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A 24-Year-Old Sample Contributes the Complete Genome
Sequence of Fowl Aviadenovirus D from the United States

Iryna V. Goraichuk,? James F. Davis,” Arun B. Kulkarni,® (2 Claudio L. Afonso,? {* David L. Suarez®

aExotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS, USDA, Athens, Georgia, USA

bGeorgia Poultry Laboratory Network, Gainesville, Georgia, USA

ABSTRACT Here, we report the complete genome sequence of fowl aviadenovi-
rus D (FAdV-D) isolated from a preserved 24-year-old pancreas sample of a broiler
chicken embryo. The results of the sequence showed that the viral genome is
44,079 bp long.

owl aviadenovirus (FAdV) is a member of the genus Aviadenovirus within the family

Adenoviridae (1). Adenoviruses can infect a wide range of hosts; however, avian
adenoviruses are reported to infect only avian species (2). FAdVs have been catego-
rized into 5 species (FAdV-A to FAdV-E) on the basis of their genome structure and are
further divided into 12 serotypes, based on a cross-neutralization test (3, 4). FAdVs are
widely distributed and cause various degrees of associated clinical disease (5, 6). Some
species of FAdVs cause inclusion body hepatitis (1, 7-14), hepatitis-hydropericardium
syndrome (15-17), adenoviral gizzard erosions (18, 19), and possibly hypoglycemia and
spiking mortality syndrome (H-SMS) (20, 21) in chickens. To date, only a few complete
genomes of FAdV-D from the United States are available in public databases (22, 23).
In this study, we report the complete genome sequence of an FAdV-D isolate from the
United States.

A fecal sample was collected from a broiler chicken with hypoglycemia and spiking
mortality syndrome (H-SMS) at a commercial farm in Georgia in 1995 (24). At that time,
in order to experimentally reproduce severe H-SMS, a series of embryo-passaged prep-
arations were performed. Briefly, H-SMS was experimentally reproduced by inoculating
crude feces to 1-day-old chicks. Virus particles from their intestines, which were col-
lected at 12 to 14 days postinoculation, were banded in a discontinuous Renografin
gradient and inoculated into 7-day-old specific-pathogen-free embryonating chicken
eggs (SPF ECE). Four days postinoculation, the embryos were harvested, homogenized
in sterile phosphate-buffered saline, filtered, and then inoculated into 7-day-old SPF
ECE. The embryos from this passage died between 48 and 96 hours postinoculation
and then were harvested and processed as described before to create a third passage.
The pancreases of the embryos from the third passage were homogenized, filtered,
and stored at —70°C for 24 years. In 2019, viral RNA and total nucleic acids were iso-
lated from a preserved pancreas sample using the QlAamp viral RNA minikit and the
DNeasy blood and tissue kit (Qiagen, Germany), respectively, after first undergoing
DNase treatment with the Turbo DNA-free kit (Ambion, USA) to remove host DNA
according to the manufacturer’'s recommendations. Sequence-independent single-
primer amplification (25-27) was used to produce random amplicons that were proc-
essed using the Nextera XT DNA library preparation kit (Illumina, USA). The distribu-
tion size and concentration of the prepared library were checked on a 2100 bioana-
lyzer, using the high-sensitivity (HS) DNA kit (Agilent Technologies, Germany), and on
a Qubit fluorometer, using the double-stranded DNA (dsDNA) HS assay kit (Life
Technologies, USA), respectively. Two next-generation paired-end sequencing
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TABLE 1 Characteristics of the full-length genome of FAdV-D isolate GA/1358/1995

Start codon End codon No. of Closest viral homology Amino acid
Gene name Strand direction? position position codons (GenBank accession no.) identity (%)
ORFO R 524 808 94 FAdV-2 (ANJ02325.1) 100
ORF1 R 848 1,339 163 FAdV-2 (ANJ02326.1) 100
ORF1B R 1,501 1,731 76 FAdV-3 (ANJ02402.1) 100
ORF1C R 1,679 1,879 66 FAdV-3 (ANJ02403.1) 100
ORF2 R 1,953 2,756 267 FAdV-9 (NP597818.1) 100
ORF7 L 2,348 2,668 106 FAdV-11 (QFR45452.1) 100
ORF24 L 2,839 3,519 228 FAdV-11 (QIM09468.1) 99.56
16,294 16,299
ORF14 L 3,538 4,224 230 FAdV-9 (AP000373.1) 100
16,294 16,299
ORF13 L 4,263 5,249 330 FAdV-2 (ANJ02370.1) 100
16,294 16,299
ORF12 L 5,245 6,162 307 FAdV-9 (AP000375.1) 100
16,294 16,299
Va2 L 6,131 7,351 406 FAdV-9 (NP050280.1) 99.01
DNA polymerase L 7,348 11,262 1,304 FAdV-2 (QGQ62975.1) 99.39
pTP L 11,259 13,220 655 FAdV-11 (ANJ02596.1) 99.23
16,294 16,299
52k R 13,259 14,467 402 FAdV-11 (AIS19821.1) 100
pllla R 14,454 16,229 591 FAdV-11 (AKR76192.1) 100
Penton base R 16,310 17,947 545 FAdV-11 (AIS19822.1) 100
pvil R 17,987 18,223 78 FAdV-11 (AKR76194.1) 100
pX R 18,458 19,057 199 FAdV-9 (NP050285.1) 100
pVI R 19,187 19,873 228 FAdV-9 (NP050286.1) 100
Hexon R 19,985 22,834 949 FAdV-2 (QGQ62983.1) 100
Protease R 22,848 23,465 205 FAdV-11 (AIS19826.1) 100
DNA-binding protein L 23,580 25,009 557 FAdV-11 (AKR76199.1) 98.56
25,107 25,350
100k R 25,414 28,398 994 FAdV-11 (AKR76200.1) 93.55
33k R 28,079 28,409 221 FAdV-11 (AKR76201.1) 99.55
28,655 28,989
22k R 28,079 28,624 181 FAdV-11 (ALS87111.1) 99.45
pVIil R 29,029 29,754 241 FAdV-11 (AIS19829.1) 100
U exon L 29,638 30,006 122 FAdV-11 (QIM09482.1) 98.36
Fiber R 30,005 31,717 570 FAdV-11 (ANQ43489.1) 98.60
ORF22 L 31,777 32,349 190 FAdV-11 (AIS19831.1) 100
ORF20A L 32,353 32,832 166 FAdV-11 (AKR76206.1) 100
33,846 33,866
ORF20 L 32,833 33,750 312 FAdV-2 (ANJ02355.1) 100
33,846 33,866
ORF19 L 34,067 36,193 714 FAdV-11 (QGQ63065.1) 99.58
36,272 36,289
GAM-1 R 37,747 38,580 277 FAdV-2 (QGQ63210.1) 100
ORF17 L 39,674 40,144 156 FAdV-11 (QFR45478.1) 99.36
ORF11 R 40,519 40,879 261 FAdV-2 (QGQ63176.1) 100
40,957 41,201
41,261 41,442
ORF23 L 41,675 42,610 311 FAdV-11 (ANJ02619.1) 100
ORF25 R 43,067 43,075 169 FAdV-11 (QIM09485.1) 9941
43,154 43,654

aR, rightward-transcribed strand; L, leftward-transcribed strand.

(2 x 150 and 2 x250 bp) runs were performed on an lllumina MiSeq instrument using
the 300- and 500-cycle MiSeq reagent kit v.2 (lllumina), respectively. Sequence data
from the two runs were combined, and de novo assembly was performed utilizing
MIRA v.3.4.1 (28) within a customized workflow on the Galaxy platform (29); all tools
were run with default parameters, as described previously (30, 31). A total of
1,113,717 raw paired-end reads (904,985 and 208,732 reads of 150- and 250-bp reads,
respectively) were generated. The de novo-generated contigs of interest were sub-
jected to BLASTn search and aligned with the full-length reference genome MX95-
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100 FAdV-11 MK757569/chicken/Iran/UT-Kiaee/2018
FAdV-11 MN428137/chicken/Pakistan/PKFAd18/2018
FAdV-11 KU746335/chicken/Mexico/MX95-511/1995
FAdV-11 KU310942/chicken/Canada/ON P2/2005
FAdV-11 KM096546/chicken/China/BJH13/2013
FAdV-11 KU497449/chicken/China/LN/1507/2015
FAdV-11 MN509168/chicken/Australia/2018 FAdV-D
FAdV-11 MN711789/chicken/USA/GA/1358/1995
FAdV-2 MK572866/chicken/USA/P7-A
FAdV-11 KT862806/chicken/Japan/SR48/1950-60s
2L FAdV-11 KT862812/chicken/UK/380/1971
FAdV-9 AF083975/USA/A-2A/1961
FAdV-3 KT862807/chicken/Japan/SR49/1950-60s
100 - FAdV-6 KT862808/chicken/Japan/CR119/1950-60s
FAdV-7 KT862809/chicken/Japan/YR36/1950-60s
100 100 | FAdV-8a KT862810/chicken/Japan/TR59/1950-60s FAdV-E
100 | FAV-8b KU517714/chicken/Malaysia/UPM04217/2004
100 L FAdV-8b MF577036/chicken/China/QD2016/2016
[ FAdV-5 KC493646/ch|-cken/IreIand/340/1 970s FAGVAR
100 - FAdV-5 MG953201/chicken/Hungary/40440-M/2015
78, FAdV-1 KX247012/chicken/Poland/61/112/2011
100} FAQV-1 MKO050972/fowl/China/2017
66 | FAdV-1 KX247011/chicken/Poland/W-15/2011 FAdV-C
1001 FAQV-1 U46933/USAICELO/Phelps
lFAdv-1 MF168407/chicken/Japan/JM1/1/2000
100 76[ FAdV-4 GU188428/chicken/Canada/ON1/2004

100

FAdV-4 KP295475/chicken/Mexico/MX-SHP95/1995
FAdV-4 KU587519/chicken/China/HB1510/2015 FAdV-A
FAdV-4 MG148334/chicken/China/AHHQ/2016
FAdV-4 MH454598/chicken/China/GX-1/2017
GoAdV-4 JF510462/goose/Hungary/P29/1970s

100

—
0.2

FIG 1 Phylogenetic analysis of fowl aviadenovirus isolates based on the complete genome sequences constructed with the
maximum likelihood method based on the general time-reversible model in MEGA v.7.0. The tree with the highest log likelihood
(—217,618.18) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. A
discrete gamma distribution was used to model evolutionary rate differences among sites (5 categories [+G, parameter = 1.4043]).
The rate variation model allowed for some sites to be evolutionarily invariable ([+1], 17.27% sites). The tree is drawn to scale, with
branch lengths measured in the number of substitutions per site. The analysis involved 31 nucleotide sequences (sequences of
goose adenovirus [GoAdV] is included as an outgroup). All positions containing gaps and missing data were eliminated. There were
a total of 29,569 positions in the final data set. The isolate used in this study is shown in blue.

S11 (GenBank accession number KU746335.1) to obtain a draft genome scaffold. The
genome consensus was then recalled from 200,733 FAdV reads using BWA-MEM (32)
mapping of trimmed but unnormalized reads to the genome scaffold. The median
read depth of the assembly was 220, and the maximum depth was 5,226. The final
genome consensus of the isolate designated GA/1358/1995 was 44,079 nucleotides
long (100% genome coverage) with a GC content of 53.6% and coded 37 putative
open reading frames (ORFs) (Table 1). The ORFs were identified using the Geneious
11.1.5 and confirmed by alignment with published FAdV genomes. BLAST compari-
son to the currently available full-length FAdV genome sequences showed the high-
est (99.23%) nucleotide identity to the FAdV-D serotype 2 prototype ATCC reference
strain P7-A (GenBank accession number MK572866.1) (23, 33) (Fig. 1).

Fowl aviadenoviruses appear to be widely endemic in poultry and have been asso-
ciated with clinical disease, but full-genome sequences of FAdV-D circulating in the
United States are scarce. More complete genome sequence information is necessary
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to understand how fowl aviadenoviruses contribute to disease in poultry and how to
control it.
Data availability. The complete genome sequence of isolate GA/1358/1995 of
FAdV-D has been deposited in GenBank under the accession number MN711789. Raw
data were deposited in the SRA under accession number SRR10500667, BioSample
number SAMN13338320, and BioProject number PRINA590745.
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