Table 2. Prediction metrics [n (%)] of 3 period cases for 3 machine learning models.
Models | Period | Accuracy | Precision | Recall | F1-Score | Specificity |
---|---|---|---|---|---|---|
(days) | Mean(std) | Mean(std) | Mean(std) | Mean(std) | Mean(std) | |
DNN | 365 | 0.83(0.01) | 0.27(0.0) | 0.65(0.04) | 0.38(0.01) | 0.85(0.01) |
(all variables) | 180 | 0.86(0.02) | 0.26(0.02) | 0.64 (0.03) | 0.37(0.02) | 0.88(0.02) |
90 | 0.90(0.02) | 0.30(0.05) | 0.63(0.04) | 0.40(0.04) | 0.92(0.02) | |
LR | 365 | 0.77(0.01) | 0.21(0.0) | 0.72(0.01) | 0.33(0.01) | 0.77(0.01) |
(all variables) | 180 | 0.79(0.0) | 0.19(0.0) | 0.75(0.0) | 0.31(0.0) | 0.79(0.0) |
90 | 0.81(0.01) | 0.18(0.0) | 0.78(0.03) | 0.29(0.01) | 0.81 (0.01) | |
RF | 365 | 0.92(0.0) | 0.47(0.04) | 0.37(0.02) | 0.41(0.02) | 0.96 (0.0) |
(all variables) | 180 | 0.93(0.0) | 0.46(0.03) | 0.40(0.02) | 0.43(0.02) | 0.97 (0.0) |
90 | 0.94 (0.0) | 0.43(0.01) | 0.41(0.02) | 0.42(0.01) | 0.97(0.0) | |
DNN | 365 | 0.78(0.02) | 0.20(0.01) | 0.59(0.04) | 0.30(0.01) | 0.80(0.03) |
(4 MELD-Na variables) | 180 | 0.80(0.03) | 0.18(0.02) | 0.61(0.05) | 0.28(0.02) | 0.81(0.04) |
90 | 0.80(0.02) | 0.16(0.01) | 0.66(0.03) | 0.25(0.01) | 0.81(0.02) | |
LR | 365 | 0.78(0.01) | 0.20(0.01) | 0.58(0.0) | 0.30(0.01) | 0.80(0.01) |
(4 MELD-Na variables) | 180 | 0.80(0.01) | 0.18(0.01) | 0.61(0.03) | 0.28(0.01) | 0.81(0.0) |
90 | 0.81(0.01) | 0.16(0.01) | 0.64(0.02) | 0.25(0.01) | 0.82(0.01) | |
RF | 365 | 0.85(0.0) | 0.22(0.02) | 0.36(0.04) | 0.27(0.02) | 0.89(0.0) |
(4 MELD-Na variables) | 180 | 0.87(0.0) | 0.20(0.01) | 0.36(0.01) | 0.26(0.01) | 0.90(0.01) |
90 | 0.89(0.0) | 0.20 (0.02) | 0.38(0.04) | 0.26(0.03) | 0.92(0.0) |