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While the heart is a ‘metabolic omnivore’, the predominant sources of energy production 

are fatty acid and glucose/lactate catabolism (Stanley et al. 2005). Cardiomyocytes can 

also utilize ketone bodies but circulating concentrations of ketones are typically low 

compared to other substrates in the fed state (Stanley et al. 2005). Regardless, studies 

of rodent isolated working hearts have suggested that even at normal physiological 

concentrations of mixed substrates, the perfused heart can derive a substantial amount 

(∼34%) of acetyl-CoA from ketones (Stowe et al. 2006), and cardiac ketone utilization can 

be enhanced in proportion to delivery (Jeffrey et al. 1995). The two main ketone bodies, 

β-hydroxybutyrate (βOHB), and acetoacetate (AcAc), are catabolized by two mitochondrial 

enzymes, β-hydroxybutyrate dehydrogenase 1 (BDH1) and succinyl-CoA:3-oxoacid CoA 

transferase (SCOT), respectively. A great deal of excitement has been drawn to cardiac 

ketone metabolism due to recent evidence demonstrating that failing mouse and human 

hearts preferentially switch to ketone utilization (Aubert et al. 2016; Bedi et al. 2016). 

Ketone extraction and oxidation are increased in failing human hearts compared to normal 

hearts (Monzo et al. 2020; Murashige et al. 2020). The following discussion describes a 

parallel body of work indicating that ketones may not be sufficient to sustain the metabolic 

demand of the heart and raises the debate regarding the importance of ketones as a metabolic 

fuel.
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Ketone metabolism insights from ex vivo studies

Cardiac ketone metabolism has been studied extensively in isolated hearts, where the heart 

is isolated and perfused with buffer containing metabolite(s). Early work suggested that 

ketones could serve as the preferred oxidative fuel in Langendorff-perfused rat hearts 

(Williamson & Krebs, 1961). However, using an isolated working heart model, Taegtmeyer 

and colleagues demonstrated that ketone oxidation rates were unchanged in response to 

increased workload (Taegtmeyer et al. 1980). Also, perfusion of ketones as the sole 

metabolic substrate could not sustain cardiac work (Taegtmeyer et al. 1980). Only if the 

hearts were perfused with a combination of ketone and glucose (Taegtmeyer et al. 1980), or 

ketone and fatty acid (Russell et al. 1995) could contractile work be maintained. The authors 

described that hearts perfused with AcAc alone displayed inhibition of 2-oxoglutarate 

dehydrogenase activity due to sequestration of free CoA (Taegtmeyer, 1983; Russell & 

Taegtmeyer, 1991). This contractile dysfunction and loss of free CoA was reversed by 

addition of glucose, fatty-acylcarnitine or TCA cycle intermediates to the perfusate. A 

more recent study demonstrated that isolated normal working hearts and isolated pressure-

overload failing hearts perfused with βOHB increased overall ATP production due to 

enhanced ketone and glucose utilization, but cardiac efficiency was unchanged (Ho et al. 
2019).

A recent study in The Journal of Physiology also supports the notion of ketones not 

being an important metabolic fuel for cardiac mitochondrial oxidation ex vivo. Petrick 

and colleagues demonstrated that when AcAc or βOHB was added to mitochondria 

isolated from left ventricle or permeabilized left ventricular muscle fibres, the maximal 

mitochondrial respiration from ketones was low compared to pyruvate (Petrick et al. 2020). 

Additionally, if pyruvate was already present in these preparations, addition of ketones 

could not further increase mitochondrial respiration (Petrick et al. 2020). Thus, this study 

also suggests that ketones may not be an important metabolic fuel for the heart; however, 

the effects of ketones likely go beyond their metabolic role (Poffe & Hespel, 2020). For 

instance, ketones are known to have both signalling and post-translational modification/

epigenetic roles (Puchalska & Crawford, 2017).

Ketones and substrate competition

While the heart is metabolically flexible, all substrates are catabolized to acetyl-CoA for 

oxidation. Several studies suggest that ketones compete with glucose and fatty acids as 

metabolic fuel. Both in vitro and in vivo studies have shown that ketones compete with 

fatty acids and inhibit their oxidation (Hasselbaink et al. 2003; Stanley et al. 2003). It has 

also been demonstrated that chronic exposure to βOHB induces insulin resistance in isolated 

cardiomyocytes (Tardif et al. 2001; Pelletier et al. 2007). βOHB infusion can also reduce 

cardiac glucose uptake in humans (Gormsen et al. 2017) suggesting that ketones have the 

potential to compete with both glucose uptake and oxidation in the heart. However, the 

ketone-associated inhibition of fat or glucose oxidation appears to be specific to ketone 

body concentration, with lower ketone concentrations either not affecting, or even enhancing 

cardiac oxidative capacity of these other substrates (Ho et al. 2019).
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Insights from in vivo studies on myocardial ketone metabolism

While ex vivo studies allow direct assessment of myocardial substrate metabolism, these 

interpretations of cardiac fuel utilization may not faithfully represent the in vivo scenario, 

particularly in conditions associated with chronically elevated ketone levels such as fasting, 

consumption of a ketogenic diet, or uncontrolled diabetes. Intriguingly, high ketogenic 

conditions have been shown to diminish the ability of the heart to catabolize ketone 

bodies. Hearts from mice provided a ketogenic diet or after 24 h fasting displayed reduced 

expression of ketolytic enzymes, and reduced ketone oxidation both in vivo and ex vivo 
(Wentz et al. 2010). We and others have also described decreased cardiac expression of 

BDH1 and SCOT after ketogenic diet or fasting, even in failing hearts that were previously 

upregulating the expression of these ketolytic enzymes (McCommis et al. 2020; Zhang et 
al. 2020). We also reported a similar observation in a mouse model of diabetes, where 

despite elevated levels of circulating ketone bodies, myocardial ketolytic machinery was 

inhibited (Brahma et al. 2020). During these physiological and pathological states of high 

ketosis, the heart is also receiving high levels of fatty acids delivered either from dietary 

sources with the ketogenic diet or from enhanced adipose tissue lipolysis during any of these 

scenarios. Thus, it appears the heart may be downregulating ketolytic machinery in order 

to maintain or enhance fatty acid oxidation during ketosis (Wentz et al. 2010; McCommis 

et al. 2020). Interestingly, enhanced cardiac glucose uptake and utilization from glucose 

transporter-1 or −4 overexpression is also able to downregulate ketolytic enzyme expression 

and decrease ketone oxidation (Yan et al. 2009; Brahma et al. 2020). Altogether, these 

findings suggest that in chronic ketotic states in vivo, hearts downregulate the ketolytic 

enzymes and preferentially oxidize other substrates.

Lastly, several genetic mouse models also suggest that ketone metabolism is not crucial 

to maintaining normal cardiac homeostasis (Schugar et al. 2014; Horton et al. 2019). As 

described in these studies, mice with cardiac deletion of SCOT (Schugar et al. 2014) or 

BDH1 (Horton et al. 2019), which cannot metabolize ketone bodies, display normal cardiac 

size and function, unless subjected to pressure overload when both models display enhanced 

cardiac remodelling and dysfunction. Thus, complete genetic loss of the cardiac ketolytic 

machinery does not negatively affect cardiac performance in the absence of a secondary 

stress.

Conclusions

In our opinion, controversies related to the importance of cardiac ketone metabolism may 

be due to comparing acute ex vivo studies to the chronic in vivo scenario. Additionally, 

some findings appear to be different between studies comparing high, but submillimolar, to 

very high millimolar levels of ketones. But we believe the bulk of evidence from in vitro 
and in vivo experimentation suggests that ketone catabolism is not crucial for normal hearts. 

Further understanding is needed to address the importance of ketone metabolism in heart 

failure, as recent studies in preclinical models (Ho et al. 2019; Horton et al. 2019; Yurista et 
al. 2021) and humans (Bedi et al. 2016; Monzo et al. 2020; Murashige et al. 2020) suggest 

enhanced ketone body metabolism in heart failure.
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Call for comments

Readers are invited to give their views on this and the accompanying CrossTalk articles in 

this issue by submitting a brief (250 word) comment. Comments may be submitted up to 

6 weeks after publication of the article, at which point the discussion will close and the 

CrossTalk authors will be invited to submit a ‘Last Word’. Please email your comment, 

including a title and a declaration of interest, to jphysiol@physoc.org. Comments will be 

moderated and accepted comments will be published online only as ‘supporting information’ 

to the original debate articles once discussion has closed.
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