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Abstract

Artificial neural networks, taking inspiration from biological neurons, have become an invalu-

able tool for machine learning applications. Recent studies have developed techniques to

effectively tune the connectivity of sparsely-connected artificial neural networks, which have

the potential to be more computationally efficient than their fully-connected counterparts

and more closely resemble the architectures of biological systems. We here present a nor-

malisation, based on the biophysical behaviour of neuronal dendrites receiving distributed

synaptic inputs, that divides the weight of an artificial neuron’s afferent contacts by their

number. We apply this dendritic normalisation to various sparsely-connected feedforward

network architectures, as well as simple recurrent and self-organised networks with spatially

extended units. The learning performance is significantly increased, providing an improve-

ment over other widely-used normalisations in sparse networks. The results are two-fold,

being both a practical advance in machine learning and an insight into how the structure of

neuronal dendritic arbours may contribute to computation.

Author summary

Neurons receive contacts from other cells on extensively branched processes known as

dendrites. When a contact is formed, activity in one cell is communicated to another by

altering the conductance of the receiving cell’s membrane and allowing an ionic current

to flow. A neuron with longer dendrites is intrinsically less excitable as these currents

can more easily dissipate both across the larger cell membrane and along the dendrites

themselves. We have recently shown that, in real neurons, this effect is precisely can-

celled by the increased number of contacts allowed by longer dendrites. This in turn

implies that the ability of a single synapse to influence a neuron is likely to be inversely

proportional to the total number of synapses that that neuron receives. Here we study

the computational implications of this effect using the well-established framework of

artificial neural networks.

Sparsely-connected artificial neural networks adapt their connectivity to solve defined

computational tasks such as classifying inputs and are at the forefront of modern machine

learning. We apply the normalisation implied by dendritic structure to such networks:
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artificial neurons receiving more contacts require larger dendrites and so each individual

contact will have proportionately less influence. Our normalisation allows networks to

learn desired tasks faster and more consistently. Our result is both a practical advance in

machine learning and a previously unappreciated way in which intrinsic properties of

neurons may contribute to their computational function.

Introduction

Artificial neural networks have had a huge impact over the last couple of decades, enabling

substantial advances in machine learning for fields such as image recognition [1], language

translation [2], and medical diagnosis [3]. The inspiration for these tools comes from biolog-

ical neuronal networks, where learning arises from changes in the strength of synaptic con-

nections between neurons through a number of different plasticity mechanisms [4–7]. The

development of artificial neural networks away from the limitations of biology has meant

that state-of-the-art artificial intelligence algorithms differ fundamentally from the biological

function of the brain. For example global backpropagation algorithms have access to infor-

mation that may be unavailable to real synaptic connections [8] (but see also [9]). Neverthe-

less, a number of biophysical principles have been successfully reintroduced, using salient

features of real neuronal networks to make advances in the field of artificial neural networks

[10–17]. Here we show how the dendritic morphology of a neuron, which influences both its

connectivity and excitability, produces an afferent weight normalisation that improves learn-

ing in such networks.

Real neurons receive synaptic contacts across an extensively branched dendritic tree. Den-

drites are leaky core conductors, where afferent currents propagate along dendritic cables

whilst leaking across the cell membrane [18]. Larger dendrites increase the number of poten-

tial connections a cell can receive, meaning that more afferent currents can contribute to depo-

larisation [19, 20]. Conversely, larger cells typically have lower input resistances, due to the

increased spatial extent and membrane surface area, meaning that larger synaptic currents are

necessary to induce the same voltage response and so bring a neuron to threshold [21, 22]. It

has recently been shown theoretically by Cuntz et al (2019) [23] that these two phenomena

cancel each other exactly: the excitability of neurons receiving distributed excitatory synaptic

inputs is largely invariant to changes in size and morphology. In addition, neurons possess sev-

eral compensatory mechanisms to help maintain firing-rate homeostasis through both synap-

tic plasticity regulating inputs [24, 25] and changes in membrane conductance regulating

responses [26, 27]. These results imply a consistent biophysical mechanism that contributes to

stability in neuronal activity despite changes in scale and connectivity. We find that this mech-

anism is general and demonstrate it for artificial neural networks trained using backpropaga-

tion. The goal here is two-fold: firstly we produce results that outperform the current state-

of-the-art for sparsely connected networks and secondly we demonstrate that learning is

improved by dendrites in the ideal case where all gradient information is available to every

synapse, as is the case with the traditional backpropagation algorithm.

Changing connectivity has traditionally not played much of a role in feedforward artificial

neural networks, which typically used fully-connected layers where each neuron can receive

input from all cells in the preceding layer. Sparsely-connected layers have, however, long been

used as alternatives in networks with a variety of different architectures [10]. Sparse connectiv-

ity more closely resembles the structure of real neuronal networks and a number of recent

studies have demonstrated that larger, but sparsely-connected, layers can be more efficient
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normalisation). The MNIST and MNIST-Fashion

datasets are included with the Github code. These

can also be downloaded from various places,

including at the time of writing, yann.lecun.com/

exdb/mnist/ and github.com/zalandoresearch/

fashion. Code for Figs 1 to 4 is written in Python

3.6. The networks in Figs 1, 2 and 4 are coded

using the standard Numpy package, and the

networks in Fig 3 make use of Keras with a

TensorFlow backend (keras.io). The application of

dendritic normalisation in Keras with TensorFlow

allows for immediate inclusion in Keras-based deep

learning models. The normalisation requires a

custom layer, constraint, and optimiser. Fig 5 uses

code written in Matlab 2020b, using the freely

available Trees Toolbox package.
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than smaller fully-connected layers both in terms of total parameter numbers and training

times [28–30]. The advantage in efficiency comes from the ability to entirely neglect synaptic

connections that do not meaningfully contribute to the function of the network. The dendritic

normalisation analysed in this paper has particular application here as it implies that relative

synaptic plasticity will depend on the number of connections that a neuron receives, not neces-

sarily their strengths. Sparse networks are also less likely to be overfitted to their training data

as sparse representations of inputs are forced to focus on essential features of the signal instead

of less-informative noise.

To produce an appropriate sparse connectivity a number of regularisation techniques have

been suggested; L1- and L0-regularisations [28, 31] both penalise (the latter more explicitly) the

number of connections between neurons during training. Mocanu et al (2018) [29], building

on previous work [32–34], have recently introduced an evolutionary algorithm to reshape

sparse connectivity, with weak connections being successively excised and randomly replaced.

This procedure applies to both feedforward and recurrent artificial networks, causing feedfor-

ward networks to develop connectivities based on the properties of their inputs and recurrent

networks to develop small-world and scale-free topologies similar to biological neuronal cir-

cuits [35]. Such networks have comparable performance to fully-connected layers, despite hav-

ing many fewer parameters to optimise.

Normalisation is another feature that has previously been shown to enhance learning in

neural networks. In particular Ioffe & Szegedy (2015) [36] introduced batch normalisation,

where the inputs over a given set of training data are normalised, and Salimans & Kingma

(2016) [37] introduced L2-normalisation, where afferent synaptic weights are normalised by

their total magnitude. The latter is reminiscent of heterosynaptic plasticity, where afferent syn-

apses across a neuron depress in response to potentiation at one contact in order to maintain

homeostasis [25, 38, 39]. Both techniques have been applied in fully-connected networks and

both work to keep neuronal activities in the region where they are most sensitive to changes in

inputs. Interestingly, existing studies of sparse networks do not typically include any normali-

sation. The normalisation that arises from the relationship between a real neuron’s morphol-

ogy and connectivity provides a particularly powerful, and biologically realistic, way to

normalise sparse inputs. Dividing the magnitude of individual synaptic weights by their num-

ber distributes activity across neurons whilst keeping each cell sensitive to changes in inputs;

neurons therefore encode signals from the proportion of presynaptic partners that are active,

providing a simple and broadly applicable technique to ensure faster convergence to optimal

solutions.

Results

Dendritic normalisation is an intrinsic property of spatially extended

neurons

Cuntz et al (2019) [23] have shown that neuronal excitability in response to distributed synap-

tic input is invariant of size. This invariance is exact for a homogeneous passive cable and

holds approximately for realistic heterogeneities in dendritic diameter, topology, input dynam-

ics, and active properties. We here extend the major result of that study to demonstrate explic-

itly how the influence of individual synapses, and of local changes in synaptic strength, depend

on neuronal size and hence afferent connectivity.

Given a closed dendritic cable of physical length l with constant radius r, axial resistivity ra,
and membrane conductivity gl, the electronic length can be written as L = l/λ for length con-

stant l ¼
ffiffiffiffiffiffi
r

2ragl

q
. The steady-state voltage at the root in response to a constant current influx of
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unit magnitude at electrotonic distance X is given by the transfer resistance RL(X)

RLðXÞ ¼
1

G1

coshðL � XÞ
sinhðLÞ

� �

ð1Þ

where G1 ¼ pr2
lra

is the input conductance at the sealed end of a semi-infinite dendrite with the

above properties. Given that afferent currents are typically integrated at the soma, a change in

magnitude Δsyn at a synapse at location X will result in a change in somatic voltage in response

to synaptic activation of Δv = RL(X)Δsyn. If inputs are distributed uniformly randomly along

the dendrite, then the mean (over all possible synaptic locations) mDv
and variance s2

Dv
of the

change in somatic voltage response to a perturbation of local synaptic strength are

mDv
¼

Dsyn

L G1
; s2

Dv
¼

D
2

syn

L2 G2
1

L2cothðLÞ þ L cosech2
ðLÞ � 1

� �
ð2Þ

There is thus an inverse relationship between neuronal size and the expected effect of a given

change in local synaptic weight on the somatic voltage, and hence spiking probability.

Dendrites receive synapses. In many cell types, dendrites that are no longer innervated

retract [42] and the statistical properties of neurite arbours imply a proportional relationship

between dendrite length and potential afferent connectivity, both for general axonal inputs

[43] and between individual pairs of neurons [20] (Fig 1A). The inverse relationship between

dendritic length and spiking probability therefore feeds into an inverse relationship between

the number of synaptic contacts a neuron receives, n, and the magnitude of any change in neu-

ron excitability resulting from local synaptic plasticity.

mDv
/

1

L
/

1

n
ð3Þ

This is the basis of dendritic normalisation. Similar results hold if the size of the soma is

increased (Eq 11 and Fig 1B, top panel, dashed lines), or synaptic transients are considered

(Eqs 14 and 18 and Fig 1B, middle and lower panels).

Dendritic normalisation and stochastic gradient descent

Let wi be the input weight vector to a given neuron i. Then the dendritic normalisation above

can be written as

wi ¼
s
kvik0

vi ð4Þ

where vi is an unnormalised weight vector of the same size as wi, kvik0 is the L0-norm of vi (the

number of non-zero elements), and s is a scalar that determines the magnitude of the vector

wi. The parametrisation here differs from that introduced by Salimans & Kingma (2016) [37]

for fully-connected networks with Euclidean normalisation in two fundamental ways. Firstly,

the magnitude parameter s is the same across all neurons as it reflects a conserved relationship

between connectivity and excitability. If a network were to include distinct classes of artificial

neurons with distinct synaptic integration properties, different values of s may be appropriate

for each class, but should not differ between neurons of the same class. Secondly, the L0-norm

kvi k0 is distinct from the Euclidean L2-norm in that it is almost surely constant with respect to

vi: Connections are not created or destroyed by stochastic gradient descent.
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The gradients of a general cost function C with respect to vi and s can be written as

rvi
C ¼

s
kvik0

rwi
C ;

@C
@s
¼
X

wi

1

kvik0

rwi
C � vi ð5Þ

whererwi
C is the usual gradient of C with respect to the full weight vector wi and the sum in

the second equation is over all weight vectors in the network. Note that kvik0 is almost every-

where constant during gradient descent as it is the number of non-zero elements of vi
(although this may change between epochs under the evolutionary connectivity algorithm).

Examples of C are given in the Methods (Eqs 22 and 24). An interesting consequence of these

Fig 1. Dendritic normalisation improves learning in sparse artificial neural networks. A, Schematic of dendritic normalisation. A neuron receives

inputs across its dendritic tree (dark grey). In order to receive new inputs, the dendritic tree must expand (light grey), lowering the intrinsic excitability

of the cell through increased membrane leak and spatial extent. B, Expected impact of changing local synaptic weight on somatic voltage as a function of

dendrite length and hence potential connectivity. Top: Steady state transfer resistance (Eq 10) for somata of radii 0, 5, 10, and 15 μm. Shaded area shows

one standard deviation around the mean in the 0 μm case (Eq 11). Middle: Maximum voltage response to synaptic currents with decay timescales 10, 50,

and 100 ms (Eqs 14 and 16). Shaded area shows one standard deviation around the mean in the 100 ms case (Eq 15). Bottom: Total voltage response to

synaptic currents with the above timescales (all averages lie on the solid line, Eq 17). Shaded areas show one standard deviation around the mean in each

case (Eq 18). Intrinsic dendrite properties are radius r = 1 μm, membrane conductivity gl = 5 × 10−5 S/cm2, axial resistivity ra = 100Ocm, and specific

capacitance c = 1 μF/cm2 in all cases and Δsyn = 1 mA. C, Schematic of a sparsely-connected artificial neural network. Input units (left) correspond to

pixels from the input. Hidden units (centre) receive connections from some, but not necessarily all, input units. Output units (right) produce a

classification probability. D, Example 28 × 28 pixel greyscale images from the MNIST [40] (left) and MNIST-Fashion [41] (right) datasets. The MNIST

images are handwritten digits from 0 to 9 and the MNIST-Fashion images have ten classes, respectively: T-shirt/top, trousers, pullover, dress, coat,

sandal, shirt, sneaker, bag, and ankle boot. E, Learning improvement with dendritic normalisation (orange) compared to the unnormalised case (blue).

Top row: Log-likelihood cost on training data. Bottom row: Classification accuracy on test data. From left to right: digits with M = 30 hidden neurons,

fashion with M = 30, digits with M = 100, fashion with M = 100, digits with M = 300, fashion with M = 300. Solid lines show the mean over 10 trials and

shaded areas the mean ± one standard deviation. SET hyperparameters are ε = 0.2 and z = 0.15.

https://doi.org/10.1371/journal.pcbi.1009202.g001
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equations is that neurons with more afferent connections will have smaller weight updates,

and so be more stable, than those with fewer afferent connections.

Dendritic normalisation improves learning in sparsely-connected

feedforward neural networks

We consider the performance of sparse neural networks with and without dendritic normali-

sation on the MNIST and MNIST-Fashion datasets (Fig 1C and 1D). Connections between the

input and hidden layers are established sparsely (Fig 1C) using the sparse evolutionary training

(SET) algorithm introduced by Mocanu et al [29]. Briefly, connections are initiated uniformly

randomly with probability ε to form an Erdős-Rényi random graph [44]. Each neuron will

therefore receive a variable number of afferent contacts. After each training epoch, a fraction z

of the weakest contacts in the entire layer are excised and an equal number of new random

connections are formed between different neurons. This means that the number of connec-

tions received by each neuron will typically change between epochs. New connection weights

are distributed normally with mean 0 and standard deviation 1.

For sparse networks, trained using stochastic gradient descent and SET, with one hidden

layer consisting of 30, 100, and 300 neurons, with connection probability ε = 0.2 and SET exci-

sion rate z = 0.15, the normalised network consistently learns faster than the unnormalised

control network (orange lines against blue lines). This result holds across both the cost on the

training sets and the accuracy on the test sets for both datasets and across all network sizes,

indicating a robust improvement in learning performance. In addition, the variability between

different independent training regimes (shaded areas in Fig 1E show mean plus or minus one

standard deviation over 10 independently initiated training regimes) is reduced for these

experiments.

Evolution of connectivity

It is possible to visualise the connection structure that results from training the control and

normalised networks on the MNIST data (Fig 2). Fig 2A shows how the number of efferent

connections from each input neuron (organised as pixels) changes with the number of training

epochs. Initially, the connections are randomly distributed and have no spatial structure, but

the SET algorithm gradually imposes a heavier weighting on the central input neurons as train-

ing progresses. This feature was shown before by Mocanu et al (2018) [29] as central pixels are

likely to be more informative over the relevant datasets. Comparing the control (left, blue) and

normalised (right, orange) networks, it is interesting to note that the bias towards central pixels

is less strong in the normalised case: Input neurons over a relatively broad area are strongly

connected to the hidden layer.

Postsynaptically, the number of contacts received by each hidden neuron is less variable in

the normalised case (Fig 2B, left column), the weights of these contacts are typically smaller in

absolute value and less dispersed (Fig 2B, central column); the resultant weighted inputs over

the test data to hidden neurons are therefore more consistent (Fig 2B, right column). The nor-

malisation appears to make better use of neural resources by distributing connections and

weights more evenly across the available cells, whilst keeping expected inputs closer to 0, the

steepest part of the activation function, where responses are most sensitive to inputs, during

early training. In addition, the smaller connection weights suggest that normalised networks

may be even more robust to overfitting than the equivalent unnormalised sparse network [31].

This is supported by the increased improvement in the case of more complex networks, both

in terms of more hidden units and more layers, as well as the greater improvement in evalua-

tion accuracy compared to training cost (Figs 1 and 3).
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Improved training in deeper feedforward networks

The improvement in learning performance generalises to deeper networks with multiple hid-

den layers (Fig 3A) and different levels of sparsity (S1 Fig), as well as convolutional networks

with a sparsely connected layer following the max pooling layer (Fig 3C). In all cases, final clas-

sification performance and training speed are improved by dendritic normalisation (orange

versus blue lines in Fig 3B and 3D for the MNIST-Fashion dataset). Interestingly, the reduction

in trial-to-trial variability seen in single-layer networks (Fig 1) does not occur here. Dendritic

normalisation is therefore applicable, and beneficial, as a universal technique for sparse layers

in deep networks. The improvement in performance is not limited to artificial neurons with a

sigmoid activation function. When neurons instead have non-saturating threshold linear acti-

vations the dendritic normalisation again improves learning (Fig 3E).

Comparison with other normalisations

Dendritic normalisation is just one of many mechanisms to promote and stabilise learning

and activity in real neurons. Real neurons are likely to experience not only passive dendritic

normalisation but also active modifications of synaptic weights under heterosynaptic plasticity

[25, 38]. We study this in artificial neurons by combining the L0-normalisation introduced

here with the L2-normalisation of Salimans & Kingma (2016) [37]. Here, inputs to a cell are

normalised by both number and magnitude

wi ¼
gi

kvik0
kvik2

vi ð6Þ

Fig 2. Evolution of synaptic weights. A, Number of efferent contacts from each input neuron (pixel) to neurons in the hidden layer as the

weights evolve. The left panels (blue) show the unnormalised case and the right (orange) the normalised case. B, Afferent contacts for the

unnormalised (blue) and normalised (orange) cases. From left to right: Distribution of the number of afferent contacts arriving at each hidden

neuron, weights, and mean weighted input to each hiddden neuron over the test set. All panels show the average over 10 trials on the original

MNIST dataset with hyperparameters M = 100, ε = 0.2, and z = 0.15. Dashed lines show where the vertical axis has been truncated to preserve

the scale.

https://doi.org/10.1371/journal.pcbi.1009202.g002
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Fig 3. Improved training in deeper networks and comparison with other norms. A, Schematic of a sparsely connected network with 3 hidden layers. The output

layer is fully connected to the final hidden layer, but all other connections are sparse. B, Learning improvement with dendritic normalisation (orange) compared to

the unnormalised control case (blue) for networks with 2 (top) and 3 (bottom, see panel A) sparsely-connected hidden layers, each with M = 100 neurons. Top of

each: Log-likelihood cost on training data. Bottom of each: Classification accuracy on test data. C, Schematic of a convolutional neural network [46] with 20 5 × 5

features and 2 × 2 maxpooling, followed by a sparsely connected layer with M = 100 neurons. D, Improved learning in the convolutional network described in C for

an unnormalised (blue) and normalised (orange) sparsely-connected layer. Top: Log-likelihood cost on training data. Bottom: Classification accuracy on test data. E,

Improved learning in a network with one hidden layer with M = 100 threshold-linear neurons for unnormalised (blue) and normalised (orange) sparsely-connected

layers. Top: Log-likelihood cost on training data. Bottom: Classification accuracy on test data. F, Contribution of different norm orders to the learning gradients of

neuron with different numbers of afferent connections and different mean absolute connection weights. Norms are (left to right and top to bottom): L0 (dendritic

normalisation), L1, L2 [37], joint L1 and L2, joint L0 and L1, and joint L0 and L2 (Eq 6). Values are scaled linearly to have the a maximum of 1 for each norm order. G,

Comparison of dendritic (orange), heterosynaptic (green [37]), and joint (red, Eq 6) normalisations. Top: Log-likelihood cost on training data. Bottom: Classification

accuracy on test data. H, Comparison of test accuracy under different orders of norm p after (from top to bottom) 1, 5, 10, and 20 epochs. Pink shows constant (Eq 8)

and olive variable (Eq 9) excitability. Solid lines show the mean over 20 trials and shaded areas and error bars the mean ± one standard deviation. All results are on

the MNIST-Fashion dataset. Hyperparameters are ε = 0.2 and z = 0.15.

https://doi.org/10.1371/journal.pcbi.1009202.g003
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where kvik2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXni

j¼1

�
�vi;j
�
�2

q
is the L2-norm of vi. The uniform excitability parameter s is now

contained in the individual magnitudes gi that differ for each cell. The gradients of the cost

function C with respect to vi and gi can now be written as

rvi
C ¼

gi
kvik0

kvik2

rwi
C �
rgi

C
kvik2

vi

� �

; rgi
C ¼

gi
kvik0

kvik2

rwi
C � vi ð7Þ

With both normalisations applied, well-connected neurons will again tend to change afferent

weights more slowly, as will cells with lower excitability gi. In consequence, both cells receiving

a few strong connections and those receiving many, individually less effective, connections

will be more stable and relatively slow learning. The relative strength of these different plastici-

ties are plotted as functions of both contact number and mean absolute weight in Fig 3F. Here

we can see the relative gradient magnitudes that would be expected to arise from using differ-

ent norms on neurons receiving sparse afferents with probability � = 0.2 and normally distrib-

uted weights from an input layer of size 784 (the standard MNIST size). All values are scaled

linearly for comparison so that the largest magnitude for each norm is 1; in practice similar

equalisations would be achieved by the automatic optimisation of the parameters s and gi as

described above. The smallest values for each norm can therefore differ. The top row shows

the individual norms of different orders, whilst the bottom shows their combinations. Den-

dritic L0-normalisation gives a gradient magnitude that is independent of mean connection

weight, whereas the other norms depend on both features in combination. Combining two

norms also typically leads to a larger relative difference in gradient magnitudes across the

space of possible afferent connectivities.

The effects of dendritic (orange) and heterosynaptic (green) normalisations can be seen in

Fig 3G. Here, a single layer of 100 hidden neurons is trained on the MNIST-Fashion data.

Both normalisations individually have similar performance, with a slight advantage for the

dendritic normalisation (orange): the mean test accuracy after 50 epochs is 83.75% compared

to 82.66% for the heterosynaptic normalisation over 20 trials, and the accuracy is consistently

higher. Interestingly, the joint normalisation given by Eq 6 (red lines in Fig 3G) reaches almost

its highest level of accuracy after a single epoch and does not improve substantially thereafter.

As neurons with many weak connections learn relatively slowly when both normalisations are

in place (Fig 3F, lower right corners) it appears that good use is made of existing connectivity,

but that less informative connections are not selectively weakened enough to be excised by the

SET algorithm. When the L0 norm alone is applied, the strength of the individual connections

is irrelevant for the learning rate. The joint mechanism appears well suited to the sparse, but

static, connectivity of the first epoch before SET has been applied whilst lacking the power of

individual normalisations, either dendritic or heterosynaptic, to identify less necessary synap-

ses. Whilst it is possible to exaggerate the biological relevance of learning through backpropa-

gation, it is interesting to note that the dendritic L0-normalisation is intrinsic to real neurons,

whilst heterosynaptic-like L2-normalisation can be regulated [25].

Biologically plausible learning rules often include normalisation of afferent weights to

ensure stability and improve convergence. Both Oja’s rule [6] and the unsupervised learning

procedure introduced by Krotov & Hopfield (2019) [17], for example, ensure convergence to

Lp-normalised afferent weights for p� 2. Whilst a direct comparison with such distinct learn-

ing rules is beyond the scope of this study, many such normalisations rely on the Lp weight

norm for some value of p with either constant (s in Eq 4) or variable (gi in Eq 6) excitability
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ratios. For p� 1 the general gradients provided by such Lp-normalisations are

rvi
C ¼

s
kvikp

rwi
C �
rwi

C � vi
kvik

p
p

v p� 1

i

 !

;
@C
@s
¼
X

wi

1

kvikp
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for constant excitability and

rvi
C ¼

gi
kvikp

rwi
C �

girgi
C

kvik
p
p

v p� 1

i ; rgi
C ¼

gi
kvikp

rwi
C � vi ð9Þ

for variable excitability. In all cases, higher Lp-norms imply slower learning; increasing the

value of p means that the norms kvikp become increasingly insensitive to the smallest afferent

weights.

Fig 3H shows the mean test accuracy for 100 hidden neurons on the MNIST-Fashion data

after 1, 5, 10, and 20 training epochs as a function of the order p of normalisation for p = 0, 1,

2, 3, 4, and 5. The pink lines show the case of constant excitability (Eq 8) and the olive lines

variable excitability (Eq 9). All normalisations show substantial improvement over the control

case for the same task (Fig 1E) and performance is fairly similar across a broad range of param-

eters. The mechanism is likely to be similar in all cases by keeping neuronal activation within

a useful range. The dendritic normalisation (L0-norm in pink) and L1-norm with variable

excitability typically have the best accuracies after the first epoch. The mean accuracies ± one

standard deviation for the constant excitability L0- and variable excitability L1-norms are

0.8360 ± 0.0508 and 0.8402 ± 0.0055 after 10 epochs and 0.8423 ± 0.0040 and 0.8402 ± 0.0074

after 20 epochs. The results are sufficiently consistent that the accuracies are significantly dif-

ferent in both cases, with p-values less than 10−5 under a Welch’s T-test [45].

Interestingly, for all orders except p = 1, the constant excitability case has better perfor-

mance than the situation with variable excitability and this gap increases with p. In the con-

stant excitability case, a single parameter s determines the postsynaptic response to afferent

weights with a given norm, whereas in the variable case each neuron i has its own response gi
to normed inputs. It appears that maintaining a comparable excitability between neurons is

superior in terms of learning to allowing this to vary between cells. This is an interesting obser-

vation as standard normalisations retain neuron-specific excitability, and this is assumed to be

beneficial for their function [36, 37]. Constant excitability appears to act as a regularisation,

finding the most appropriate single excitability to prevent overfitting (as can be seen in the dif-

ferences between training cost and test accuracy in Fig 3G), and incorporates information

about the gradients of all individual connection weights into a general tuning of the effective

learning rate (Eq 5). A future study could identify precisely when these features are more bene-

ficial than the greater flexibility inherent in neuron-specific excitability.

Performance on standard benchmarks

As a final test in feedforward artificial neural networks, we show that dendritic normalisation

can enhance the accuracy of artificial neural networks on common benchmark datasets. We

compare dendritically normalised sparse networks to the published results of comparable sparse

networks in Table 1, in each case replicating the published network size and hyperparameters.

It should be noted that the sparse results quoted in the literature are often in the context of

improving the performance of fully-connected neural networks with the same architecture

despite having many fewer parameters. In most cases, applying dendritic normalisation

improves upon the published performance. The one exception is the COIL-100 data where the
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training/test split is random; using slightly different data to Pieterse & Mocanu (2019) [30]

could explain this difference.

Sparse recurrent networks with backpropagation through time

A further application of sparsity lies in the field of recurrent artificial neural networks [7, 8],

where intralayer connectivity allows information about previous inputs to persist and propa-

gate. Such networks have found natural applications in speech recognition [47] and translation

[2]. We consider the effect of dendritic normalisation in a network with sparse recurrent con-

nectivity designed to perform binary addition (Fig 4A). The task is relatively simple, two input

neurons apply a binary sequence of digits in the range from 0 to 250 to a sparse recurrent layer

of 50 units that must both remember the running total and incorporate the new information,

but it nevertheless highlights the role of dendritic normalisation alongside this form of connec-

tivity. As the dataset in this case is unlimited, epochs of length 1000 are used for the SET pro-

cess. Here, both networks are well able to learn the task when outputs are rounded to the

nearest integer (Fig 4B, bottom), but dendritic normalisation leads to a faster reduction in

mean-squared error of the raw output (orange versus blue in (Fig 4B, top).

Interestingly, these results appear to arise from a notably different connectivity structure.

After 100 epochs the control network develops a small number of highly-connected neurons

and many less-connected neurons (Fig 4C, left, blue bars), whereas the dendritically normal-

ised network favours many more neurons receiving inputs from all others and an input

degree distribution that tails off towards lower afferent connectivity (Fig 4C, left, orange

bars). Both networks develop relatively low average shortest path lengths, but the dendritic

normalisation leads to especially short paths. The initial average shortest path length of the

network is 1.7664 ± 0.0077 in both cases; the SET algorithm in the control case reduces this

to 1.5278 ± 0.2155 and with dendritic normalisation it falls to 1.1458 ± 0.1830. In terms of

weights, the dendritic normalisation again leads to relatively smaller magnitudes than the

control case.

Combining a feedforward task with a recurrent one means that neurons must balance two

competing streams of information. The above network can be adapted to include sparse feed-

forward connectivity (Fig 4D). In this case the spaces of all possible feedforward and recurrent

connections are considered together so that weaker feedforward connections are effectively in

competition with weaker recurrent connections to avoid excision by the SET algorithm. For

the dendritic normalisation, different values of s are used for the sets of feedforward and recur-

rent connections, potentially reflecting distinguishable synaptic types or input locations [48].

The sparsity of input makes the task slightly harder and both networks have lower accuracies

than in the case of dense feedforward connectivity (Fig 4E, top). Again, the dendritic normali-

sation allows a faster reduction in mean-squared error of the raw output (orange versus blue

Table 1. Table of performance for benchmark datasets compared to published results on sparse networks. We replicate the published architecture in each case for a

fair comparison: For the original MNIST dataset and CIFAR-10 datasets, Mocanu et al (2018) [29] used three sparsely-connected layers of 1000 neurons each and 4% of

possible connections existing. Pieterse & Mocanu (2019) [30] used the same architecture for the COIL-100 dataset. For the Fashion-MNIST dataset, Pieterse & Mocanu

(2019) [30] used three sparsely-connected layers of 200 neurons each, with 20% of possible connections existing.

Dataset Size Accuracy

Training Test Classes Control (Source) Normalisation

MNIST [40] 60, 000 10, 000 10 98.74% [29] 99.63%

Fashion-MNIST [41] 60, 000 10, 000 10 89.01% [30] 92.23%

CIFAR-10 [67] 50, 000 10, 000 10 74.84% [29] 77.43%

COIL-100 [68] 5, 764 1, 436 100 98.68% [30] 98.47%

https://doi.org/10.1371/journal.pcbi.1009202.t001
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in (Fig 4E, bottom). In this case, the connectivities do not develop the structures seen in the

case when only the recurrent synapses are sparse and undergo SET (Fig 4F, left). The competi-

tion between the two streams of input eliminates the tendency for well-connected nodes to

appear. It may well be beneficial for cells to structurally isolate inputs with different sources.

Whilst in the control case, the sets of feedforward and recurrent weights develop similar mag-

nitudes (Fig 4F, right top), the dendritic normalisation favours weak feedforward and strong

recurrent connectivity (Fig 4F, right bottom). The weak feedforward connections are, how-

ever, much more widespread with 92.8 ± 4.4% of recurrent layer cells receiving connections

from both input neurons in contrast to 17.0 ± 3.8% in the control case.

It should be noted that in contrast to the strictly feedforward case (Figs 1–3), dendritic nor-

malisation leads to greater trial-to-trial variability in learning performance in the case of sparse

feedforward and recurrent connectivity, despite typically producing better results (Fig 4E). It

appears that the weaker feedforward connections are particularly prone to excision by the SET

Fig 4. Sparse recurrent networks with backpropagation through time. A, Schematic of a network with dense feedforward and sparse recurrent connectivity. B,

Learning improvement with dendritic normalisation (orange) compared to the unnormalised control case (blue) for the above network with M = 50 neurons adding

binary numbers up to 250. Top: Mean-square error cost. Bottom: Classification accuracy. Solid lines show average over 100 repetitions and shaded regions in the bottom

graph show the mean ± on standard deviation (truncated to be below an accuracy of 1). C, Final distributions of afferent connectivity degrees (left) and weights (right) in

each case after 100 epochs. D, Schematic of a network with sparse feedforward and recurrent connectivity. E, Learning improvement with dendritic normalisation

(orange) compared to the unnormalised control case (blue) for the above network with M = 50 neurons adding binary numbers up to 250. Top: Mean-square error cost.

Bottom: Classification accuracy. Solid lines show average over 100 repetitions and shaded regions in the bottom graph show the mean ± on standard deviation

(truncated to be below an accuracy of 1). F, Final distributions of recurrent afferent connectivity degrees (left), feedforward weights (right, top in each case), and

recurrent weights (right, bottom in each case) after 100 epochs. Hyperparameters are ε = 0.3 and z = 0.15.

https://doi.org/10.1371/journal.pcbi.1009202.g004
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protocol and that this destroys much of the information contained in their weights; a modifica-

tion of the threshold for removal between the two sets of connections would be an interesting

extension to address this issue.

Self-organisation in networks of spatially extended spiking neurons

We have demonstrated that the normalisation properties of dendrites improve learning in

sparsely-connected artificial neural networks with a variety of different architectures, both

feedforward and recurrent. In all cases, supervised learning takes place using backpropagation

with synaptic magnitudes and gradients constrained by explicit rules (Eqs 4 and 5). As a final

example, we show that if spatially extended neurons are used it is not necessary to impose such

external constraints; dendritic normalisation is an intrinsic property and naturally leads to bet-

ter learning.

In Fig 5A we plot an example network of excitatory (green) and inhibitory (red) dendritic

trees (see Methods for details). Axons are not treated explicitly and hence there are no spatial

constraints on connectivity, but sparse current-based synapses are initially randomly distrib-

uted so that 30% of all possible excitatory-excitatory and 70% of both all possible excitatory-

inhibitory and inhibitory-excitatory connections exist and impinge uniformly randomly

on the dendritic trees of the postsynaptic cells. Dendrites are passive and the neurons are

equipped with a spiking mechanism so that if the somatic voltage exceeds a certain threshold

a spike is generated. Dendrites are then resized to match the number of their afferent con-

tacts. As we now explicitly differentiate between excitatory and inhibitory contacts, we draw

initial local synaptic absolute weights from a strictly positive gamma distribution (Eq 25) and

assign the appropriate sign. The network learns a simple reservoir computing task inspired

by that in [49]. Sequences of inputs are randomly presented to non-overlapping subpopula-

tions of excitatory neurons and the recurrent excitatory-excitatory connectivity undergoes

spike-timing dependent plasticity [5]. After a number of presentations of stimulus forming

Fig 5. Self-organisation in networks of spatially extended spiking neurons. A, Spatially extended neurons with self-organised recurrent connectivity. Green dendrites

are excitatory neurons and red dendrites are inhibitory neurons. B, Top: Distributions of dendrite lengths before (light green) and after (dark green) 50 epochs of

learning. Bottom: Distributions of number of afferent contacts before (light green) and after (dark green) 50 epochs of learning. C, Distributions of local synaptic weights

before (light green) and after (dark green) 50 epochs of learning. D, Distributions of somatic voltages induced by individual synapses before (light green) and after (dark

green) 50 epochs of learning. All distributions are over stimuli with different numbers of repeated elements. E, Prediction performance of the spatially-extended neurons

as a function of the number of repeated central elements. Error bars show ± one standard deviation over 5 repetitions.

https://doi.org/10.1371/journal.pcbi.1009202.g005
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an epoch, SET is applied to excise and replace the weakest excitatory-excitatory connections,

and dendrites are resized to match their current level of innervation. After a number of

epochs, synaptic plasticity is stopped and a standard artificial neural network is then trained

to predict the next element in the input sequence from the instantaneous activity of the excit-

atory cells.

Fig 5 shows the performance of this network. The lengths of the excitatory dendritic trees

change to reflect their afferent connectivity, a broader distribution of connectivities and sizes

emerging Fig 5B). Local synaptic weights initially follow the specified gamma distribution (Fig

5C, light green) and are independent of the size of the neuron they impinge upon. After train-

ing, the local weights form a peaked distribution with reduced variability (Fig 5C, dark green).

The combination of local weight and postsynaptic input size can be seen in the distribution

of somatic voltages induced by each synaptic contact (Fig 5D), tending to be broader than

the local distributions in both the untrained, but still dendritically normalised, and trained

networks.

In terms of performance, the activity of the trained network forms a pattern that can be

used to predict the next input in the sequence. The difficulty of this task depends upon the

number of repeated elements in the input sequences (Fig 5E), but the spatially extended net-

work is able to learn this task well for a range of different sequence lengths. In contrast the

point neuron equivalent did not converge to a stable pattern of activity (see Methods). The

original SORN network [49] employed an explicit L1-normalisation alongside homeostatic

spike-threshold adjustment [26] to maintain stable activity in the network; the implicit nor-

malisation arising here from the sizes of the dendritic trees achieves a qualitatively similar

result in allowing the network to converge to a stable state.

Discussion

We have shown that the fact that excitatory synapses are typically located on dendrites pro-

duces an L0 normalisation of synaptic inputs that improves the learning performance of sparse

artificial neural networks with a variety of different structures. Such dendritic normalisation

constrains the weights and expected inputs to be within relatively tight bands, potentially mak-

ing better use of available neuronal resources. Neurons respond more to the proportion of

their inputs that are active rather than the absolute number and highly-connected neurons are

relatively less excitable. We believe that such a normalisation procedure is robust and should

be applied to improve the performance of feedforward sparse networks.

Other results on normalisation [36, 37] have also demonstrated improvements in training

performance in fully-connected feedforward networks. Such approaches work by keeping neu-

rons relatively sensitive to changes in inputs and our results here can be seen as the sparse, and

biologically justified, analogue, with similarly simple and broad applicability to the L2-normali-

sation introduced by Salimans & Kingma (2016) [37]. In situations of dynamic connectivity,

the dendritic normalisation outperforms other techniques. The comparison between the het-

erosynaptic plasticity-like L2-normalisation and our dendritic L0-normalisation is particularly

interesting. In real neurons the former relies on actively re-weighting afferent contacts [25, 38]

whereas the latter can arise purely from the passive properties of dendritic trees, and indeed

would typically need the expenditure of additional energy to counteract. Neurons often display

complementary functionality between passive structure and active processes, for example in

the equalisation of somatic responses to synaptic inputs at different locations both dendritic

diameter taper [50] and active signal enhancement [51, 52] play a role. Synaptic normalisation

is in a similar vein. The effects are, however, distinct in some ways: while both normalisations

keep neurons sensitive to inputs, the responses to learning differ. Heterosynaptic plasticity
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enhances changes in the relative weighting of contacts, whereas dendritic normalisation

increases the stability of well-connected neurons while allowing faster learning in poorly con-

nected cells (Eq 5). This makes dendritic normalisation particularly suited to situations with

evolving connectivity.

In the context of biological realism, the normalisation here has much room for develop-

ment. We sought a straightforwardly demonstrable and quantifiable computational role for

dendritic normalisation and so focussed on the most well-developed theories within artificial

neural networks [53]. Such networks have a number of features that are impossible to imple-

ment in the brain, so more investigation into the benefits of size-invariant excitability in liv-

ing systems is necessary. Firstly, a single artificial neuron can form connections that both

excite and inhibit efferent cells, a phenomenon which is not seen in the connectivity of real

neurons [54]. It is possible to regard the mix of excitatory and inhibitory connections as a

functional abstraction of real connections mediated by intermediate inhibitory interneurons

[55], but a more satisfying picture may emerge by considering distinct inhibitory popula-

tions of cells as we did in our self-organised network. Accordingly, it would be interesting to

test the effects of implementing two distinct experimentally observed types of compartmen-

tal inhibition including somatic and dendritic inhibitory connections [56, 57]. Secondly, we

mostly train our networks using supervised backpropagation which employs global informa-

tion typically unavailable to real synaptic connections. Whilst there is emerging evidence

that biological networks are able to approximate the backpropagation algorithm in some cir-

cumstances [9, 58, 59], a variety of other learning algorithms are also regarded as biologically

plausible models for training networks [6, 7, 12, 16, 17]. Such algorithms are another natural

fit for our normalisation as it too is implemented biophysically through the morphology of

the dendritic tree. Thirdly, the neurons here generally are rate-based with either saturating

or non-saturating outputs. Spiking networks can have different properties [11] and spikes

could be incorporated into any of the approaches described above. The final sections of the

results, with sparse recurrent and self-organising networks, address some of these issues by

showing the contribution of dendritic normalisation to different types of learning and show-

ing its generality as a computational principle, but there are many more interesting avenues

to explore.

Dendrites in general have much more to offer in terms of artificial neural computations.

Synaptic connections are distributed spatially over branched dendritic trees, allowing for a

number of putative computational operations to occur within a single cell [60]. Dendrites

are able to passively amplify signals selectively based on their timing and direction [18] and

actively perform hierarchical computations over branches [61, 62]. Cuntz et al (2019) [23]

noted that while mean neuronal firing rates are size-independent, the timing of individual

spikes is not necessarily unaffected by morphology [22]. This means that signals encoded by

rates are normalised whereas those encoded by spike timing may not be, implying that the two

streams of information across the same circuit pathways are differentially affected by changing

connectivity. Dendrites additionally hold continuous variables through their membrane

potential and conductances that shape ongoing signal integration [63]. Such properties have

potential computational roles that, while sometimes intuitive, have yet to be systematically

studied at the level of neuronal circuits.

Overall, in line with the spirit of the emerging fruitful interaction between artificial intelli-

gence and neuroscience [53, 64], this study has two major consequences. The first is a practical

normalisation procedure that significantly improves learning in sparse artificial neural net-

works trained using backpropagation. The procedure can be used effectively for any sparsely-

connected layers in shallow or deep networks of any architecture. Given that sparse layers can

display better scalability than fully-connected layers [29], we believe that this procedure could
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become standard in deep learning. Furthermore, the biological plausibility of the procedure

means that it is highly appropriate as a component of more physiologically realistic learning

rules. Secondly, we have taken the insights from Cuntz et al (2019) [23] and demonstrated a

previously unappreciated way that the structure of dendrites, in particular their properties as

leaky core conductors receiving distributed inputs, contributes to the computational function

of neuronal circuits.

Methods

Cable theory

Eq 1 for the transfer resistance of a homogenous cable is derived in [23], following standard

results in [18]. For a dendrite with an electrotonically compact soma of radius ρ, the soma has

a leak conductance of Gs(ρ) = 4πρ2 gl. In this case the transfer resistance (Eq 1) becomes

RLðXÞ ¼
coshðL � XÞ

G1ðsinhðLÞ þ GsðrÞcoshðLÞÞ
ð10Þ

and the moments of the somatic voltage change in response to synaptic plasticity at a random

location are

mDv
¼

tanhðLÞDsyn

L G1ðtanhðLÞ þ GsðrÞÞ
; s2

Dv
¼ m2

Dv
L2cothðLÞ þ L cosech2

ðLÞ � 1
� �

ð11Þ

The deviation from perfect inverse proportionality therefore depends on the ratio between

tanh(L) and Gs(ρ). For positive L, tanh grows monotonically between 0 and 1 and given typical

values of ρ = 5, 10, and 15 μm, the steady state transfer resistances are plotted in Fig 1B (top

panel).

For transient inputs, it is also necessary to consider the membrane specific capacitance c
and time constant τl = c/gl, giving a somatic impulse response at normalised delay T = t/τl of

εðX;TÞ ¼
e� T

L
1
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þ
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Taking expectations over synaptic location X gives

hεðTÞi ¼
e� T

2 L
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If a synaptic current z(t) takes the form of a difference of exponentials zðtÞ ¼ Ysynðe
� t=tf �

e� t=tsÞ=ðtf � tsÞ for fast and slow synaptic time constants τf and τs respectively, then the

expected somatic voltage �vðtÞ will be a convolution in time of z with Eq 13:

�vðtÞ ¼
Ysyn tl

2 L ðtf � tsÞ
tf

ðtf � tlÞ
e� t=tf � e� T
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�
ts

ðts � tlÞ
e� t=ts � e� T
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ð14Þ

Similarly, the variance comes to

var v tð Þð Þ¼
Y
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syn
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where tn ¼ tl 1þ p n
L

� �2
� �� 1

for n = 1, 2, . . .,1. Note that the mean voltage has an inverse
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relationship with dendritic length independently of time. The expected influence of a change

in synaptic strength on the response of the postsynaptic cell can then be quantified as either

the peak voltage �vmax, or the total voltage received from a single synaptic activation

�V ¼
R1

0
�vðtÞ dt. �vmax does not have a compact analytical form, being �vðt�Þ where t� satisfies

ðts � tlÞðtf e� t
�=tl � tle� t

�=tf Þ ¼ ðtf � tlÞðtse� t
�=tl � tle� t

�=tsÞ ð16Þ

but is plotted in Fig 1B (middle panel). �V can be expressed simply as

�V ¼
Ysyn tl

2 L
ð17Þ

with variance

varðVÞ ¼
Y

2
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8 L2 ðtf � tsÞ
2

X1

n¼1

t2
f t

2
n

ðtf þ tnÞ
þ

t2
s t

2
n

ðts þ tnÞ

"

�
2 tf ts t

2
n

ðtf � tnÞðts � tnÞ

tf ts

tf þ ts
�

tf tn

tf þ tn
�

ts tn
ts þ tn

þ
tn
2

 !# ð18Þ

and is plotted in Fig 1B (bottom panel).

Network architectures

We first consider a simple artificial neural network (ANN) with one hidden layer to demon-

strate the utility of our approach. The size of the input layer for both the MNIST and MNIST-

Fashion datasets is 784, as each image is a 28 × 28 pixel greyscale picture. The hidden layer

consists of M neurons, each neuron i receiving a number ni contacts from the previous layer.

In Fig 1, M = 30, 100, and 300. In Figs 2 and 3, M = 100. Neuronal activation in the input and

hidden layers as a function of input zi is controlled by a sigmoid function σ(zi)

sðziÞ ¼
1

1þ e� zi
ð19Þ

where zi is the weighted input to neuron i, given by

zi ¼ bi þ
X

ni

wk;iak ð20Þ

Here bi is the bias of each neuron i, wk,i is the synaptic weight from neuron k in the previous

layer to neuron i, and ak = σ(zk) is the activation of presynaptic neuron k. The set of all wk,i for

a given postsynaptic neuron i form an afferent weight vector wi.

Both datasets have ten classes and the output of the ANN is a probability distribution

assigning confidence to each possible classification. Neurons in the output layer are repre-

sented by softmax neurons where the activation function σs(zi) is given by

ssðziÞ ¼
ezi

P10

i¼1
ezi

ð21Þ

The cost function C is taken to be the log-likelihood

C ¼ � logðaCorrectÞ ð22Þ

where aCorrect is the activation of the output neuron corresponding to the correct input.
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For Fig 3, we generalise our results to deeper architectures and threshold-linear neuronal

activations. In Fig 3A and 3B we expand the above to include 2 and 3 sparse hidden hidden

layers, each with M = 100 sigmoid neurons. In Fig 3C and 3D we consider a simple convolu-

tional neural network [46] with 20 5 × 5 features and 2 × 2 maxpooling. In Fig 3E we return to

the original architecture with M = 100, but replace the sigmoid activation function σ(z) for the

hidden neurons with a non-saturating threshold-linear activation function τ(z) defined by

tðziÞ ¼ maxð0; zÞ ð23Þ

In Table 2, we show the results of other architectures to match published performance

benchmarks. We replicate the published architecture in each case: For the original MNIST

dataset and CIFAR-10 datasets, Mocanu et al [29] used three sparsely-connected layers of 1000

neurons each and 4% of possible connections existing. Pieterse and Mocanu [30] used the

same architecture for the COIL-100 dataset. For the Fashion-MNIST dataset, Pieterse and

Table 2. Table summarising symbols and interpretations. ANN symbols are defined above and cable theoretical

symbols below the central line.

Symbol Interpretation

ai Activation of neuron i (Eqs 19 and 21)

bi Bias of neuron i (Eq 20)

C Cost function (Eqs 22 and 24)

gi Excitability of neuron i (Eqs 6 and 9)

ni Number of afferent contacts to neuron i (also written kvik0)

s (Uniform) Excitability of all neurons (Eqs 4 and 8)

vi Unnormalised input to neuron i (Eqs 4 and 6)

wi Normalised input to neuron i (Eqs 4 and 6)

ε SET connection probability

z SET excision probability

η Learning rate for stochastic gradient descent

σ Sigmoid activation function (Eq 19)

σs Softmax activation function (Eq 21)

τ Threshold-linear activation function (Eq 23)

c Membrane specific capacitance (μF/cm2)

gl Membrane leak conductivity (S/cm2)

G1 Semi-infinite dendrite conductance (S, pr
2

lra
)

l Physical length of a dendrite (μm)

L Electrotonic length of a dendrite (l/λ)

r Dendrite radius (μm)

ra Dendrite axial resistivity (Ocm)

t Time (ms)

T Normalised time (t/τl)
x Physical distance along a dendrite (μm)

X Electrotonic distance along a dendrite (l/λ)

λ Electrotonic length constant (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=2ragl

p
, μm)

ρ Physical soma radius (μm)

τf Fast synaptic time constant (s)

τl Membrane leak time constant(c/gl, s)

τn Effective time constant of n-th voltage mode (τl(1 + (πn/L)2)−1, s)

τs Fast synaptic time constant (s)

https://doi.org/10.1371/journal.pcbi.1009202.t002
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Mocanu [30] used three sparsely-connected layers of 200 neurons each, with 20% of possible

connections existing.

For Fig 4, we generalise our results to recurrently connected networks. Here two input neu-

rons are connected to a layer of 50 hidden neurons, which also have sparse recurrent connec-

tions. Inputs are given sequentially. The output is a single neuron with sequential output. The

cost function is the mean squared error

C ¼
1

m

Xm

j¼1

ðaj;Output � aj;CorrectÞ
2

ð24Þ

where aj,Output is the activation of the output neuron, aj,Correct is the correct output, and j
indexes the input sequence. To classify accuracy, the raw value of each aj,Output is rounded to

the nearest integer and the trial is considered accurate if all j = 1, 2, . . ., m rounded values are

correct.

In all cases traditional stochastic gradient descent [40, 65] is used with a minibatch size of

10 and a learning rate η of 0.05.

Datasets

The ANN is originally trained to classify 28 × 28 pixel greyscale images into one of ten classes.

Two distinct datasets are initially used. The MNIST, introduced by Lecun et al [40], consists of

handwritten digits which must be sorted into the classes 0 to 9 (Fig 1B, left). The MNIST-Fa-

shion dataset was introduced by Xiao et al [41] as a direct alternative to the original MNIST

and consists of images of clothing. The classes here are defined as T-shirt/top, trousers, pull-

over, dress, coat, sandal, shirt, sneaker, bag, and ankle boot (Fig 1B, right). Each dataset con-

tains 60, 000 training images and 10, 000 test images. State-of-the-art classification accuracy

for the original MNIST dataset is as high as 99.77% [66], which likely exceeds human-level per-

formance due to ambiguity in some of the images. For the newer MNIST-Fashion dataset

state-of-the art networks can achieve classification accuracies of 96%. Such performance is

achieved with deep network architectures, which we do not reproduce here, rather showing

an improvement in training between comparable, and comparatively simple, artificial neural

networks.

In Table 1, we also analyse other datasets. CIFAR-10 [67] contains 50, 000 training images

and 10, 000 test images to be divided into the classes airplane, automobile, bird, cat, deer, dog,

frog, horse, ship, and truck. Each image is 32 × 32 pixels in three colour channels. The COIL-

100 dataset [68], which contains 7, 200 images in total, consists of images of 100 objects rotated

in various ways. Each image is 128 × 128 pixels in three colour channels. There is no existing

training/test split, so we follow Pieterse and Mocanu [30] in randomly assigning 20% of the

available images to the test set.

Networks of spatially extended neurons

In Fig 5, a recurrent network of spatially extended neurons self-organises in response to

sequences of inputs. The task and overall network architecture is inspired by the reservoir

computing demonstration in [49]. A number of excitatory Ne and inhibitory Ni neurons

are chosen. Neurons are created, edited, and have their inputs integrated using the Trees

Toolbox package in Matlab [69]. Excitatory dendritic trees are created by placing 50 target

nodes uniformly randomly in a conical region with height 350 μm and terminal radius 125

μm. The soma of the neuron is placed at the point of the cone, and the target nodes are con-

nected using the generalised minimum spanning tree algorithm MST_tree, with a balancing

PLOS COMPUTATIONAL BIOLOGY Dendritic normalisation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009202 August 9, 2021 19 / 24

https://doi.org/10.1371/journal.pcbi.1009202


factor of 0.7 [69, 70]. Inhibitory dendritic trees are created by placing 75 target nodes uni-

formly randomly in a spherical region with radius 100 μm. The soma of the neuron is placed at

the centre of the sphere, and the target nodes were connected using the generalised minimum

spanning tree algorithm MST_tree, with a balancing factor of 0.2 [69, 70]. Trees are resam-

pled to have segments of 5 μm using the function resample_tree. The resulting initial dis-

tributions of tree lengths are plotted in Fig 5B. In both cases, intrinsic properties are taken to

be radius r = 1 μm, axial resistivity ra = 100 Ocm, and membrane conductivity gl = 5 × 10−5

S/cm2.

Sparse connectivity is initialised so that 30% of all possible excitatory-excitatory, 70% of all

possible excitatory-inhibitory, and 70% of all possible inhibitory-excitatory connections exist.

Neurons are resized so that their relative length corresponds exactly to their relative afferent

connectivity, both inhibitory and excitatory. The mean length�l and mean afferent connectivity

�n of the excitatory and inhibitory populations are calculated separately. Neurons are resized

until the ratio of their length to afferent connectivity is identical to the population average. If

a neuron is within 1% of the target length it is simply rescaled with the function rescale_
tree. Otherwise, if it is too long, the shortest terminal branch is pruned by one node. If it is

too short, an additional target point is added to the growth region defined above (conical for

excitatory and spherical for inhibitory cells) and connected to the tree using the MST_tree
function. The locations of the afferent synapses are then selected uniformly randomly from

amongst the resulting dendritic segments.

All synapses are current-based for simplicity, with the (local) absolute magnitudes of synap-

ses |w| drawn from a gamma distribution fγ with mean 0.2 and standard deviation 0.2, giving

shape α and rate β parameters of 0.2 and 1 respectively:

fgðjwjÞ ¼
b
a
jwja� 1e� bjwj

GðaÞ
ð25Þ

where GðzÞ ¼
R1

0
xz� 1e� xdx is the gamma function. The use of a gamma distribution ensures

that synaptic magnitudes have the correct sign. The distribution of somatic voltage changes

induced by these synapses are plotted in Fig 5C and depend on both individual weights and

the size of the neuron on which they are located.

Activity propagates over discrete timesteps. At each timestep, all input currents to a neuron

are used to evaluate the steady-state somatic voltage using the sse_tree function. If this is

above a threshold the neuron spikes and induces currents at its efferent synapses for the next

timestep. Existing excitatory-excitatory synapses undergo spike-timing dependent plasticity

[5], where connections are strengthened if a presynaptic spike occurs the timestep before a

postsynaptic spike and weakened if a postsynaptic spike occurs before a presynaptic spike. Spe-

cifically, local weights are defined to be between 0 and an upper limit synmax. Synapses poten-

tiate by the learning rate parameter zmultiplied by their distance to synmax and depress by z

multiplied by their distance to 0. After a number, typically 1000, of stimulus presentations, the

SET algorithm is applied to excise weak excitatory-excitatory connections and randomly add

new connections with weights drawn from Eq 25. Excitatory dendrites are then resized using

the above algorithm to match their new afferent connectivity and all afferent connections are

randomly relocated on the resultant dendrite.

The learning tasks consists of random presentations of two ‘words’. Each word consists of

three ‘letters’, each of which is the random activation of a non-overlapping set of 5 input neu-

rons, so that in total 30 excitatory neurons receive external input. One word can be thought of

as abb. . .bbc, the other xyy. . .yyz with a different number of presentations of the middle letter

in each trial. The network self-organises to reflect and predict the input patterns and the
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difficulty of the task increases with the number of repetitions of the middle letter of each word.

A standard neural network with 30 hidden neurons is used to classify the outputs. As the

words are ordered randomly, the performance of the classifier is necessarily limited. The nor-

malised accuracy score is 1 if the accuracy is perfect within a word and at chance level between

words as in [49].

The point neuron equivalent is initiated identically to the above, but all synaptic currents

are assumed to impinge directly on a spatially compact soma so that there is no relationship

between length and connectivity.

For visualisation, dendrites are plotted in a column of radius 500 μm. Excitatory somata

are randomly placed in a layer of depth 50 μm at the bottom of this column. Inhibitory somata

are randomly placed in a layer of depth 200 μm that begins 100 μm above the excitatory layer.

This organisation is for graphical purposes only and does not impose additional connectivity

constraints.

Supporting information

S1 Fig. Supplementary figure. A supplementary figure showing the performance of dendritic

normalisation at different levels of sparsity.

(PDF)

S1 Code. Supplementary code. Code in Python and Matlab necessary to reproduce the fig-

ures. Code for Figs 1–4 is written in Python 3.6. The networks in Figs 1, 2 and 4 are coded

using the standard Numpy package, and the networks in Fig 3 make use of Keras with a Ten-

sorFlow backend (keras.io). The application of dendritic normalisation in Keras with

TensorFlow allows for immediate inclusion in Keras-based deep learning models. The normal-

isation requires a custom layer, constraint, and optimiser. Fig 5 uses code written in Matlab

2020b, using the freely available Trees Toolbox package [69].

(ZIP)
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