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Besides transformed cells, the tumors are composed of various cell types that contribute to undesirable tumor progression. Tumor-
associated macrophages (TAMs) are the most abundant innate immune cells in the tumor microenvironment (TME). Within the
TME, TAMs exhibit high plasticity and undergo specific functional metabolic alterations according to the availability of tumor
tissue oxygen and nutrients, thus further contributing to tumorigenesis and cancer progression. Here, we review the main
functional TAM metabolic patterns influenced by TME, including glycolysis, amino acid, and fatty acid metabolism. Moreover,
this review discusses antitumor immunotherapies that affect TAM functionality by inducing cell repolarizing and metabolic
profiles towards an antitumoral phenotype. Also, new macrophage-based cell therapeutic technologies recently developed using
chimeric antigen receptor bioengineering are exposed, which may overcome all solid tumor physical barriers impeding the

current adoptive cell therapies and contribute to developing novel cancer immunotherapies.

1. Introduction

Tumor-associated macrophages (TAMs) and their precur-
sors represent a large proportion of infiltrating myeloid cells
in the microenvironment of most solid human malignancies,
and they play a crucial role in tumorigenesis [1-3]. TAMs
can be derived from blood monocytes and tissue-resident
macrophages (M®s) [4] and comprise a highly dynamic
and heterogeneous set of cells full of intermediate polariza-
tion phenotype. Indeed, a high degree of TAM heterogeneity
is present between cancer patients and within different tumor
areas of the same patient [5].

Within the tumor microenvironment (TME), O, levels
vary dramatically depending on blood supply and hypoxic
areas are often present within a tumor tissue [6]. TAMs infil-
trate hypoxic regions, in part, being attracted by several che-
motactic signals secreted by cancer cells due to low oxygen

pressure. Upon arrival, they suffer a reduction in motility
and accumulate at ischemic tumor sites, which may explain
the high TAM density in hypoxic and necrotic TME areas
of some types of cancers [7, 8].

Furthermore, under different microenvironmental sig-
nals and perturbations, TAMs undergo different activation
states, reflecting the capacity of these cells to acquire and
move through an entire spectrum of phenotypic and meta-
bolic functional patterns. The main M® phenotype extremes
denominated as the proinflammatory M1 phenotype (or
classical activation) that exhibits antitumoral functions and
the anti-inflammatory M2 phenotype (or alternative activa-
tion) that possesses a protumoral phenotype [9]. Specific fac-
tors associated with inflammation, which include endotoxin,
interferon- (IFN-) y, and interleukin- (IL-) la, induce M1,
whereas M2, which comprises M2a, M2b, and M2c subtypes,
is induced by specific stimuli, including IL-4, IL-10, IL-13,
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transforming growth factor- (TGF-) f, and glucocorticoids
[9-12]. Recently, an M2d subtype linked to TAMs has been
proposed, induced by specific TME-associated anti-
inflammatory signals, such as IL-6, Toll-like receptor (TLR)
ligands, and adenosine A2 receptor (A2R) agonists. At the
same time, they secrete elevated levels of IL-10, TGF-f3, and
VEGF, which contribute to tumor growth, angiogenesis,
and metastasis [9]. TAMs may secrete VEGF, anti-
inflammatory cytokines TGF-B, and IL-10, alongside
immune checkpoint ligand expression, such as programmed
death-ligand 1 (PD-L1). Moreover, TAMs exert T-cell
immunosuppression by depleting essential amino acids via
arginase-1 (ARGI) expression and recruit regulatory T-cells
(Tregs) that further contribute to the inhibition of antitumor
immune responses within the TME [13, 14].

In general, TAMs seem to display an M2-like polariza-
tion rather than an M1 phenotype preferentially. Neverthe-
less, at early tumor phases, TAMs are programmed by
cancer signals into a more M1l-like phenotype. Over the
course of tumor progression to more advanced stages, with
the establishment of inflammatory dysbalanced and immu-
nosuppressive TME with prevalent necrotic/hypoxic areas,
TAMs begin to display an anti-inflammatory M2-like pheno-
type [15, 16]. Furthermore, various subpopulations of TAMs
have also been identified as TIE2-positive M®s [17], pro-
grammed cell death protein-1- (PD-1-) expressing TAMs
[18], and C-C chemokine receptor type-2- (CCR2-) express-
ing TAMs [19]. In addition, it is essential to consider that,
depending on nutrients, oxygen availability, and cell-matrix
and cell-cell interactions in different sites of malignant tissue,
TAMs can adapt their intracellular metabolism for the
appropriate polarization [5, 20]. Moreover, TAM diversities
require a rethinking and update of M1 and M2 nomenclature
for a more accurate classification of their inflammatory phe-
notypes [21, 22]. Importantly, evidence supports a tumor-
promoting role of TAMs and high frequencies of TAMs are
generally associated with poor prognosis in most human can-
cers [23].

In this review, we analyzed the metabolic pathways of
TAMs that allow them to adapt to oxygen and nutrient avail-
ability in the TME. This may contribute to the promotion of
tumor growth and progression. Furthermore, because of the
protumorigenic role of TAMs in cancer, we also present pri-
mary therapies targeting TAMs, including small drugs, com-
binations with immune-checkpoint inhibitors (ICI), and the
current strategy of the chimeric antigen receptor (CAR) to
engineer macrophages towards the adoption of antitumor
functions.

2. Metabolic Activities in Tumor-
Associated Macrophages

Solid tumors comprise complex protein and cellular compo-
nents that generate a favorable ecosystem supporting trans-
formed cell growth [24]. TAMs are recruited and infiltrate
the tumor mass [25]. Moreover, TAMs contribute by pro-
moting tumor initiation and progression, angiogenesis, and
metastasis. Meanwhile, all these cancer events seem to be
influenced by TAM subpopulations with relevant pheno-
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types corresponding to specific tumor regions, exhibiting dif-
ferent cytokine and metabolic profiles regulated by TME [21,
26]. TAMs dynamically adjust their metabolism to survive
hostile tumor conditions and display their anti-
inflammatory potential to control the tumor’s dysfunctional
inflammation resulting from cancer cell transformation. In
general, TAM literature data indicate that TAMs possess
enhanced glycolysis, fatty acid oxidation (FAO), fatty acid
synthesis (FAS), and altered glutamate metabolism [25]
(Figure 1).

3. Glucose Metabolism in TAMs

TAMs are highly dependent on aerobic glycolysis to reach
TME hypoxic regions, and ATP production by glycolysis sus-
tains the necessary cytoskeletal reorganization for cell motil-
ity [8, 27, 28]. Once TAMs arrive at hypoxic tumor regions
(less than 10 mmHg, <1% oxygen), hypoxia effects impair
M® migration and TAMs accumulate at ischemic tumor
sites [8]. Furthermore, the expression of regulated in devel-
opment and DNA damage response 1 (REDD1), an inhibitor
of the mechanistic target of rapamycin (mTOR), is upregu-
lated in hypoxic TAMs and inhibits glycolysis [29], which
may affect TAM motility in hypoxic tumor regions. Consis-
tently, dichloroacetic acid, a glycolysis inhibitor, strongly
reduces macrophage migration [30]. In addition, pyruvate
kinase muscle 2 (PKM2) colocalizes with F-actin in macro-
phage filopodia and lamellipodia during cell migration [30].

Increased aerobic glycolytic activities of TAMs have been
illustrated by comparing the metabolic reprogramming of
bone marrow-derived macrophages; primary TAMs were
derived from the mouse mammary tumor virus promoter-
driven expression of the polyomavirus middle T antigen
(MMTV-PyMT) tumor model and human monocytic
THP-1 cell line stimulated with tumor extract solution from
breast cancer patients. Critical glycolytic enzymes hexokinase
2 (HK2), downstream phosphofructokinase (PFKL), and
enolase 1 (ENO1) were increased in all situations [31]. Simi-
larly, conditioned media from human pancreatic ductal ade-
nocarcinoma (PDAC) cell lines induce in vitro TAM-like
cells with upregulated HK2, glucose-6-phosphate isomerase
(GPI), aldolase A (ALDOA), triosephosphate isomerase 1
(TPII), and phosphoglycerate kinase 1 (PGKI) transcript
expression and increased L-lactate production by expression
of lactate dehydrogenase A (LDHA) [32]. Additionally, non-
medullary thyroid carcinoma-induced TAMs exhibit an ele-
vated extracellular acidification rate (ECAR) and oxygen
consumption rate (OCR) related to increased glucose metab-
olism via Akt/mTOR signaling [33]. More recently, de-Brito
et al. [34] have demonstrated that TAMs show high glycolytic
activity and secretion like the M1/M(LPS + IFN - y) pheno-
type. Obtained TAMs, by treating macrophages in vitro with
a conditioned medium of human melanoma cells, exhibit
increased glucose transporter 1 (GLUT-1) expression and
elevated gene expression of HK2 alongside increased
AKT/mTOR signaling. In line with Arts et al. [33], these
TAMs also present high basal and maximal OCR and high
mitochondrial ATP production, thus performing oxidative
phosphorylation (OXPHOS) similarly to M2/M(IL-4).
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FIGURE 1: Metabolic features of tumor-associated macrophages (TAMs) may dynamically adjust their metabolism within the tumor
microenvironment. Extracellular lactate can stimulate glycolysis by creating a pseudohypoxic milieu that may increase lactate production
and secretion. Also, TAMs utilize glycolysis, TCA, and OXPHOS to increment the rate of bioenergetic production. TAMs exhibit
increased glutamine, arginine, and tryptophan metabolism, increasing energy production, collagen synthesis, and immunosuppressive
functions. Furthermore, depending on the TAM stage, lipid metabolism is also altered due to lipid uptake and storage may increase or
lipids may be derived towards FAO and participate in TCA and OXPHOS. Moreover, active glycolysis may connect with F.A.S. by
increasing acetyl-CoA production; for further details, see the text. TCA: tricarboxylic acid cycle; OXPHOS: oxidative phosphorylation;
FAO: fatty acid oxidation; FAS: fatty acid synthesis; PUFAs: polyunsaturated fatty acids; 15-LOX-2: 15-lipoxygenase-2; 15, HETE: 15-
hydroxyeicosatetraenoic acid; ARGI: arginase-1; iNOS: inducible nitric oxide synthetase; NO: nitric oxide; ROS: reactive oxygen species;
IDO: indoleamine-2,3-dioxygenase; LDHA: lactate dehydrogenase A; MCT-1/4: monocarboxylate transporters-1/4; HK2: hexokinase-2;

PFKL: phosphofructokinase; ENO1: enolase-1.

Interestingly, the TAM maintenance phenotype depends on
glycolysis and is independent of both OXPHOS and pentose
phosphate pathways (PPP) [34].

Cancer cells metabolize glucose mainly via aerobic gly-
colysis, known as the “Warburg effect,” leading to high lac-
tate concentrations in the TME [35]. For instance, thyroid
cancer-derived lactate enhances the aerobic glycolysis of
endogenous TAMs mediated by the AKT1/mTOR pathway
and stabilizes their protumor phenotype [32]. CD163" TAMs
correlate with LDHA2 expression in bladder cancer, head
and neck cancer, and malignant skin cancer [8]. Meanwhile,
MO uptake of cancer cell-derived lactate can be performed
via monocarboxylate transporter-1 (MCT1) on the cell sur-
face and be facilitated by a local low pH [36]. Afterwards,
intracellular lactate can be metabolized to pyruvate again by
LDHI1, which competes with a-ketoglutarate to negatively
regulate prolyl hydroxylase, thus preventing hypoxia-
inducible factor- (HIF-) la ubiquitination and proteasomal

degradation and promoting a glycolytic pathway [37]. An
elevated glucose consumption rate by TAMs is also poten-
tially immunosuppressive since glucose-depleted TME
reduces antitumor T-cell activities [14]. In addition, TAMs
present a low PPP pathway activity and it seems to be nones-
sential for M2-like phenotype marker expression and TAM
functions [34]. Furthermore, TAMs also present increased
OCR and OXPHOS activities to produce high amounts of
ATP [33, 34], which is in line with the M2 macrophage phe-
notype being related to an intact tricarboxylic acid cycle
(TCA) and increased OXPHOS activity [9].

4. Amino Acid Metabolism

Nutrients and metabolic waste products may alter the TAM
phenotype and functions [38]. For instance, tumor-derived
lactate potently induces ARG1 in TAMs via ERK1, 2/STAT3,
and HIF-1« stabilization. Additionally, this “pseudo-hypoxic”



HIF-1a activation by tumor metabolites enhances proangio-
genic TAM function that fosters tumor growth [39-41].
ARGI1" TAMs may promote tumor growth as demonstrated
by the fact that M®-overexpressing ARG1 enhances tumor
cell proliferation, while ARG1-deficient M®s are associated
with reduced tumor size in mice models [39, 42]. A potential
mechanism has been proposed for ARG1 tumor-promoting
functions. ARG-1 may promote cancer cells by enhancing
polyamine production, stimulating M2 gene expression,
and stabilizing TAMs’ protumorigenic phenotype [43, 44].
Although TAMs seem to have a low NO production capacity,
as is observed in murine mammary and human ovarian
tumors, consistent with M2-like and protumor character-
istics [44-46], simultaneous ARG1 and inducible nitric
oxide synthase (iNOS) pathways have been observed in
tumor-licensed TAMs [47]. ARG1 and iNOS coexpression
at a low arginine concentration may favor reactive oxygen
species (ROS) and reactive nitrogen species (RNS) pro-
duction, thus further inhibiting intratumoral T-cell func-
tions. This dissimilarity reinforces phenotype differences
between TAMs and M2-polarized macrophages since, in
ischemic tumor domains, TAMs may coexpress ARGI
and iNOS/NOS2, representing an intermediary M1/M2
stage [9].

TAM dependence on the glutamine-glutamate pathway
is an essential metabolic characteristic. TAMs isolated from
glioblastomas and glioblastoma cell-induced TAMs exhibit
increased glutamate transport genes and cellular metabolism
expression. qPCR analysis indicated an increased expression
of glutamate receptor 2 (GRIA2), glutamate transporters
GLT-1 (SLC1A2) and GLAST (SLC1A3), and glutamine syn-
thetase (GS) and a decreased expression of cysteine gluta-
mate antiporter, which may improve TAM resistance to
glutamine starvation. Glutamate and glutamine can be used
for energetic requirements in TAMs, while glutamine can
also be released to the tumor extracellular milieu to fuel can-
cer cells [44, 48]. Additionally, thyroid cancer-induced
TAMs show a reduced glutamate concentration due to a
potential utilization by glutamine metabolism to replenish
the TCA cycle [43]. In addition, targeting glutamine
metabolism by JHUO083, a prodrug that broadly inhibits
glutamine-metabolizing  enzymes, reprograms TAMs
towards the MI-like phenotype and enhances antitumor
immunity without affecting their total number within the
tumor [49]. Moreover, targeting GS in M2 and TAMs
can also shift macrophage polarization towards an MI-
like phenotype. GS inhibition leads to HIF-la activation,
promotes succinate accumulation and glucose-dependent
metabolism, subverts T-cell immunosuppression, and pre-
vents metastasis [50].

In addition, TAMs may strongly express IDO that con-
tributes to creating an immunosuppressive microenviron-
ment by tryptophan deprivation. In fact, the conditionate
medium of IDO™ TAMs suppressed T-cell response, while
pretreatment of TAMs with an IDO inhibitor restored T-
cell proliferation [51]. Besides the local tryptophan reduc-
tion, IDO also catabolizes tryptophan to kynurenine, which
negatively influences T-cell proliferation and immune
responses [52].
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5. Fatty Acid Metabolism in TAMs

Tumor tissues may have aberrant activation of de novo lipo-
genesis due to an overexpression of fatty acid synthase
(FASN), ATP citrate lyase (ACLY), and acetyl-CoA carbox-
ylase (ACC), which is associated with unfavorable cancer
outcomes. FAS inhibition suppresses transformed cell
growth, while increased lipid synthesis promotes cancer cell
proliferation by a continuous substrate supply for cellular
membrane generation and bioenergy production [44, 53, 54].

Lipid metabolism may play a role in shaping the func-
tional phenotype in TAMs in the TME. FAS is vastly
increased at the transcriptome level in thyroid carcinoma-
(TC-) induced TAMs. Moreover, TC-induced TAMs display
increased glucose metabolism and increased intracellular
levels of acetyl-CoA, which can be used for fatty acid synthe-
sis. Furthermore, mTOR pathway activity and HIF-1«
expression are elevated in TAMs [33]. In addition, mTORCI
signaling is implicated in lipid, protein, and nucleotide syn-
theses. Thus, mTORCI mediates metabolic reprogramming
and differentiation in macrophages [38, 55].

Interestingly, TAMs isolated from ovarian carcinoma
patients show a PPARS/§-dependent elevated transcriptome
due to high polyunsaturated fatty acid (PUFA) levels in the
TME. Specifically, linoleic acid and arachidonic acid are
stored in highly stable lipid droplets in TAMs and may con-
tribute to TAM polarization [56, 57]. In addition, TAMs
derived from renal carcinoma produce elevated levels of
eicosanoids via the activation of 15-lipoxygenase- (LOX-) 2
(15-LOX-2) and release substantial amounts of the arachi-
donic acid metabolite 15-hydroxyeicosatetraenoic acid (15-
HETE) [58]. LOXs are nonheme iron-containing dioxy-
genases that catalyze the stereospecific peroxidation of
PUFAs to the corresponding hydroperoxyl derivatives [59].
Beyond its role in regulating lipid homeostasis, 15-LOX-2
also contributes to an increased TAM expression of CCL2
chemokine and IL-10, leading to a local immune tolerance
within the TME [58, 60].

Moreover, several studies have shown that cellular accu-
mulation of lipids is crucial in regulating the function of
TAMs. Macrophages accumulate lipids within the TME
and support immunosuppression. Both in vitro cancer-
stimulated macrophages and TAMs isolated from different
tumor models exhibit an increased expression of ABHDS5, a
lipolytic factor of triglycerides, whereas monoacylglycerol
lipase (MGLL) is downregulated. Meanwhile, M®s, derived
from a transgenic mouse model with a specific overexpres-
sion of MGLL (Tg™“"") in myeloid cells, were refractory to
accumulated lipids in response to cancer cell stimuli. Fur-
thermore, MGLL downregulation contributes to the suppres-
sion of tumor-associated CD8" T-cell function and tumor
progression. In addition, myeloid MGLL overexpression
potentiates M1-like TAM expansion to the detriment of
M2-like TAMs. Thereby, the TAM phenotype requires a
reduced MGLL expression to stabilize and display immuno-
suppressive and tumor promoter functions [61].

TAM:s from both human and murine tumor tissues accu-
mulate lipids that rely on elevated levels of CD36 expression
and ensure substrates to FAO and OXPHOS for energy
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production. Lipid accumulation in TAMs correlates with the
upregulation of genes involved in fatty acid S-oxidation, such
as CPT1A, an FAO rate-limiting enzyme, acyl-CoA dehydro-
genase medium-chain (ACADM), hydroxyacyl-CoA dehy-
drogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (a
trifunctional protein), and hydroxyacyl-CoA dehydrogenase
(HADH), without any modifications of gene expression
involved in glucose metabolism. Conversely, reduced lipid
uptake in CD36-KO M®s or FAO inhibition by etomoxir
can prevent the generation of TAMs and reduce their protu-
mor activities [62].

Interestingly, cell death-associated factors may regulate
TAM generation and fatty acid metabolism. For example,
TAM:-like cells, generated from THP-1 M®s cocultured with
MCE-7 tumor cells, depend on caspase-1-dependent peroxi-
some proliferator-activated receptor y (PPAR y) cleavage.
When truncated PPARy translocates to mitochondria to
interact and inhibit medium-chain acyl-CoA dehydrogenase
(MCAD), it results in FAO inhibition and consequently
induces lipid droplet accumulation and TAM differentiation
[63]. On the other hand, receptor-interacting protein kinase
3 (RIPK3), a central factor in necroptosis, is downregulated
in hepatocellular carcinoma- (HCC-) associated TAMs.
RIPK3 reduction provokes an inhibition of caspasel-
mediated cleavage of PPARy that promotes FAO pathway
activation and M2 polarization within the TME. Consis-
tently, RIPK3 overexpression or FAO blockade prevents
TAM-induced immunosuppression and impairs HCC
tumorigenesis [64]. These data suggest a time-dependent
relation of caspase-1 activation and RIPK3 downregulation
to balance lipid storage and degradation according to TAM’s
energy needs in tumor tissues. Intriguingly, human TAMs,
induced with a conditioned medium of human melanoma,
demonstrate a low absorption of exogenous palmitate/BO-
DIPY FLCI16, reduced CD36 expression, and FAO activity
similar to M1 M.

Nevertheless, these determinations were done in environ-
ments with an atmospheric oxygen concentration, where glu-
cose in culture media may be the primary fuel source and the
TAM phenotype maintenance depends on the glycolytic
pathway. Moreover, no determination of CD36 or lipid
uptake was performed under hypoxic conditions [34]. In
summary, lipid uptake, intracellular lipid accumulation,
FAS, and FAO demonstrate TAMs’ metabolic flexibility
and adjustment to achieve a proinflammatory and protu-
morigenic program to sustain tumor development and
malignancy.

6. TAMs and Immunotherapy Perspectives

The innate immune system cells that interplay with the adap-
tive immune system are essential in preventing the progres-
sion and acquisition of malignancy stages of transformed
cells [65, 66], and a crucial subject in antitumor immunology
is the struggle against of the immunosuppressive environ-
ment within the tumor stroma producing dysfunctional anti-
tumor responses. TAMs exert protumoral functions that
enhance tumor progression, tumor growth, and neoangio-
genesis and facilitate the establishment of the immune-

suppressive microenvironment, making them attractive ther-
apeutic targets for cancer therapy [26]. Therefore, targeting
TAMs may provide novel treatment options to cancer types
currently unresponsive to conventional chemotherapeutics
and synergize with current immunotherapies [67].

6.1. TAMs and Immune Checkpoint Inhibitors. One of the
main TAM mechanisms involved in cancer support and pro-
motion is their potent capacity to create an immune-tolerant
TME by preventing immune cytotoxic cell effector functions.
TAMSs may suppress antitumor immune responses; they can
activate adverse regulatory pathways or checkpoints associ-
ated with immune homeostasis and can allow cancer cells
to actively escape from immunosurveillance [26, 68]. Recent
studies have indicated that TAMs express B7 family ligands
PD-L1 (CD274) and PD-L2 as well as CD80 (B7-1) and
CD86 (B7-2), which bind to inhibitory receptors PD-1
(CD279) and cytotoxic T-lymphocyte antigen 4 (CTLA-4
or CD152) and induce CD8" T-cell dysfunction [66]. PD-1
and CTLA-4 are expressed in activated immune effector cells
as part of regulatory and safety mechanisms to control the
resolution phase of immune response and inflammation
[26]. Furthermore, TAMs also express B7 family checkpoint
ligands with direct suppressive effects on tumor-infiltrating
T-cells, such as the coinhibitory molecule B7-H4 and V
domain immunoglobulin suppressor of T-cell activation
(VISTA, B7-H5), which bind CD28H [69, 70]. B7-H4 bind-
ing to an unknown target-cell receptor inhibits T-cell prolif-
eration, cell cycle progression, and cytokine production [71,
72]. In contrast, B7-H4 depletion, by using a B7-H4-
specific morpholino antisense oligonucleotides (B7-H4
blocking oligos), switches TAMs to T-cell-stimulating func-
tions alongside with tumor regression and tumor growth
(Figure 2) [69]. TAMs may directly inhibit T-cell functions
via these immune checkpoint ligands and reduce immune
checkpoint therapy efficacy [73].

Although ICIs have shown great potential, due to their
therapeutic success in several cancers, such as melanoma
and lung cancers, and leukemias, the percentage of effective-
ness still does not fulfill the expected outcomes in cancer
immunotherapy [66, 74]. TAMs, the highest in abundance
among tumor-infiltrating immune cells, exert multifaceted
roles in promoting tumor progression, and it has been sug-
gested that the selective targeting of TAM functions in com-
bination with ICI therapies may synergize with current
cancer immunotherapies [75].

For instance, targeting colony-stimulating factor (CSF) 1,
a TAM recruitment factor, improves the therapeutic effect of
checkpoint inhibitors. CSF1R inhibition by PLX3397 reduces
TAMSs’ tumor infiltration and their immunosuppressive phe-
notypes, potentiates ICI effects against PD-1 and CTLA4,
and impairs tumor expansion by approximately 50%. More-
over, this combinatory approach induces about a 15% regres-
sion in established pancreatic cancer tumors [76]. In line
with these results, CCR2 antagonists increment anti-PD-1
antibody efficacy and reduce TAM accumulation within
tumor tissues [77] (Figure 2). In addition, colon carcinoma
CT26 murine syngeneic tumors that exhibit high immunoge-
nicity and the mesenchymal-like phenotype are susceptible
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to immunotherapy with anti-PD-L1 mIgG2, an IgG subclass
with the highest affinity for activating FcyR typically
expressed by TAMs. Anti-PD-L1 mIgG2 antitumor therapy
results in a significant inhibition of tumor growth and
improved long-term mouse survival. This tumor inhibition
was due to the anti-PD-L1 mIgG2 potential to directly target
tumor-associated myeloid cells expressing FcyR [78].
Similarly, the antibody targeting macrophage receptor
with the collagenous structure (MARCO), by crosslinking
the inhibitory FcgRIIB on TAMs, synergistically increases
anti-CTLA4 immunotherapy in melanoma and colon cancer
mouse models. Interestingly, anti-MARCO treatment results
in repolarization of the M2-like anti-inflammatory TAM
population to M1-like proinflammatory TAMs that increase
tumor immunogenicity [79]. Thus, it is believed that prevent-
ing or rescuing TAMs from immunosuppressive functions,
either by depletion or phenotype repolarization, may signifi-
cantly improve ICI immunotherapies by reversing immune
dysfunction and restoring the cytotoxic antitumor function
of T lymphocytes within the TME. Several ongoing clinical
trials have considered combinatorial TAMs and immune
checkpoints targeting and are reviewed elsewhere [26, 80].
Notably, in chronic lymphocytic leukemia- (CLL-)
derived monocytes, triggering the PD-1 checkpoint by using
the bioactive recombinant PD-L1 protein hampers glycolysis
(reduces glucose uptake, glucose transporters, and expression
of glycolytic molecules) and shifts their metabolism toward
OXPHOs, which may suggest the PD-1/PD-L1 axis as a novel
immune metabolic player in myeloid cells [81, 82].
Although no data exist about ICI on TAM metabolism,
some information can be taken from other models. Tropho-
blast-M® interaction during early pregnancy may illustrate

molecular pathways in the PD-1/PD-L1 axis-mediated regu-
lation of myeloid cells. The treatment of normal monocytes
with granulocyte-macrophage- (GM-) CSF significantly
increases PD-1 mRNA expression. Afterwards, PD-L1 ago-
nist (PD-L1 Fc) engages M®s expressing PD-1 and triggers
the polarization of GM-CSF-differentiated M®s towards
the M2 phenotype with increased FAO activity. The anti-
PD-1 blocking antibody promotes macrophage polarization
towards the M1 phenotype with enhanced glycolytic metab-
olism, reduced FAO, and increased fatty acid synthesis path-
way. These events occur alongside increased
PI3K/AKT/mTOR and MEK/ERK activity pathways. Thus,
PD-1 signaling might modulate macrophage polarization
via reprogramming their metabolism [83]. PD-1 expression
has also been observed in other M® models, playing a sup-
pressive role associated with M2 polarization and increasing
with the stage of disease in colorectal cancer patients [18, 84].

Nevertheless, further investigations addressing the
immune checkpoint regulation of TAM metabolism are
required, as they would contribute to an understanding of
the complex immune-metabolic network in the TME.

6.2. TAMs and Adoptive Cell Therapy. A new therapeutic
technique has recently emerged, CAR T-cells, which provides
new insight into adoptive cell therapy (ACT) for cancer. The
CAR construct results from fusing a specific anti-tumor-
associated antigen (TAA) antibody polypeptide chain with
the TCR/CD3( signal-mediated activating machinery of the
T-cell. Additionally, it may contain one or more domains
derived from costimulatory T-cell receptors CD28, 4-1BB,
or OX40 (Figure 3(a)). The TAA-CAR-specific construct is
ectopically expressed in the immune effector cells to
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indicates CAR-modified macrophages, specific targets, intracellular CAR domains, and the main functional activities promoted by CAR

macrophage engineering.




recognize and potentially target cancer cells. When CAR T-
cells bind to TAA at the cancer cell surface, they proliferate
and kill tumor cells. Thus, CAR T-cells represent a significant
advancement in cancer immunotherapy and a genetic engi-
neering platform to develop CAR-based immunotherapies
using other immune cells [85, 86]. Remarkably, fourth-
generation CAR-T-cells (TRUCKSs), engineered with anti-
carcinoembryonic antigen (CEA, CD66) antibody single-
chain peptide and modified to secrete inducible IL-12 (IL-
12), upon engaging tumor cells, reprogram TAMs recruited
into the tumors to be tumoricidal cells that cooperate with
CAR-T-cells for tumor regression and cancer cell elimination
(Figure 3(a)) [87, 88].

Similarly, CAR T-cells releasing inducible IL-18, upon
CAR stimulation, change the TME immune cell landscape
into an acute inflammatory feature, owing to an increased
frequency of MIl-like TAMs and the improved infiltration
of activated dendritic cells and natural killer cells. As a result,
an improvement of mice survival with advanced pancreatic
and lung tumors has been observed, as has antigen-specific
memory [89].

Although CAR T-cells have significant success in treating
hematological malignancies, targeting solid tumors is chal-
lenging to implement for ACT due to impediments to traf-
ficking and infiltrating tumor tissues [90]. Beyond
functioning as professional antigen-presenting cells (APC)
and actively participating in the immune response, M®s pos-
sess a high capacity to migrate and infiltrate tumors in
response to tumor-secreted chemokines [91, 92]. This
tumor-infiltrating capacity makes M®s strong candidates as
vehicles for CAR therapy (Figure 3(b)). In this sense, the con-
cept of CAR modification in M®s has recently been intro-
duced. Several CARs for CDI19- or CD22-targeted
phagocytosis were engineered for M® cell transfection and
named CAR-Ps. The CAR-P molecules contain the extracel-
lular single-chain antibody variable fragment (scFv) recog-
nizing the B cell antigen CDI19 or CD22 and the CD8
transmembrane domain as in the aCD19/aCD22 CAR-T,
as well as cytoplasmic domains Megf10, the common y sub-
unit of Fc receptors (FcRy), or CD3{, and could promote
phagocytosis. These CAR-Ps possess excellent specificity
and a phagocytotic ability for both CD19- and CD22-
coated beads and for Raji B cells in vitro. This study demon-
strates that, beyond T-cell activation, the CAR strategy is
transferrable to phagocytic cells and sufficient to promote
specific engulfment and eliminate cancer cells. Tumor
antigen-specific CARs make M®s applicable in ACT to tar-
get solid tumors [93].

Another CAR-modified M® strategy considers a Toll-
like receptor-chimeric antigen receptor expression. In this
case, the chimeric protein is the result of the fusion of the
Toll/interleukin-1 receptor (TIR) signaling domain for intra-
cellular signal transduction and scFv for thymidine kinase 1
targeting (TK1 MOTO-CAR cells). The in vitro analysis indi-
cates that TK1 MOTO-CAR cells exhibit an M1-skewed phe-
notype and phagocytic activity. Moreover, these CAR cells
specifically induce cell death and form clusters around the
TK1-positive non-small cell lung carcinoma NCI-H460 cell
line [94, 95].
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Furthermore, M®s are modified with anti-hHER2 scFv
and the transmembrane and intramembrane regions of the
mouse CD147 molecule construct (CAR-147). CD147 (also
named EMMPRIN) is a well-known extracellular matrix
metalloproteinase (MMPs) inducer [96]. When cocultured
with HER2-4T1 cells, the expression of MMP3, MMP9,
MMP10, MMP11, MMP12, MMP13, and MMP14 in CAR-
147 M® is significantly upregulated. Although CAR-147
M®s did not inhibit cancer cell growth in vitro, they signifi-
cantly inhibited tumor growth in the 4T1 breast cancer
mouse model. Moreover, these M®s promoted T-cell infil-
tration into the tumor concomitantly with the degradation
of the dense collagen-based matrix that surrounds it. Fur-
thermore, CAR-147-expressing human M® facilitated T-
cell infiltration in a three-dimensional multicellular sphere
model of human breast cancer [97].

Recently, the term CAR-M has been coined regarding
human M® transduced with CARs encoding the CD3{ intra-
cellular domain to target the tumor antigen mesothelin or
HER2. CAR-M cells display tumor antigen-specific phago-
cytic activity while exhibiting a proinflammatory M1-like
phenotype and promote antitumor T-cell activity [98].
Moreover, the investigational new drug application for anti-
human HER2-CARM (CT-0508) was approved last year by
the FDA to target recurrent or metastatic HER2-
overexpressing solid tumors [99]. M®s engineered with
CAR molecules seem to preferentially exhibit a proinflam-
matory M1-like TAM phenotype. According to the metabolic
adjustment of macrophages to TME signaling, oxygen, nutri-
ent levels, and intratumor localization, it is plausible that the
CAR modification of M®s may influence glucose and nutri-
ent flow to a more glycolytic and FAS metabolic M1-like
profile.

7. Conclusions

Tumor metabolic activities are critical for tumor growth and
progression. Cancer cells may create a dysfunctional micro-
environment, producing a network of inflammatory factors,
oxygen, nutrients, and metabolites that may alter the
immune system response and make it protumorigenic.
TAMs are one of the critical noncancer cell populations that
infiltrate tumors. They actively interact with cancer cells and
may promote tumor growth by regulating antitumor
immune function. Moreover, TAMs dynamically adjust their
metabolism according to different signals and interactions,
depending on intratumor localization. Moreover, TAM-
produced metabolites exert multiple biological effects in the
whole TME. Thus, the success of tumor development and
growth may depend on active TAM-TME metabolic
crosstalk.

Due to the importance of TAMs in tumor progression,
several therapeutic strategies have been investigated, from
elimination to utilization as antitumor drug cargoes, includ-
ing their shifting to proinflammatory and antitumoral phe-
notypes. All these therapies may also be combined with the
current ICI immunotherapies. Furthermore, TAMs seem to
be excellent candidates for adoptive cell therapy, especially
as part of CAR technology. Moreover, an evaluation of
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metabolic flux in TAMs and metabolism interventions might
further improve tumor immunotherapy. Nonetheless, more
investigations are needed to elucidate TAMs' metabolic
adaptation to current immunotherapies. Therefore, the met-
abolic manipulation of TAMs may allow for the generation of
more accurate oncotherapies and increment the life quality of
cancer patients.
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