization and to avoid confounding technical biases with phenotypic covariates. 

Technology selection should align with the underlying hypothesis of the study. For example, 

single-cell and spatial transcriptomics is well suited to drive genome-wide discovery across 

unbiased cell populations, and single-cell proteomics is better suited for studies that aim 

to profile known molecular targets and cell types. Pathologists can play an important 

role in selecting regions that capture the appropriate biological region (e.g., tumor dense 

regions) and account for tumor-heterogeneity. Statistical evaluation of sample size is 

also an important consideration of study design. Single-cell datasets from large cohorts 

are important for biomarker discovery and applications of machine learning to predict 

patient outcomes, particularly to avoid overfitting these models with the large number 

of molecular features they measure. However, the significant costs of these technologies 

impose a practical limitation to designing powered cohorts in single-cell atlas studies. 

Thus, a balance of low-dimensional profiling with proteomics technologies on large 

cohorts and leveraging selected samples for higher-dimensional, mechanistic studies is a 

critical step during experimental design. Computational algorithms for cross-platform data 

integration can provide an important complement to balance molecular depth with sample 

size in these mixed designs. Close collaboration between experimental, computational, and 

statistical scientists can support optimal study design and also prioritize new computational 

approaches for data analysis tailored to the translational research goals of each study. A 

multi-disciplinary approach will help the cancer research community to overcome these 

challenges and use single-cell and spatial platforms to make new discoveries for cancer 

immunotherapy.

Acknowledgements

We thank Janelle Montagne, Ben K. Johnson, Jackie Zimmerman and Jacob Mitchell for feedback on the 
manuscript. Figures were created with BioRender.com.

Funding

This work was supported by Lustgarten Foundation: Pancreatic Cancer Research Grant (to EMJ), Sol Goldman 
Pancreatic Cancer Research Center Grant (to LTK), Emerson Collective Cancer Research Fund (to EMJ), 
Allegheny Health Network (AHN) Grant (to EJF), U01CA212007 (to EJF), U01CA253403 (to EJF), the JHU 
Discovery Award (to EJF), P30CA006973, F31CA250135-01A1 (to EFDM), Kavli NDI Postdoctoral Fellowship 
(to GSO), and JHU Provost Postdoctoral Fellowship (to GSO).

Davis-Marcisak et al. Page 18

Cancer Cell. Author manuscript; available in PMC 2022 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://BioRender.com


Declaration of Interests

WH is a co-inventor of patents with potential for receiving royalties from Rodeo Therapeutics/Amgen, is a 
consultant for Exelixis, and receives research funding from Sanofi. EMJ is a paid consultant for Adaptive 
Biotech, CSTONE, Achilles, DragonFly, and Genocea; receives funding from Lustgarten Foundation and Bristol 
Myer Squibb; is the Chief Medical Advisor for Lustgarten and SAB advisor to the Parker Institute for Cancer 
Immunotherapy (PICI) and for the C3 Cancer Institute. EJF is a member of the Scientific Advisory Board of 
Vioscera Therapeutics / ResistanceBio. All other authors have nothing to disclose.

References

Al’Khafaji AM, Deatherage D, and Brock A (2018). Control of Lineage-Specific Gene Expression by 
Functionalized gRNA Barcodes. ACS Synth. Biol 7, 2468–2474. [PubMed: 30169961] 

Amezquita RA, Lun ATL, Becht E, Carey VJ, Carpp LN, Geistlinger L, Marini F, Rue-Albrecht 
K, Risso D, Soneson C, et al. (2020). Orchestrating single-cell analysis with Bioconductor. Nat. 
Methods 17, 137–145. [PubMed: 31792435] 

Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky AD, Levenson RM, Lowe JB, Liu 
SD, Zhao S, et al. (2014). Multiplexed ion beam imaging of human breast tumors. Nat. Med 20, 
436–442. [PubMed: 24584119] 

Aoki T, Chong LC, Takata K, Milne K, Hav M, Colombo A, Chavez EA, Nissen M, Wang X, 
Miyata-Takata T, et al. (2020). Single-Cell Transcriptome Analysis Reveals Disease-Defining T-cell 
Subsets in the Tumor Microenvironment of Classic Hodgkin Lymphoma. Cancer Discov 10, 406–
421. [PubMed: 31857391] 

Avila Cobos F, Alquicira-Hernandez J, Powell JE, Mestdagh P, and De Preter K (2020). Benchmarking 
of cell type deconvolution pipelines for transcriptomics data. Nat. Commun 11, 5650. [PubMed: 
33159064] 

Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, Nainys J, Wu K, Kiseliovas 
V, Setty M, et al. (2018). Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor 
Microenvironment. Cell 174, 1293–1308.e36. [PubMed: 29961579] 

Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, Pavlov S, Vorobiev S, Dick JE, 
and Tanner SD (2009). Mass cytometry: technique for real time single cell multitarget immunoassay 
based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem 81, 6813–6822. 
[PubMed: 19601617] 

Becht E, McInnes L, Healy J, Dutertre C-A, Kwok IWH, Ng LG, Ginhoux F, and Newell EW (2018). 
Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol 37, 38–44.

Bendall SC, Simonds EF, Qiu P, Amir ED, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, 
Ornatsky OI, et al. (2011). Single-cell mass cytometry of differential immune and drug responses 
across a human hematopoietic continuum. Science 332, 687–696. [PubMed: 21551058] 

Bergen V, Lange M, Peidli S, Wolf FA, and Theis FJ (2020). Generalizing RNA velocity to transient 
cell states through dynamical modeling. Nat. Biotechnol 38, 1408–1414. [PubMed: 32747759] 

Berglund E, Maaskola J, Schultz N, Friedrich S, Marklund M, Bergenstrahle J, Tarish F, Tanoglidi 
A, Vickovic S, Larsson L, et al. (2018). Spatial maps of prostate cancer transcriptomes reveal an 
unexplored landscape of heterogeneity. Nat. Commun 9, 2419. [PubMed: 29925878] 

Bernard V, Semaan A, Huang J, San Lucas FA, Mulu FC, Stephens BM, Guerrero PA, Huang Y, 
Zhao J, Kamyabi N, et al. (2019). Single-Cell Transcriptomics of Pancreatic Cancer Precursors 
Demonstrates Epithelial and Microenvironmental Heterogeneity as an Early Event in Neoplastic 
Progression. Clin. Cancer Res 25, 2194–2205. [PubMed: 30385653] 

Blondel VD, Guillaume J-L, Lambiotte R, and Lefebvre E (2008). Fast unfolding of communities in 
large networks. J. Stat. Mech 2008, P10008.

Browaeys R, Saelens W, and Saeys Y (2020). NicheNet: modeling intercellular communication by 
linking ligands to target genes. Nat. Methods 17, 159–162. [PubMed: 31819264] 

Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY, and Greenleaf 
WJ (2015). Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 
523, 486–490. [PubMed: 26083756] 

Davis-Marcisak et al. Page 19

Cancer Cell. Author manuscript; available in PMC 2022 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bullard JH, Purdom E, Hansen KD, and Dudoit S (2010). Evaluation of statistical methods for 
normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11, 94. 
[PubMed: 20167110] 

Burkhardt DB, Stanley JS, Tong A, Perdigoto AL, Gigante SA, Herold KC, Wolf G, Giraldez AJ, 
van Dijk D, and Krishnaswamy S (2021). Quantifying the effect of experimental perturbations at 
single-cell resolution. Nat. Biotechnol 39, 619–629. [PubMed: 33558698] 

Butler A, Hoffman P, Smibert P, Papalexi E, and Satija R (2018). Integrating single-cell transcriptomic 
data across different conditions, technologies, and species. Nat. Biotechnol 36, 411–420. 
[PubMed: 29608179] 

Cadot S, Valle C, Tosolini M, Pont F, Largeaud L, Laurent C, Fournie JJ, Ysebaert L, and Quillet-Mary 
A (2020). Longitudinal CITE-Seq profiling of chronic lymphocytic leukemia during ibrutinib 
treatment: evolution of leukemic and immune cells at relapse. Biomark. Res 8, 72. [PubMed: 
33298182] 

Caicedo JC, Cooper S, Heigwer F, Warchal S, Qiu P, Molnar C, Vasilevich AS, Barry JD, Bansal HS, 
Kraus O, et al. (2017). Data-analysis strategies for image-based cell profiling. Nat. Methods 14, 
849–863. [PubMed: 28858338] 

Cao J, Cusanovich DA, Ramani V, Aghamirzaie D, Pliner HA, Hill AJ, Daza RM, McFaline-Figueroa 
JL, Packer JS, Christiansen L, et al. (2018). Joint profiling of chromatin accessibility and gene 
expression in thousands of single cells. Science 361, 1380–1385. [PubMed: 30166440] 

Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, Christiansen L, 
Steemers FJ, et al. (2019). The single-cell transcriptional landscape of mammalian organogenesis. 
Nature 566, 496–502. [PubMed: 30787437] 

Chan TE, Stumpf MPH, and Babtie AC (2017). Gene Regulatory Network Inference from Single-Cell 
Data Using Multivariate Information Measures. Cell Syst 5, 251–267.e3. [PubMed: 28957658] 

Cherry C, Cahan P, Garmire LX, and Elisseeff JH (2020). Domino: reconstructing intercellular 
signaling dynamics with transcription factor activation in model biomaterial environments. 
BioRxiv

Chung H, Parkhurst C, Magee EM, Phillips D, Habibi E, Chen F, Yeung B, Waldman JA, Artis D, 
and Regev A (2021). Simultaneous single cell measurements of intranuclear proteins and gene 
expression. BioRxiv

Cleary B, Cong L, Cheung A, Lander ES, and Regev A (2017). Efficient generation of transcriptomic 
profiles by random composite measurements. Cell 171, 1424–1436.e18. [PubMed: 29153835] 

Crowell HL, Chevrier S, Jacobs A, Sivapatham S, Tumor Profiler Consortium, Bodenmiller B, and 
Robinson MD (2020). An R-based reproducible and user-friendly preprocessing pipeline for 
CyTOF data. F1000Res. 9, 1263.

Davidson S, Efremova M, Riedel A, Mahata B, Pramanik J, Huuhtanen J, Kar G, Vento-Tormo R, 
Hagai T, Chen X, et al. (2020). Single-Cell RNA Sequencing Reveals a Dynamic Stromal Niche 
That Supports Tumor Growth. Cell Rep 31, 107628. [PubMed: 32433953] 

Davis-Marcisak EF, Sherman TD, Orugunta P, Stein-O’Brien GL, Puram SV, Roussos Torres ET, 
Hopkins AC, Jaffee EM, Favorov AV, Afsari B, et al. (2019). Differential Variation Analysis 
Enables Detection of Tumor Heterogeneity Using Single-Cell RNA-Sequencing Data. Cancer Res 
79, 5102–5112. [PubMed: 31337651] 

Davis-Marcisak EF, Fitzgerald AA, Kessler MD, Danilova L, Jaffee EM, Zaidi N, Weiner LM, and 
Fertig EJ (2020). A novel mechanism of natural killer cell response to anti-CTLA-4 therapy 
identified by integrative analysis of mouse and human tumors. BioRxiv.

Denisenko E, Guo BB, Jones M, Hou R, de Kock L, Lassmann T, Poppe D, Clement O, Simmons 
RK, Lister R, et al. (2020). Systematic assessment of tissue dissociation and storage biases in 
single-cell and single-nucleus RNA-seq workflows. Genome Biol 21, 130. [PubMed: 32487174] 

Deshpande A, Chu L-F, Stewart R, and Gitter A (2019). Network Inference with Granger Causality 
Ensembles on Single-Cell Transcriptomic Data. BioRxiv.

Dries R, Zhu Q, Eng C-HL, Sarkar A, Bao F, George RE, Pierson N, Cai L, and Yuan G-C (2019). 
Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic 
data. BioRxiv.

Davis-Marcisak et al. Page 20

Cancer Cell. Author manuscript; available in PMC 2022 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Efremova M, Vento-Tormo M, Teichmann SA, and Vento-Tormo R (2020). CellPhoneDB: inferring 
cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. 
Nat. Protoc 15, 1484–1506. [PubMed: 32103204] 

Elosua-Bayes M, Nieto P, Mereu E, Gut I, and Heyn H (2021). SPOTlight: seeded NMF regression to 
deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res

Eltahla AA, Rizzetto S, Pirozyan MR, Betz-Stablein BD, Venturi V, Kedzierska K, Lloyd AR, Bull 
RA, and Luciani F (2016). Linking the T cell receptor to the single cell transcriptome in antigen­
specific human T cells. Immunol. Cell Biol 94, 604–611. [PubMed: 26860370] 

Eng C-HL, Lawson M, Zhu Q, Dries R, Koulena N, Takei Y, Yun J, Cronin C, Karp C, Yuan G-C, et 
al. (2019). Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 
235–239. [PubMed: 30911168] 

Fan J, Salathia N, Liu R, Kaeser GE, Yung YC, Herman JL, Kaper F, Fan J-B, Zhang K, Chun J, et al. 
(2016). Characterizing transcriptional heterogeneity through pathway and gene set overdispersion 
analysis. Nat. Methods 13, 241–244. [PubMed: 26780092] 

Fan J, Lee H-O, Lee S, Ryu D-E, Lee S, Xue C, Kim SJ, Kim K, Barkas N, Park PJ, et al. (2018). 
Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell 
RNA-seq data. Genome Res 28, 1217–1227. [PubMed: 29898899] 

Gadalla R, Noamani B, MacLeod BL, Dickson RJ, Guo M, Xu W, Lukhele S, Elsaesser HJ, Razak 
ARA, Hirano N, et al. (2019). Validation of cytof against flow cytometry for immunological 
studies and monitoring of human cancer clinical trials. Front. Oncol 9, 415. [PubMed: 31165047] 

Gao M, Ling M, Tang X, Wang S, Xiao X, Qiao Y, Yang W, and Yu R (2020). Comparison of 
high-throughput single-cell RNA sequencing data processing pipelines. Brief. Bioinformatics.

Gao R, Bai S, Henderson YC, Lin Y, Schalck A, Yan Y, Kumar T, Hu M, Sei E, Davis A, et 
al. (2021). Delineating copy number and clonal substructure in human tumors from single-cell 
transcriptomes. Nat. Biotechnol 39, 599–608. [PubMed: 33462507] 

Gerdes MJ, Sevinsky CJ, Sood A, Adak S, Bello MO, Bordwell A, Can A, Corwin A, Dinn S, Filkins 
RJ, et al. (2013). Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded 
cancer tissue. Proc Natl Acad Sci USA 110, 11982–11987. [PubMed: 23818604] 

Gerlach JP, van Buggenum JAG, Tanis SEJ, Hogeweg M, Heuts BMH, Muraro MJ, Elze L, Rivello 
F, Rakszewska A, van Oudenaarden A, et al. (2019). Combined quantification of intracellular 
(phospho-)proteins and transcriptomics from fixed single cells. Sci. Rep 9, 1469. [PubMed: 
30728416] 

Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, Schuffler PJ, Grolimund 
D, Buhmann JM, Brandt S, et al. (2014). Highly multiplexed imaging of tumor tissues with 
subcellular resolution by mass cytometry. Nat. Methods 11, 417–422. [PubMed: 24584193] 

Giladi A, and Amit I (2018). Single-Cell Genomics: A Stepping Stone for Future Immunology 
Discoveries. Cell 172, 14–21. [PubMed: 29328909] 

Gohil SH, Iorgulescu JB, Braun DA, Keskin DB, and Livak KJ (2021). Applying high-dimensional 
single-cell technologies to the analysis of cancer immunotherapy. Nat. Rev. Clin. Oncol 18, 244–
256. [PubMed: 33277626] 

Goldstein LD, Chen Y-JJ, Wu J, Chaudhuri S, Hsiao Y-C, Schneider K, Hoi KH, Lin Z, Guerrero S, 
Jaiswal BS, et al. (2019). Massively parallel single-cell B-cell receptor sequencing enables rapid 
discovery of diverse antigen-reactive antibodies. Commun. Biol 2, 304. [PubMed: 31428692] 

Goltsev Y, Samusik N, Kennedy-Darling J, Bhate S, Hale M, Vazquez G, Black S, and Nolan GP 
(2018). Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging. Cell 
174, 968–981.e15. [PubMed: 30078711] 

Gorin G, Svensson V, and Pachter L (2020). Protein velocity and acceleration from single-cell 
multiomics experiments. Genome Biol 21, 39. [PubMed: 32070398] 

Gorris MAJ, Halilovic A, Rabold K, van Duffelen A, Wickramasinghe IN, Verweij D, Wortel IMN, 
Textor JC, de Vries IJM, and Figdor CG (2018). Eight-Color Multiplex Immunohistochemistry 
for Simultaneous Detection of Multiple Immune Checkpoint Molecules within the Tumor 
Microenvironment. J. Immunol 200, 347–354. [PubMed: 29141863] 

Gracia Villacampa E, Larsson L, Kvastad L, Andersson A, Carlson J, and Lundeberg J (2020). 
Genome-wide Spatial Expression Profiling in FFPE Tissues. BioRxiv.

Davis-Marcisak et al. Page 21

Cancer Cell. Author manuscript; available in PMC 2022 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gubin MM, Esaulova E, Ward JP, Malkova ON, Runci D, Wong P, Noguchi T, Arthur CD, Meng 
W, Alspach E, et al. (2018). High-Dimensional Analysis Delineates Myeloid and Lymphoid 
Compartment Remodeling during Successful Immune-Checkpoint Cancer Therapy. Cell 175, 
1014–1030.e19. [PubMed: 30343900] 

Guo X, Zhang Y, Zheng L, Zheng C, Song J, Zhang Q, Kang B, Liu Z, Jin L, Xing R, et al. (2018). 
Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat. 
Med 24, 978–985. [PubMed: 29942094] 

Hafemeister C, and Satija R (2019). Normalization and variance stabilization of single-cell RNA-seq 
data using regularized negative binomial regression. Genome Biol 20, 296. [PubMed: 31870423] 

Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zagar 
M, et al. (2020). Integrated analysis of multimodal single-cell data. BioRxiv.

Hartmann FJ, and Bendall SC (2020). Immune monitoring using mass cytometry and related high­
dimensional imaging approaches. Nat. Rev. Rheumatol 16, 87–99. [PubMed: 31892734] 

Hicks SC, Townes FW, Teng M, and Irizarry RA (2018). Missing data and technical variability in 
single-cell RNA-sequencing experiments. Biostatistics 19, 562–578. [PubMed: 29121214] 

Hill AJ, McFaline-Figueroa JL, Starita LM, Gasperini MJ, Matreyek KA, Packer J, Jackson D, 
Shendure J, and Trapnell C (2018). On the design of CRISPR-based single-cell molecular screens. 
Nat. Methods 15, 271–274. [PubMed: 29457792] 

Hou W, Ji Z, Ji H, and Hicks SC (2020). A systematic evaluation of single-cell RNA-sequencing 
imputation methods. Genome Biol 21, 218. [PubMed: 32854757] 

Ho WJ, Sharma G, Zhu Q, Stein-O’Brien G, Durham J, Anders R, Popovic A, Mo G, Kamel I, Weiss 
M, et al. (2020). Integrated immunological analysis of a successful conversion of locally advanced 
hepatocellular carcinoma to resectability with neoadjuvant therapy. J. Immunother. Cancer 8.

Huang Q, Liu Y, Du Y, and Garmire LX (2020). Evaluation of Cell Type Annotation R Packages on 
Single-cell RNA-seq Data. Genomics Proteomics Bioinformatics.

Huynh-Thu VA, and Sanguinetti G (2015). Combining tree-based and dynamical systems for the 
inference of gene regulatory networks. Bioinformatics 31, 1614–1622. [PubMed: 25573916] 

Huynh-Thu VA, Irrthum A, Wehenkel L, and Geurts P (2010). Inferring regulatory networks from 
expression data using tree-based methods. PLoS ONE 5.

Ilicic T, Kim JK, Kolodziejczyk AA, Bagger FO, McCarthy DJ, Marioni JC, and Teichmann SA 
(2016). Classification of low quality cells from single-cell RNA-seq data. Genome Biol 17, 29. 
[PubMed: 26887813] 

Irizarry RA, Wang C, Zhou Y, and Speed TP (2009). Gene set enrichment analysis made simple. Stat. 
Methods Med. Res 18, 565–575. [PubMed: 20048385] 

Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, Lonnerberg P, and Linnarsson S (2014). 
Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11, 163–166. 
[PubMed: 24363023] 

Jackson HW, Fischer JR, Zanotelli VRT, Ali HR, Mechera R, Soysal SD, Moch H, Muenst S, Varga 
Z, Weber WP, et al. (2020). The single-cell pathology landscape of breast cancer. Nature 578, 
615–620. [PubMed: 31959985] 

Jerby-Arnon L, Shah P, Cuoco MS, Rodman C, Su M-J, Melms JC, Leeson R, Kanodia A, Mei S, Lin 
J-R, et al. (2018). A cancer cell program promotes T cell exclusion and resistance to checkpoint 
blockade. Cell 175, 984–997.e24. [PubMed: 30388455] 

Ji Z, and Ji H (2016). TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq 
analysis. Nucleic Acids Res 44, e117. [PubMed: 27179027] 

Ji AL, Rubin AJ, Thrane K, Jiang S, Reynolds DL, Meyers RM, Guo MG, George BM, Mollbrink 
A, Bergenstrahle J, et al. (2020). Multimodal analysis of composition and spatial architecture in 
human squamous cell carcinoma. Cell 182, 497–514.e22. [PubMed: 32579974] 

Keren L, Bosse M, Marquez D, Angoshtari R, Jain S, Varma S, Yang S-R, Kurian A, Van Valen 
D, West R, et al. (2018). A Structured Tumor-Immune Microenvironment in Triple Negative 
Breast Cancer Revealed by Multiplexed Ion Beam Imaging. Cell 174, 1373–1387.e19. [PubMed: 
30193111] 

Davis-Marcisak et al. Page 22

Cancer Cell. Author manuscript; available in PMC 2022 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, and Kirschner 
MW (2015). Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. 
Cell 161, 1187–1201. [PubMed: 26000487] 

Kong W, Biddy BA, Kamimoto K, Amrute JM, Butka EG, and Morris SA (2020). CellTagging: 
combinatorial indexing to simultaneously map lineage and identity at single-cell resolution. Nat. 
Protoc 15, 750–772. [PubMed: 32051617] 

Krieg C, Nowicka M, Guglietta S, Schindler S, Hartmann FJ, Weber LM, Dummer R, Robinson MD, 
Levesque MP, and Becher B (2018). High-dimensional single-cell analysis predicts response to 
anti-PD-1 immunotherapy. Nat. Med 24, 144–153. [PubMed: 29309059] 

Kumar MP, Du J, Lagoudas G, Jiao Y, Sawyer A, Drummond DC, Lauffenburger DA, and Raue A 
(2018). Analysis of Single-Cell RNA-Seq Identifies Cell-Cell Communication Associated with 
Tumor Characteristics. Cell Rep 25, 1458–1468.e4. [PubMed: 30404002] 

Lafzi A, Moutinho C, Picelli S, and Heyn H (2018). Tutorial: guidelines for the experimental design of 
single-cell RNA sequencing studies. Nat. Protoc 13, 2742–2757. [PubMed: 30446749] 

Langfelder P, and Horvath S (2008). WGCNA: an R package for weighted correlation network 
analysis. BMC Bioinformatics 9, 559. [PubMed: 19114008] 

La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, Lidschreiber K, Kastriti 
ME, Lonnerberg P, Furlan A, et al. (2018). RNA velocity of single cells. Nature 560, 494–498. 
[PubMed: 30089906] 

Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, and 
Irizarry RA (2010). Tackling the widespread and critical impact of batch effects in high-throughput 
data. Nat. Rev. Genet 11, 733–739. [PubMed: 20838408] 

Lee J, Hyeon DY, and Hwang D (2020). Single-cell multiomics: technologies and data analysis 
methods. Exp. Mol. Med 52, 1428–1442. [PubMed: 32929225] 

Leipold MD, Obermoser G, Fenwick C, Kleinstuber K, Rashidi N, McNevin JP, Nau AN, Wagar 
LE, Rozot V, Davis MM, et al. (2018). Comparison of CyTOF assays across sites: Results of a 
six-center pilot study. J. Immunol. Methods 453, 37–43. [PubMed: 29174717] 

Lim B, Lin Y, and Navin N (2020). Advancing Cancer Research and Medicine with Single-Cell 
Genomics. Cancer Cell 37, 456–470. [PubMed: 32289270] 

Lindeman I, Emerton G, Mamanova L, Snir O, Polanski K, Qiao S-W, Sollid LM, Teichmann SA, 
and Stubbington MJT (2018). BraCeR: B-cell-receptor reconstruction and clonality inference from 
single-cell RNA-seq. Nat. Methods 15, 563–565. [PubMed: 30065371] 

Lin J-R, Fallahi-Sichani M, and Sorger PK (2015). Highly multiplexed imaging of single cells using a 
high-throughput cyclic immunofluorescence method. Nat. Commun 6, 8390. [PubMed: 26399630] 

Liu Y, Yang M, Deng Y, Su G, Enninful A, Guo CC, Tebaldi T, Zhang D, Kim D, Bai Z, et al. 
(2020). High-Spatial-Resolution Multi-Omics Sequencing via Deterministic Barcoding in Tissue. 
Cell 183, 1665–1681.e18. [PubMed: 33188776] 

Li H, Courtois ET, Sengupta D, Tan Y, Chen KH, Goh JJL, Kong SL, Chua C, Hon LK, Tan 
WS, et al. (2017). Reference component analysis of single-cell transcriptomes elucidates cellular 
heterogeneity in human colorectal tumors. Nat. Genet 49, 708–718. [PubMed: 28319088] 

Li Y, Ma A, Mathe EA, Li L, Liu B, and Ma Q (2020). Elucidation of Biological Networks across 
Complex Diseases Using Single-Cell Omics. Trends Genet 36, 951–966. [PubMed: 32868128] 

Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, and Cai L (2014). Single-cell in situ RNA profiling 
by sequential hybridization. Nat. Methods 11, 360–361. [PubMed: 24681720] 

Luecken MD, and Theis FJ (2019). Current best practices in single-cell RNA-seq analysis: a tutorial. 
Mol. Syst. Biol 15, e8746. [PubMed: 31217225] 

van der Maaten L, and Hinton G (2008). Visualizing Data using t-SNE. Journal of Machine Learning 
Research.

Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, 
Martersteck EM, et al. (2015). Highly Parallel Genome-wide Expression Profiling of Individual 
Cells Using Nanoliter Droplets. Cell 161, 1202–1214. [PubMed: 26000488] 

Maniatis S, Petrescu J, and Phatnani H (2021). Spatially resolved transcriptomics and its applications 
in cancer. Curr. Opin. Genet. Dev 66, 70–77. [PubMed: 33434721] 

Davis-Marcisak et al. Page 23

Cancer Cell. Author manuscript; available in PMC 2022 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Marx V (2021). Method of the Year: spatially resolved transcriptomics. Nat. Methods 18, 9–14. 
[PubMed: 33408395] 

Matsumoto H, Kiryu H, Furusawa C, Ko MSH, Ko SBH, Gouda N, Hayashi T, and Nikaido I (2017). 
SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during 
differentiation. Bioinformatics 33, 2314–2321. [PubMed: 28379368] 

Ma L, Hernandez MO, Zhao Y, Mehta M, Tran B, Kelly M, Rae Z, Hernandez JM, Davis JL, 
Martin SP, et al. (2019). Tumor cell biodiversity drives microenvironmental reprogramming in 
liver cancer. Cancer Cell 36, 418–430.e6. [PubMed: 31588021] 

McInnes L, Healy J, and Melville J (2018). UMAP: Uniform Manifold Approximation and Projection 
for Dimension Reduction. ArXiv.

Megill C, Martin B, Weaver C, Bell S, Prins L, Badajoz S, McCandless B, Pisco AO, Kinsella M, 
Griffin F, et al. (2021). cellxgene: a performant, scalable exploration platform for high dimensional 
sparse matrices. BioRxiv.

Mohammadi S, Davila-Velderrain J, and Kellis M (2020). A multiresolution framework to characterize 
single-cell state landscapes. Nat. Commun 11, 5399. [PubMed: 33106496] 

Moncada R, Barkley D, Wagner F, Chiodin M, Devlin JC, Baron M, Hajdu CH, Simeone DM, and 
Yanai I (2020). Integrating microarray-based spatial transcriptomics and single-cell RNA-seq 
reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol 38, 333–342. 
[PubMed: 31932730] 

Moon KR, van Dijk D, Wang Z, Gigante S, Burkhardt DB, Chen WS, Yim K, Elzen Avan den, 
Hirn MJ, Coifman RR, et al. (2019). Visualizing structure and transitions in high-dimensional 
biological data. Nat. Biotechnol 37, 1482–1492. [PubMed: 31796933] 

Navin N, and Hicks J (2011). Future medical applications of single-cell sequencing in cancer. Genome 
Med 3, 31. [PubMed: 21631906] 

Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, 
Esposito D, et al. (2011). Tumour evolution inferred by single-cell sequencing. Nature 472, 90–
94. [PubMed: 21399628] 

Nowicka M, Krieg C, Crowell HL, Weber LM, Hartmann FJ, Guglietta S, Becher B, Levesque 
MP, and Robinson MD (2017). CyTOF workflow: differential discovery in high-throughput 
high-dimensional cytometry datasets. [version 3; peer review: 2 approved]. F1000Res. 6, 748. 
[PubMed: 28663787] 

Papili Gao N, Ud-Dean SMM, Gandrillon O, and Gunawan R (2018). SINCERITIES: inferring 
gene regulatory networks from time-stamped single cell transcriptional expression profiles. 
Bioinformatics 34, 258–266. [PubMed: 28968704] 

Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry 
WT, Martuza RL, et al. (2014). Single-cell RNA-seq highlights intratumoral heterogeneity in 
primary glioblastoma. Science 344, 1396–1401. [PubMed: 24925914] 

Peng D, Gleyzer R, Tai W-H, Kumar P, Bian Q, Isaacs B, da Rocha EL, Cai S, DiNapoli K, Huang 
FW, et al. (2021). Evaluating the transcriptional fidelity of cancer models. Genome Med 13, 73. 
[PubMed: 33926541] 

Peng J, Sun B-F, Chen C-Y, Zhou J-Y, Chen Y-S, Chen H, Liu L, Huang D, Jiang J, Cui G-S, et al. 
(2019). Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in 
pancreatic ductal adenocarcinoma. Cell Res 29, 725–738. [PubMed: 31273297] 

Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, Rodman C, Luo CL, Mroz EA, 
Emerick KS, et al. (2017). Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor 
Ecosystems in Head and Neck Cancer. Cell 171, 1611–1624.e24. [PubMed: 29198524] 

Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, and Trapnell C (2017). Reversed graph 
embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982. [PubMed: 
28825705] 

Ramos-Vara JA, and Miller MA (2014). When tissue antigens and antibodies get along: revisiting the 
technical aspects of immunohistochemistry--the red, brown, and blue technique. Vet. Pathol 51, 
42–87. [PubMed: 24129895] 

Davis-Marcisak et al. Page 24

Cancer Cell. Author manuscript; available in PMC 2022 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ramsköld D, Luo S, Wang Y-C, Li R, Deng Q, Faridani OR, Daniels GA, Khrebtukova I, Loring JF, 
Laurent LC, et al. (2012). Full-length mRNA-Seq from single-cell levels of RNA and individual 
circulating tumor cells. Nat. Biotechnol 30, 777–782. [PubMed: 22820318] 

Reich M, Tabor T, Liefeld T, Thorvaldsdottir H, Hill B, Tamayo P, and Mesirov JP (2017). The 
genepattern notebook environment. Cell Syst 5, 149–151.e1. [PubMed: 28822753] 

Ribas A, and Wolchok JD (2018). Cancer immunotherapy using checkpoint blockade. Science 359, 
1350–1355. [PubMed: 29567705] 

Risso D, Perraudeau F, Gribkova S, Dudoit S, and Vert J-P (2018). A general and flexible method for 
signal extraction from single-cell RNA-seq data. Nat. Commun 9, 284. [PubMed: 29348443] 

Rizzetto S, Koppstein DNP, Samir J, Singh M, Reed JH, Cai CH, Lloyd AR, Eltahla AA, Goodnow 
CC, and Luciani F (2018). B-cell receptor reconstruction from single-cell RNA-seq with 
VDJPuzzle. Bioinformatics 34, 2846–2847. [PubMed: 29659703] 

Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, Welch J, Chen LM, 
Chen F, and Macosko EZ (2019). Slide-seq: A scalable technology for measuring genome-wide 
expression at high spatial resolution. Science 363, 1463–1467. [PubMed: 30923225] 

Rozenblatt-Rosen O, Regev A, Oberdoerffer P, Nawy T, Hupalowska A, Rood JE, Ashenberg O, 
Cerami E, Coffey RJ, Demir E, et al. (2020). The Human Tumor Atlas Network: Charting Tumor 
Transitions across Space and Time at Single-Cell Resolution. Cell 181, 236–249. [PubMed: 
32302568] 

Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, Lieb DJ, Chen JH, 
Frederick DT, Barzily-Rokni M, et al. (2018). Defining T Cell States Associated with Response 
to Checkpoint Immunotherapy in Melanoma. Cell 175, 998–1013.e20. [PubMed: 30388456] 

Saelens W, Cannoodt R, Todorov H, and Saeys Y (2019). A comparison of single-cell trajectory 
inference methods. Nat. Biotechnol 37, 547–554. [PubMed: 30936559] 

Sandberg R (2014). Entering the era of single-cell transcriptomics in biology and medicine. Nat. 
Methods 11, 22–24. [PubMed: 24524133] 

Satija R, Farrell JA, Gennert D, Schier AF, and Regev A (2015). Spatial reconstruction of single-cell 
gene expression data. Nat. Biotechnol 33, 495–502. [PubMed: 25867923] 

Savas P, Virassamy B, Ye C, Salim A, Mintoff CP, Caramia F, Salgado R, Byrne DJ, Teo ZL, 
Dushyanthen S, et al. (2018). Single-cell profiling of breast cancer T cells reveals a tissue­
resident memory subset associated with improved prognosis. Nat. Med 24, 986–993. [PubMed: 
29942092] 

Schürch CM, Bhate SS, Barlow GL, Phillips DJ, Noti L, Zlobec I, Chu P, Black S, Demeter 
J, McIlwain DR, et al. (2020). Coordinated cellular neighborhoods orchestrate antitumoral 
immunity at the colorectal cancer invasive front. Cell 182, 1341–1359.e19. [PubMed: 32763154] 

See P, Lum J, Chen J, and Ginhoux F (2018). A Single-Cell Sequencing Guide for Immunologists. 
Front. Immunol 9, 2425. [PubMed: 30405621] 

Setty M, Tadmor MD, Reich-Zeliger S, Angel O, Salame TM, Kathail P, Choi K, Bendall S, Friedman 
N, and Pe’er D (2016). Wishbone identifies bifurcating developmental trajectories from single­
cell data. Nat. Biotechnol 34, 637–645. [PubMed: 27136076] 

Sheih A, Voillet V, Hanafi L-A, DeBerg HA, Yajima M, Hawkins R, Gersuk V, Riddell SR, Maloney 
DG, Wohlfahrt ME, et al. (2020). Clonal kinetics and single-cell transcriptional profiling of 
CAR-T cells in patients undergoing CD19 CAR-T immunotherapy. Nat. Commun 11, 219. 
[PubMed: 31924795] 

Shin J, Berg DA, Zhu Y, Shin JY, Song J, Bonaguidi MA, Enikolopov G, Nauen DW, Christian 
KM, Ming G, et al. (2015). Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades 
underlying Adult Neurogenesis. Cell Stem Cell 17, 360–372. [PubMed: 26299571] 

Slyper M, Porter CBM, Ashenberg O, Waldman J, Drokhlyansky E, Wakiro I, Smillie C, Smith­
Rosario G, Wu J, Dionne D, et al. (2020). A single-cell and single-nucleus RNA-Seq toolbox for 
fresh and frozen human tumors. Nat. Med 26, 792–802. [PubMed: 32405060] 

Soto LM, Bernal-Tamayo JP, Lehmann R, Balsamy S, Martinez-de-Morentin X, Vilas-Zornoza A, 
San-Martin P, Prosper F, Gomez-Cabrero D, Kiani N, et al. (2020). scMomentum: Inference of 
Cell-Type-Specific Regulatory Networks and Energy Landscapes. BioRxiv.

Davis-Marcisak et al. Page 25

Cancer Cell. Author manuscript; available in PMC 2022 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Specht AT, and Li J (2017). LEAP: constructing gene co-expression networks for single-cell RNA­
sequencing data using pseudotime ordering. Bioinformatics 33, 764–766. [PubMed: 27993778] 

Stahl PL, Salmen F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, Giacomello S, Asp M, 
Westholm JO, Huss M, et al. (2016). Visualization and analysis of gene expression in tissue 
sections by spatial transcriptomics. Science 353, 78–82. [PubMed: 27365449] 

Stein-O’Brien GL, Arora R, Culhane AC, Favorov AV, Garmire LX, Greene CS, Goff LA, Li Y, Ngom 
A, Ochs MF, et al. (2018). Enter the Matrix: Factorization Uncovers Knowledge from Omics. 
Trends Genet 34, 790–805. [PubMed: 30143323] 

Stein-O’Brien GL, Clark BS, Sherman T, Zibetti C, Hu Q, Sealfon R, Liu S, Qian J, Colantuoni C, 
Blackshaw S, et al. (2019). Decomposing Cell Identity for Transfer Learning across Cellular 
Measurements, Platforms, Tissues, and Species. Cell Syst 8, 395–411.e8. [PubMed: 31121116] 

Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, 
Satija R, and Smibert P (2017). Simultaneous epitope and transcriptome measurement in single 
cells. Nat. Methods 14, 865–868. [PubMed: 28759029] 

Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, Hao Y, Stoeckius M, Smibert 
P, and Satija R (2019). Comprehensive Integration of Single-Cell Data. Cell 177, 1888–1902.e21. 
[PubMed: 31178118] 

Stubbington MJT, Lonnberg T, Proserpio V, Clare S, Speak AO, Dougan G, and Teichmann SA (2016). 
T cell fate and clonality inference from single-cell transcriptomes. Nat. Methods 13, 329–332. 
[PubMed: 26950746] 

Subrahmanyam PB, Dong Z, Gusenleitner D, Giobbie-Hurder A, Severgnini M, Zhou J, Manos M, 
Eastman LM, Maecker HT, and Hodi FS (2018). Distinct predictive biomarker candidates for 
response to anti-CTLA-4 and anti-PD-1 immunotherapy in melanoma patients. J. Immunother. 
Cancer 6, 18. [PubMed: 29510697] 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy 
SL, Golub TR, Lander ES, et al. (2005). Gene set enrichment analysis: a knowledge-based 
approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102, 
15545–15550. [PubMed: 16199517] 

Sumatoh HR, Teng KWW, Cheng Y, and Newell EW (2017). Optimization of mass cytometry sample 
cryopreservation after staining. Cytometry A 91, 48–61. [PubMed: 27798817] 

Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, 
et al. (2009). mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382. 
[PubMed: 19349980] 

Tekman M, Batut B, Ostrovsky A, Antoniewski C, Clements D, Ramirez F, Etherington GJ, Hotz H-R, 
Scholtalbers J, Manning JR, et al. (2020). A single-cell RNA-seq Training and Analysis Suite 
using the Galaxy Framework. BioRxiv.

Tickle T, Tirosh I, Georgescu C, Brown M, and Haas B (2019). inferCNV of the Trinity CTAT Project. 
Https://Github.Com/Broadinstitute/InferCNV.

Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ, Rotem A, Rodman C, Lian 
C, Murphy G, et al. (2016). Dissecting the multicellular ecosystem of metastatic melanoma by 
single-cell RNA-seq. Science 352, 189–196. [PubMed: 27124452] 

Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, Goh M, and Chen J (2020). A benchmark 
of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol 21, 12. 
[PubMed: 31948481] 

Trapnell C (2015). Defining cell types and states with single-cell genomics. Genome Res 25, 1491–
1498. [PubMed: 26430159] 

Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen 
TS, and Rinn JL (2014). The dynamics and regulators of cell fate decisions are revealed by 
pseudotemporal ordering of single cells. Nat. Biotechnol 32, 381–386. [PubMed: 24658644] 

Tsujikawa T, Kumar S, Borkar RN, Azimi V, Thibault G, Chang YH, Balter A, Kawashima R, Choe G, 
Sauer D, et al. (2017). Quantitative Multiplex Immunohistochemistry Reveals Myeloid-Inflamed 
Tumor-Immune Complexity Associated with Poor Prognosis. Cell Rep 19, 203–217. [PubMed: 
28380359] 

Davis-Marcisak et al. Page 26

Cancer Cell. Author manuscript; available in PMC 2022 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://Github.Com/Broadinstitute/InferCNV


Tu AA, Gierahn TM, Monian B, Morgan DM, Mehta NK, Ruiter B, Shreffler WG, Shalek AK, and 
Love JC (2019). TCR sequencing paired with massively parallel 3’ RNA-seq reveals clonotypic 
T cell signatures. Nat. Immunol 20, 1692–1699. [PubMed: 31745340] 

Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P, Dhaene T, and Saeys Y 
(2015). FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry 
data. Cytometry A 87, 636–645. [PubMed: 25573116] 

Viratham Pulsawatdi A, Craig SG, Bingham V, McCombe K, Humphries MP, Senevirathne 
S, Richman SD, Quirke P, Campo L, Domingo E, et al. (2020). A robust multiplex 
immunofluorescence and digital pathology workflow for the characterisation of the tumour 
immune microenvironment. Mol. Oncol 14, 2384–2402. [PubMed: 32671911] 

Wagner A, Regev A, and Yosef N (2016). Revealing the vectors of cellular identity with single-cell 
genomics. Nat. Biotechnol 34, 1145–1160. [PubMed: 27824854] 

Way GP, Zietz M, Rubinetti V, Himmelstein DS, and Greene CS (2020). Compressing gene 
expression data using multiple latent space dimensionalities learns complementary biological 
representations. Genome Biol 21, 109. [PubMed: 32393369] 

Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, and Sancho D (2020). Dendritic cells in 
cancer immunology and immunotherapy. Nat. Rev. Immunol 20, 7–24. [PubMed: 31467405] 

Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang N-AAS, Andrews MC, Sharma P, Wang J, Wargo 
JA, Pe’er D, et al. (2017). Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 
Checkpoint Blockade. Cell 170, 1120–1133.e17. [PubMed: 28803728] 

Wolf FA, Angerer P, and Theis FJ (2018). SCANPY: large-scale single-cell gene expression data 
analysis. Genome Biol 19, 15. [PubMed: 29409532] 

Wu AA, Bever KM, Ho WJ, Fertig EJ, Niu N, Zheng L, Parkinson RM, Durham JN, Onners BL, 
Ferguson A, et al. (2020a). A Phase 2 Study of Allogeneic GM-CSF Transfected Pancreatic 
Tumor Vaccine (GVAX) with Ipilimumab as Maintenance Treatment for Metastatic Pancreatic 
Cancer. Clin. Cancer Res

Wu TD, Madireddi S, de Almeida PE, Banchereau R, Chen Y-JJ, Chitre AS, Chiang EY, Iftikhar 
H, O’Gorman WE, Au-Yeung A, et al. (2020b). Peripheral T cell expansion predicts tumour 
infiltration and clinical response. Nature 579, 274–278. [PubMed: 32103181] 

Xiang H, Ramil CP, Hai J, Zhang C, Wang H, Watkins AA, Afshar R, Georgiev P, Sze MA, Song 
XS, et al. (2020). Cancer-Associated Fibroblasts Promote Immunosuppression by Inducing ROS­
Generating Monocytic MDSCs in Lung Squamous Cell Carcinoma. Cancer Immunol. Res 8, 
436–450. [PubMed: 32075803] 

Xia C, Fan J, Emanuel G, Hao J, and Zhuang X (2019). Spatial transcriptome profiling by MERFISH 
reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc 
Natl Acad Sci USA 116, 19490–19499. [PubMed: 31501331] 

Xin Y, Kim J, Ni M, Wei Y, Okamoto H, Lee J, Adler C, Cavino K, Murphy AJ, Yancopoulos GD, et 
al. (2016). Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet 
cells. Proc Natl Acad Sci USA 113, 3293–3298. [PubMed: 26951663] 

Xu C, and Su Z (2015). Identification of cell types from single-cell transcriptomes using a novel 
clustering method. Bioinformatics 31, 1974–1980. [PubMed: 25805722] 

Yan Y, Leontovich AA, Gerdes MJ, Desai K, Dong J, Sood A, Santamaria-Pang A, Mansfield AS, 
Chadwick C, Zhang R, et al. (2019). Understanding heterogeneous tumor microenvironment in 
metastatic melanoma. PLoS ONE 14, e0216485. [PubMed: 31166985] 

Yost KE, Satpathy AT, Wells DK, Qi Y, Wang C, Kageyama R, McNamara KL, Granja JM, Sarin KY, 
Brown RA, et al. (2019). Clonal replacement of tumor-specific T cells following PD-1 blockade. 
Nat. Med 25, 1251–1259. [PubMed: 31359002] 

Yuan Y, and Bar-Joseph Z (2020). GCNG: graph convolutional networks for inferring gene interaction 
from spatial transcriptomics data. Genome Biol 21, 300. [PubMed: 33303016] 

Zhao J, Zhang S, Liu Y, He X, Qu M, Xu G, Wang H, Huang M, Pan J, Liu Z, et al. (2020). Single-cell 
RNA sequencing reveals the heterogeneity of liver-resident immune cells in human. Cell Discov 
6, 22.

Davis-Marcisak et al. Page 27

Cancer Cell. Author manuscript; available in PMC 2022 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Zheng C, Zheng L, Yoo J-K, Guo H, Zhang Y, Guo X, Kang B, Hu R, Huang JY, Zhang Q, et al. 
(2017a). Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. 
Cell 169, 1342–1356.e16. [PubMed: 28622514] 

Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, 
McDermott GP, Zhu J, et al. (2017b). Massively parallel digital transcriptional profiling of single 
cells. Nat. Commun 8, 14049. [PubMed: 28091601] 

Zhu C, Preissl S, and Ren B (2020). Single-cell multimodal omics: the power of many. Nat. Methods 
17, 11–14. [PubMed: 31907462] 

Zhu X, Ching T, Pan X, Weissman SM, and Garmire L (2017). Detecting heterogeneity in single-cell 
RNA-Seq data by non-negative matrix factorization. PeerJ 5, e2888. [PubMed: 28133571] 

Davis-Marcisak et al. Page 28

Cancer Cell. Author manuscript; available in PMC 2022 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1 - 
High dimensional transcriptomics and proteomics approaches for cancer profiling. Several 

high dimensional approaches are currently available to understand cancers cellular 

composition and inter-cellular interactions. A. Single-cell proteomics (CyTOF) provides 

cell composition and cell state information. B. Single-cell transcriptomics allows the same 

type of analysis, but its genome-wide coverage can also deliver cell trajectory predictions 

and T and B cell repertoires. In order to correlate cell composition and states to cellular 

interactions, spatial technologies are more informative than single-cell suspension analysis. 

C. With spatial proteomics and its single-cell resolution, it is possible to identify individual 

cell types and determine specific cell-to-cell interactions. D. Although it lacks single-cell 

resolution, spatial transcriptomics can predict cell interactions based on the molecular 

expression of receptors and ligands between different cell neighbors and discover driving 

oncogenic pathways among the different cell niches because it is not restricted to previously 

selected markers. The selection of which approach to apply will depend on what samples are 

available, how they are preserved, and what biological questions need answered.
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Figure 2 - 
Computational workflow and methods for single-cell and spatial analysis. Several open 

source benchmarked computational tools are available for high dimensional datasets 

analysis. Independent of the tools of choice, analytical steps are required in order to 

obtain reproducible results and identify markers to predict response and targets for new 

therapeutics. A. Single-cell and spatial data analysis will start with raw data preprocessing 

for (1) data clean-up to remove poor quality cells and normalization to correct for low 

or high numbers of reads associated with experimental artifacts; (2) batch correction to 

remove unwanted variation among samples due to experimental discrepancies; (3) and 
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data imputation to correct for the real data dropouts (zeros in the data). B. Subsequently, 

dimensionality reduction will allow data visualization and cell type annotation using 

clusterization tools that assign annotations based on specific markers expressed by 

each cluster. From there, the data is ready for downstream analysis depending on the 

methodology applied and biological questions. C. Molecular alterations can be identified 

using (1) differential expression analysis. In the case of transcriptomics data, it is also 

possible (2) to perform pathway analysis to identify drivers of cancer progression and 

responses to therapies and (3) to predict cell fate trajectories to understand tumor and TME 

modulation across time. D. From proteomics and transcriptomics data, it is possible to take 

a snapshot of the (1) molecular (e.g.: protein markers expression, cytokine genes expression, 

receptor-ligand expression), and (2) cellular interactions (e.g.: cell proximity analysis) that 

potentially drive the different features associated with cancer progression and response 

to therapies. E. Finally, multi-omics approaches allowing (1) protein and gene expression 

analysis from the same samples (CITE-seq) or (2) T and B cell repertoire analysis in 

combination with transcriptional profile add an additional layer of information that increases 

accuracy for cell types annotation and investigation of their role in cancer evolution and 

therapeutic responses.
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Figure 3 - 
Mouse to human studies using high dimensional analysis will drive the next generation of 

precision cancer immunotherapies. Single-cell and spatial technologies have the power to 

drive discoveries based on the cell types that are commonly affected by immunotherapies 

in preclinical and human tumors. Following identification of the commonalities between 

models, studies can focus on identifying molecular and cellular markers of response using 

multi-omics approaches. The combination of different layers of data will drive patient 

selection for the most adequate therapy, better clinical trial designs, and development of new 

immunotherapies.
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