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Abstract: Light-sheet fluorescence microscopy (LSFM) is a minimally invasive and high
throughput imaging technique ideal for capturing large volumes of tissue with sub-cellular
resolution. A fundamental requirement for LSFM is a seamless overlap of the light-sheet that
excites a selective plane in the specimen, with the focal plane of the objective lens. However,
spatial heterogeneity in the refractive index of the specimen often results in violation of this
requirement when imaging deep in the tissue. To address this issue, autofocus methods are
commonly used to refocus the focal plane of the objective-lens on the light-sheet. Yet, autofocus
techniques are slow since they require capturing a stack of images and tend to fail in the presence
of spherical aberrations that dominate volume imaging. To address these issues, we present a
deep learning-based autofocus framework that can estimate the position of the objective-lens
focal plane relative to the light-sheet, based on two defocused images. This approach outperforms
or provides comparable results with the best traditional autofocus method on small and large
image patches respectively. When the trained network is integrated with a custom-built LSFM, a
certainty measure is used to further refine the network’s prediction. The network performance
is demonstrated in real-time on cleared genetically labeled mouse forebrain and pig cochleae
samples. Our study provides a framework that could improve light-sheet microscopy and its
application toward imaging large 3D specimens with high spatial resolution.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Imaging intact specimens and their complex three-dimensional (3D) structure has provided
invaluable insights and discoveries in the life science community [1–5]. Among the 3D optical
imaging modalities, light-sheet fluorescence microscopy (LSFM) is a powerful technique for
imaging biological specimens at high spatial and temporal resolutions. Key to this success is
LSFM’s capacity to balance the trade-off between speed and optical sectioning [2,6–9]. Combined
with recently developed tissue clearing techniques that allow for rendering the tissue transparent
[10–14], LSFM is capable of imaging thick tissues or even entire organs with sub-cellular
resolution at all depths [15–20].

The working principle for LSFM is to generate a thin layer of illumination (a light-sheet) to
excite the fluorophores in a selective plane of the prepared sample (Fig. 1(a)), while detecting
the emitted signals using an orthogonal detection path [7,21]. This unique and orthogonal
excitation-detection scheme makes the LSFM fast and non-destructive but also dictates a strict
requirement: the thin sheet of excitation light needs to overlap with the focal plane of the
objective lens. Any deviation from this requirement severely degrades the LSFM image quality
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and resolution (Fig. 1(b)). However, this restriction is often violated when imaging deep within
cleared tissues due to the specimen’s structure and composition. The heterogeneous composition
of tissues often leads to refractive index (RI) mismatches that cause: (i) spherical aberrations,
and (ii) minute changes in the objective lens focal plane distance [22]. Consequently, the relative
position of the light-sheet and the objective focal plane (∆z) constantly shifts in volume imaging,
and in our implementation, the detection objective often needs to be translated to compensate for
this shift.

Fig. 1. A schematic of the light-sheet excitation-detection module and the proposed
deep neural network-based autofocus workflow. (a) An illustration of the geometry of
light-sheet fluorescence microscopy (LSFM), and the drift in the relative position of the
light-sheet and the focal plane of the detection objective (∆z), when imaging deep into the
tissue. (b) Fluorescence images of in focus (∆z = 0 µm) and out-of-focus (∆z = 20 µm)
neurons (left) and hair cells (right). The images were captured from a whole mouse brain
and a pig cochlea that were tissue cleared for 3D volume imaging. The red boxes mark the
locations of the zoom-in images at the bottom. The degradation in the quality of out-of-focus
images can be observed. (c) Overview of the integration of the deep learning-based autofocus
method with a custom-built LSFM. During image acquisition, two defocused images will be
collected and sent to a classification network to estimate the defocus level. The color of the
borders of each individual patch in the right image indicates the predicted defocus distance.
In the color bar, the red and purple colors represent the extreme cases, in which the defocus
distance is −36 µm and 36 µm respectively. The borders’ dominant color is green, which
indicates that this image is in focus.

Determining the best position of the objective lens that overlaps with the light-sheet to provide
superior image quality can be accomplished by eye. However, this is highly time-consuming
and laborious, especially in high throughput platforms that image large numbers of specimens.
To solve this problem, autofocus methods have been implemented whereby the microscope
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captures a stack of images (10 - 20) at different defocus positions. Each image in the stack is
then evaluated based on image quality measures, and the position that corresponds to the highest
score is considered the in-focus position [23]. Previous studies have extensively evaluated the
performance of image quality measures, and for LSFM, the Shannon entropy of the normalized
discrete cosine transform (DCTS) shows superior results [5,24]. Nevertheless, the requirement to
capture 10–20 images slows the acquisition process and can lead to photo-bleaching in sensitive
samples. Additionally, the occurrence of spherical aberrations is more likely in tissue clearing
applications, since they use a diverse range of immersion media (RI 1.38–1.58). In the presence
of spherical aberrations, the performance of traditional image quality measures is degraded [25],
however, even in this case DCTS still shows superior results (see Fig. S1).

Deep learning has recently been used to solve numerous computer vision problems (e.g.,
segmentation and classification) [26–28] and enhance the quality of biomedical images [29–34].
Several studies have used deep learning to perform autofocus, mostly on histopathology slides
that were acquired by a bright field microscope and using a single frame [35–37]. Yang et al.
proposed using a classification network to perform autofocus in thin fluorescence samples using
a single shot, and their results outperformed traditional image metrics [33]. A certainty measure
was also introduced to determine whether the viewed patch contains an object of interest or
background. However, this approach remains to be extended to challenging 3D samples acquired
using LSFM, which are dominated by aberrations, making them challenging for traditional
autofocus measures.

Here, based on previous work on a custom-built LSFM design [11,13], we introduce a deep
learning-based autofocus algorithm that uses two defocused images to improve image quality
in acquisition (Fig. 1(c)). The use of multiple images accelerates the network’s training and
provides results that are more accurate. We tested the effectiveness of our integrated framework
using cleared whole mouse brain, pig cochlea, and lung samples. We show that our real-time
autofocus framework performs well in thick cleared tissues with inherent scattering and spherical
aberration that are difficult to solve using traditional autofocus methods.

2. Methods

2.1. Sample preparation

In this study, three wild-type (WT) pig cochleae samples were tissue cleared and labeled using
a modified BoneClear protocol [13,38], while the one WT lung and three mouse brains were
labeled using iDISCO protocol [39–41]. The cochleae samples were labeled using Myosin
VIIa (CY3 as secondary), while the brain samples were labeled using GFP (Alexa Fluor 647
as secondary) and RFP (CY3 as secondary). The mice for the brain samples were generated
using Mosaic Analysis with Double Markers chromosome 11 (MADM), which were previously
described in [42–45]. All the animals were harvested under the regulation and approval of the
Institutional Animal Care and Use Committee (IACUC) at North Carolina State University.

2.2. Image acquisition

Samples were imaged using a custom-built LSFM [13]. After tissue clearing, specimens were
placed in an imaging chamber made from aluminum and filled with 100% dibenzyl-ether (DBE).
Samples were mounted to a compact 4D stage (ASI; stage-4D-50), which incorporated three
linear translation stages and a motorized rotating stage. The stage scanned the sample across the
static light-sheet to acquire a 3D image. The light sheet was generated by a 561 nm laser beam
(Coherent OBIS LS 561-50; FWHM= 8.5 µm) that was dithered at a high frequency (600 Hz)
by an arbitrary function generator (Tektronix; AFG31022A) to create a virtual light-sheet. The
detection objective lens (10×/numerical aperture (NA) 0.6, Olympus; XLPLN10XSVMP-2) was
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placed on a motorized linear translation stage (Newport; CONEX-TRB12CC with SMC100CC
motion controller), which provides 12 mm travel range with ±0.75µm bi-directional repeatability.

For every defocused image stack that was used in the training and testing stages (∼420 stacks),
first, the objective lens was translated (CONEX-TRB12CC motor) by the user to find the optimal
focal plane. Once the optimal position was found by eye, the control software automatically
collected a stack of 51 defocused images with 2 µm spacing between consecutive images. The
optimal focal point, which was determined by the microscope’s operator, was in the middle of the
stack. All the stacks were acquired at random depths and spatial locations along the specimens,
with a pixel size of 0.65 × 0.65 µm2, and 10 ms exposure time. Figure 2(a) shows representative
defocused stacks that were used for the network’s training. From Fig. 2(a), we observed that
images that were taken above and below the focal plane have distinct features i.e., asymmetrical
point spread function (PSF), which suggested that the network could determine if ∆z was negative
or positive.

2.3. Architecture of the network and its training process

The classification network’s architecture is presented in Fig. 2(b). The aim of the network was
to classify an unseen image into one of 13 classes. Each class represented a different range of
∆z, for instance: if the bin size (∆b) was equal to 6 µm, the in-focus class corresponded to ∆z
values in –3 to 3 µm range, and the classes center points had the values of −36, −30, −24, −18,
−12, −6, 0, 6, 12, 18, 24, 30 and 36 µm. The network’s architecture was previously presented by
[33]. Here, we modified the network to accept multiple defocused images as an input, instead
of solely one image. To train the network, 421 defocused image stacks were acquired: 337, 42,
and 42 datasets were dedicated for training, validation, and testing respectively. The network
was implemented in Python 3.6 with PyTorch-1.4.0 Deep-Learning Library. The network was
trained on an Nvidia Tesla V100-32GB GPU on Amazon Web Services for about ∼35 hours. The
cross-entropy loss function was selected, the learning rate was 1e-5, and an Adam optimizer was
used. Data augmentation techniques including normalization, saturation, random crop, horizontal
and vertical flip were applied during the training process.

Figure 2(a) illustrates the network’s training process. Two defocused images with ∆s spacing
(e.g., ∆s= 6 µm) and known defocus distance ∆z were randomly selected from the defocused
stack (I∆z and I∆z + ∆s). Then a random region of interest (128 × 128 pixels) was selected
and cropped from the two images. The two cropped image patches were fed into the network
for training, while the known defocus distance ∆z, served as the ground truth. The output
of the model was a probability distribution {pi, i= 1, 2. . . N} over N = 13 classes (or defocus
levels), and the predicted defocus level (∆zpredict) was the one with the highest probability. The
spacing (∆b) between the classes (or defocus levels) in the output of the network was given by:
∆b = 72 µm

N−1 . Please note that the number of defocused levels (N) was determined empirically, and
it determined how fine the correction was. A larger number of N (e.g., N = 19 and ∆b= 4 µm)
could theoretically provide a better overlap between the objective focal plane and the light sheet.
Nevertheless, in our case, it was difficult to observe big differences in image quality between two
images that were separated by a distance smaller than 6 µm (Fig. S2). Therefore, ∆b smaller than
6 µm would not necessarily provide better image quality after the correction. This was the case
since as long as the objective focal plane was approximately within the light sheet full width half
maximum (FWHM; on average ∼14 µm across the entire field of view) the image remained sharp.

2.4. Measure of certainty

A valuable measure to calculate from the probability distributions (pi) was the measure of
certainty (cert), with the range of [0, 1]. Cert was calculated as follows [33,46]:

cert = 1 + (
∑︂N

i=1
pi ln(pi))/ln N
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Fig. 2. The training pipeline and the structure of the network. (a) Representative
defocus stacks captured from tissue cleared whole mouse brains (first column) or intact
cochleae (second column). In each stack, the distance between slices was 2 µm. From top
to bottom we show representative images (∆z = −32, −16, 0, 16, 32 µm). Spherical
aberrations lead to asymmetrical point spread function (PSF) for defocused images above
(∆z > 0) and below (∆z < 0) the focal plane. The network uses this PSF asymmetry to
estimate whether ∆z is positive or negative. In the training process, two defocused images
with a constant distance between them (∆s e.g., ∆s = 6 µm) and a known ∆z are randomly
selected from the stacks. The images are then randomly cropped into smaller image patches
(128 × 128) and these patches are fed into the network. (b) The architecture of the network.
The output of the network is a probability distribution function over N= 13 different values
of ∆z with constant bin size (∆b), which equals 6 µm. The value for N was determined
empirically.
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A low value of cert corresponded to a probability distribution (pi) which was similar to an equal
distribution, which translated to low confidence in ∆zpredict. Therefore, predictions with cert
below 0.35 were discarded. In contrast, a high cert value, corresponded to the case where the
network was more certain in its prediction, for example, when the maximum pi was much higher
than the remaining probabilities.

2.5. Integration with a custom-built light-sheet microscopy

The control software and graphical user interface (GUI) of the LSFM were implemented in
MATLAB R2019b environment. The MATLAB environment can integrate with a deep learning
model, which was trained with Python. The graphical user interface was also written in MATLAB.

3. Results

3.1. Performance of the network with various input configurations

We investigated various training configurations and their influence on the network’s performance.
First, we tested how the number of defocused images, which were fed into the deep neural network
(DNN), influenced the classification accuracy (Fig. 3(a)). Figure 3(a) shows the training loss
and the classification accuracy as the function of epochs for 1, 2, and 3 defocused images (blue,
yellow, and green graphs respectively). In these experiments, the DNN output was a probability
distribution over 13 classes (defocus levels) with various ∆z values ranging from −36 µm to
36 µm, with ∆b= 6 µm, and ∆s= 6 µm (see Methods section). We found that when the DNN
received two or three defocused images as input, it performed better in terms of classification
accuracy than using only one defocused image (Fig. 3(a)). The resulting confusion matrices of
the three models, which were trained on 1, 2, and 3 defocused images, are shown in Fig. 3(b).
When observing the confusion matrix for a single defocused image, we observed the following:
(i) The distribution around the diagonal (upper left to bottom right) was not as tight as the other
two confusion matrices, which was consistent with its low classification accuracy. (ii) The values
on the second diagonal (upper right to bottom left) were higher in comparison with the two
other confusion matrices. This observation indicated that the predicted |∆zpredict | was correct,
but not the sign. To balance the tradeoff between the network’s performance and acquisition
time of the additional defocused images, we decided to proceed with 2 defocused images rather
than 3, although the DNN trained with 3 defocused images showed slightly higher classification
accuracy.

Next, we tested the performance of the network with different ∆s values (2, 4, 6, 8, and 10 µm).
Figure 3(c) shows the training loss and classification accuracy as a function of epochs (N= 13,
and ∆b = 6 µm). The graphs show that when ∆s equals 6 or 10 µm, the classification accuracy
was higher in comparison to other values of ∆s. Therefore, ∆s was set to 6 µm henceforward.

3.2. DNN performs better or comparable to traditional autofocus quality measures

To determine the prediction accuracy of the proposed model, the model was compared with
traditional autofocus methods (Fig. 4(a); 2 defocused images, ∆s = ∆b = 6 µm). For the
test cases, image patches with a size of 83 × 83 µm2 (single patch) and 250 × 250 µm2 (3 by
3 patches) were randomly cropped from 42 defocus stacks, which were dedicated to testing.
While the DNN used only two defocused images, the full defocused stack i.e., 13 images were
provided to the traditional autofocus measures that included the following: Shannon entropy of
the normalized discrete cosine transform (DCTS), Tenengrad variance (TENV), Steerable filters
(STFL), Brenner’s measure (BREN), Variance of Wavelet coefficients (WAVV), image variance
(VARS), and Variance of Laplacian (LAPV). The average absolute distance between ∆zpredict and
the ground truth was calculated to compare the DNN and traditional metrics. Please note, for the
larger patches, ∆zpredict was calculated based on the average result of 9 (3 by 3) patches with a
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Fig. 3. Training configurations that influence the classification accuracy. (a) The
graphs show the training loss and classification accuracy as a function of the number of
epochs. For comparison, the network is trained with one\two\three defocused images that are
provided to the network as an input (N= 13, ∆s = 6 µm). The graphs show that two (I∆z and
I∆z+6µm) and three (I∆z−6µm, I∆z, and I∆z+6µm) defocus images yield higher classification
accuracy than a single defocused image (I∆z). (b) Confusion matrices for a different number
of defocused images that are provided to the network as input. Training with only one
defocused stack shows inferior performance. (c) Training loss and classification accuracy as
a function of the number of epochs using 2 defocused images as an input, but with variable
spacing (∆s) between the images. The highest classification accuracy corresponds to ∆s
values of 6 and 10 µm.
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predefined threshold on the certainty of 0.35, i.e., any tile with a certainty score below 0.35 is
discarded from the average.

Fig. 4. Performance evaluation. (a) Performance comparison between Deep Neural
Network (DNN), and traditional autofocus measures across 420 test cases. While only 2
defocused images are provided to the DNN, the traditional autofocus methods receive as
an input 13 images. In both cases, the spacing between two consecutive images is 6 µm.
On a single image patch with a size of ∼83 × 83 µm2 the DNN outperforms traditional
autofocus measures, while on larger image patches (250 × 250 µm2) the DNN and DCTS
achieve comparable results. Please note that for the larger image patch the DNN performs
its calculation on nine (83 × 83 µm2) patches, and results with certainty (cert) above 0.35
are averaged to achieve the final prediction. (b) Representative examples of defocus level
prediction (∆zpredict) by the DNN on the test dataset (single patch). Each box shows an
individual and independent image patch, and the color of the border indicates the ∆zpredict
value. If the certainty of an image patch is lower than 0.35, the colored border is deleted,
and this patch is discarded.

For a single patch, the DNN and DCTS, which was the best of traditional methods, achieved
an average distance error of 4.84 and 5.36 µm on the test dataset, respectively (Fig. 4(a)). When
larger images (250 × 250 µm2) were tested, the DNN and DCTS achieved an average distance
error of 3.80 and 3.80 µm, respectively. Our DNN model presented better or comparable results
over the tested autofocus metrics and only required two images, whereas the other metrics
required a full stack of images. Table S1 compares the performance of DNN and DCTS with
various conditions such as providing the DCTS 9 (3 by 3) smaller patches and averaging the
results with or without certainty. Overall, the DNN performed better or comparable under all
conditions. Figure 4(b) shows representative single patches from the test set, and their ∆zpredict
values are indicated with a color-coded border. If the certainty was smaller than the threshold
(0.35), the prediction was discarded, and the border was not presented. The inference time for
a single patch on our modest computer (Intel Xeon W-2102 CPU 2.90GHz), which operated
MATLAB was ∼0.18 sec.

3.3. Real-time integration of the deep learning-based autofocus method with LSFM

Based on the performance of the defocus prediction model, we decided to integrate the model
with our custom-built LSFM. To test the model, we performed perturbation experiments on
tissue cleared mouse brain (Fig. 5(a)) and cochlea (Fig. 5(b)). In the experiments, the objective
lens was displaced by 30 and −30 µm for the brain and cochlea, respectively. Then, two
defocused images were captured and fed into the trained model. In these real-time cases the
network used 64 (8 by 8) patches per image, and the average ∆zpredict was calculated as followed:
∆zpredict = (∆z1 · S1 + ∆z2 · S2)/(S1 + S2). Where ∆z1 and ∆z2 were the two most abundant
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classes in the whole image, and S1 and S2 were the corresponding number of patches with the
predicted label of ∆z1 and ∆z2, respectively. This approach removed outliners. The model’s
∆zpredict values per patch are presented in Fig. 5(a4 and b4), and the corresponding averaged
∆zpredict values were 26.9 and −35.3 µm for the brain and cochlea, respectively. According to the
value of the averaged ∆zpredict, the detection focal plane was adjusted. Figure 5(a3 and b3) show
the improvement in image quality after the applied corrections. The color-coded line profiles in
Fig. 5(a4 and b4) demonstrate the improved image quality. Additional examples are shown in
Fig. S3.

Fig. 5. Real-time perturbation experiments in light-sheet fluorescence microscopy.
(a1 and b1) The in-focus (∆z = 0) images of neurons and hair cells, respectively. (a2 and
b2) Images that show the same field of view as in a1 and b1 after the objective lens is
displaced by 30 µm and −30 µm, respectively. (a3 and b3) Images of the same field of view
after the objective is moved according to the network defocus evaluation as shown in a4 and
b4. The improved image quality in a3 and b3 indicates that the network can estimate the
defocus level and adjust the detection focal plane to improve image quality. In a and b, the
white boxes mark the location of the zoom-in images, and the color-coded line profiles in a4
and b4 represent image intensities along the dashed lines in a and b.

3.4. Performance of the deep learning model on unseen tissue

Finally, to evaluate the deep learning model’s ability to generalize to other unseen tissue types,
we used the same deep learning model on a mouse lung sample that was tissue cleared. By and
large, the lungs exhibited different morphology than the brain and cochlea samples that the model
was trained on. The lung’s tissue structure can be seen in Fig. 6(a and b). We performed again
the real-time perturbation experiment, and the objective lens was translated by −30 and −20
µm in Fig. 6(a2 and b2), respectively. The model’s ∆zpredict values per patch are presented in
Fig. 6(a4 and b4), and the averaged ∆zpredict values were −34.2 and −33.57 µm, respectively. We
corrected the position of the objective based on the averaged ∆zpredict values as seen in Fig. 6(a3
and b3). Although several patches in Fig. 6(b4) had questionable predictions, the overall image
quality was improved after the network’s correction.
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Fig. 6. Real-time perturbation experiments on unseen tissue type. (a1 and b1) The
in-focus auto-fluorescence images of tissue cleared mouse lung samples, which are highly
scattering. These samples exhibit different morphology than the brain and the cochlea, and
the network is not trained on such samples/morphology. (a2 and b2) Images that show
the same field of view as in a1 and b1 after the objective lens is displaced by −30 µm and
−20 µm, respectively. (a3 and b3) Images of the same field of view after the objective is
moved according to the network correction as shown in a4 and b4. The improved image
quality in a3 and b3 indicates that the network can correctly estimate the defocus level and
adjust the detection focal plane to improve image quality. Although further refinement might
be required, the network can still generalize to unseen tissue types. Please note, in tissue
cleared lung samples the auto-fluorescence is easily photo-bleached therefore making it
especially suitable for autofocus methods that require as few defocused images as possible.
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4. Discussion and conclusion

Here, we build upon previous work on thin 2D slides that used DNN to measure image focus
quality using a single frame [33]. We expand the use of the DNN to 3D samples, and we
demonstrate the advantages of using two or three defocused images rather than a single image:
First, the network performs better in terms of classification accuracy and convergence speed
(Fig. 3(a)). Second, the network minimizes sign errors i.e., the DNN can determine whether
the light-sheet is above or below the objective focal plane. Using two defocused images and
after optimizing the spacing between them, we find that on small image patches (∼83 × 83
µm2) the network outperforms DCTS, which requires a full stack of defocused images (∼13
images). Therefore, using only two images can significantly increase imaging speed and reduce
photo-bleaching in a sensitive sample (e.g., single-molecule fluorescence in-situ hybridization).
On large image patches (∼250 × 250 µm2), the network provides comparable results to DCTS.
Another advantage of the proposed method is that it inherently provides a measure of certainty in
its prediction. Consequently, one can exclude image patches that may contain background or
low contrast objects. In fact, when we exclude low certainty cases, we improve our accuracy
(Table S1).

As a proof-of-concept experiment, the network is integrated with a custom-built LSFM. We
demonstrate that the network performs reasonably well not only on tissue cleared mouse brain and
cochlea but also on unseen tissue. The proposed approach can facilitate the effort to characterize
large volumes of tissue in 3D, without a tedious and manual calibration stage that is performed
by the user prior to imaging the sample.

A major limitation of the presented approach is the drop in its performance for unseen samples
(specimen types that are outside the training set). This limitation is expected as new specimens
likely exhibit unique morphologies and distinct features such as the lung samples in Fig. 6.
There are several approaches to mitigate this challenge: (i) given that acquiring and labeling the
dataset is relatively straightforward, one can train a network per specimen type. This approach
is reasonable for experiments that require imaging many instances of the same specimen. (ii)
Diversifying the training set with a plethora of specimens, and under multiple imaging conditions,
such as multiple exposure levels. (iii) To synthesize data for the training set instead of physically
capture it. This could be achieved by using publicly available 3D confocal microscopy datasets
that do not require synchronization between the light-sheet and the objective focal plane. Then,
from the confocal datasets, defocused images could be synthesized either by employing a physical
model to defocus the image [47], or by utilizing generative adversarial networks (GAN). Utilizing
GAN for data augmentation would allow to learn the LSFM distortion and synthesize artificial
training sets [48,49].
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