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Abstract

The complexity and variability of human brain activity, such as quantified from Functional Magnetic Resonance Imaging
(fMRI) time series, have been widely studied as potential markers of healthy and pathological states. However, the extent to
which fMRI temporal features exhibit stable markers of inter-individual differences in brain function across healthy young
adults is currently an open question. In this study, we draw upon two widely used time-series measures—a nonlinear
complexity measure (sample entropy; SampEn) and a spectral measure of low-frequency content (fALFF)—to capture
dynamic properties of resting-state fMRI in a large sample of young adults from the Human Connectome Project. We
observe that these two measures are closely related, and that both generate reproducible patterns across brain regions over
four different fMRI runs, with intra-class correlations of up to 0.8. Moreover, we find that both metrics can uniquely
differentiate subjects with high identification rates (ca. 89%). Canonical correlation analysis revealed a significant
relationship between multivariate brain temporal features and behavioral measures. Overall, these findings suggest that
regional profiles of fMRI temporal characteristics may provide stable markers of individual differences, and motivate future
studies to further probe relationships between fMRI time series metrics and behavior.
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Introduction
In recent years, the temporal variability and complexity of
neural time series have gained increasing attention as potential
markers of brain function. Theoretical work has linked neural
complexity with information processing, and with the brain’s
capacity to flexibly transition between a range of states
(Bassett and Gazzaniga 2011; Deco et al. 2011; Li et al. 2019;
Kang et al. 2019a). Metrics such as Sample Entropy (SampEn)
(Richman and Moorman 2000) and Multiscale Entropy (Costa
et al. 2002) may be calculated upon electrophysiological or fMRI
time series measured from the human brain, where alterations
have been found in disorders such as Autism Spectrum Disorder

(Easson and McIntosh 2019; Kang et al. 2019b; Zhang et al.
2020b), Alzheimer’s Disease (Mizuno et al. 2010; Wang et al.
2017; Grieder et al. 2018), and Attention-Deficit/Hyperactivity
Disorder (Sokunbi et al. 2013; Chenxi et al. 2016), as well as in
normal aging (Sokunbi 2014; Jia et al. 2017).

Although most often studied in the context of pathological
states and aging, there is growing evidence that the dynamic
properties of fMRI time series may also provide an indicator of
healthy cognitive function. For example, brain signal complexity,
as captured by multiscale entropy of electroencephalogram
(EEG) signals, has been suggested to increase in the process
of learning unfamiliar faces and may play a role in memory
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processing (Heisz et al. 2012), and was linked with creativity
in healthy elderly subjects (Ueno et al. 2015). The sample
entropy of resting-state fMRI signals has been shown to
exhibit stable and organized spatial patterns that aligned
with functional subdivisions (Wang et al. 2014), and multi-
scale entropy was found to reliably differentiate between four
resting-state functional networks implicated in higher-order
cognition (McDonough and Nashiro 2014). Resting-state fMRI
signal entropy has also been found to correlate to measures of
intelligence (Saxe et al. 2018) and to be modulated with repetitive
transcranial magnetic stimulation (Song et al. 2019a). Indeed, the
characteristics of moment-to-moment brain signal fluctuations
is an emerging research area in the human neuroimaging field
(Garrett et al. 2013; Nomi et al. 2017; Uddin 2020).

Yet, while fMRI studies typically aggregate data across groups
of participants to draw inferences about brain function, under-
standing individual behaviors and phenotypes requires investi-
gating individuals’ unique brain activity profiles. The possibility
of uniquely identifying an individual subject within a group
has previously been demonstrated using profiles constructed
from whole-brain functional connectivity (pairwise correlations)
(Finn et al. 2015); however, it is not clear whether the dynamic
properties of regions’ fMRI time series themselves differ robustly
across subjects and reflect between-subject variations in cog-
nition/behavior. Prior studies have suggested that the temporal
complexity and low-frequency amplitude of fMRI fluctuations
exhibit high test–retest reliability (Zuo et al. 2010; Zhang et al.
2020a) and may correspond with gene expression (Wang et al.
2015), motivating their examination as stable markers of inter-
individual differences.

Here, we examine whether the characteristics of time-
varying activity encode information that can sensitively differ-
entiate between healthy young individuals and their behavioral
profiles. For this investigation, we quantified and compared both
the within-subject stability and inter-individual discriminability
of two widely used temporal metrics: sample entropy (SampEn)
and Fractional Amplitude of Low-frequency Fluctuation (fALFF)
(Zou et al. 2008). Using resting-state data from 410 subjects from
the Human Connectome Project (HCP) (Van Essen et al. 2012),
we first establish that both SampEn and fALFF are consistent
over four scans collected over 2 days, supporting their promise
as stable markers of individual traits. Second, although much
fMRI research treats SampEn (a nonlinear complexity measure)
and fALFF (a spectral measure) separately, here we observe that
under the selected parameter ranges, these features are strongly
(negatively) related to each other (Song et al. 2019b). Next, we
demonstrate that these regional temporal features are not only
stable within each individual, but are also distinct enough from
other individuals to allow for fingerprinting with high accuracy.
Finally, we show that there is a significant relationship between
these temporal features and individual differences in behavioral
traits.

Materials and Methods
Imaging Data

Resting-state fMRI data were downloaded from the S500 release
of the HCP database. In the HCP, each subject underwent four
resting-state fMRI scans, acquired with a simultaneous multi-
slice EPI sequence with the following parameters: TR = 720 ms,
duration = 864 s (14.4 min), spatial resolution = 2 mm isotropic,
72 slices, multi-band factor = 8 (Van Essen et al. 2012; Van Essen

et al. 2013). During these scans, subjects were instructed to keep
their eyes open and maintain fixation on a cross-hair. We used
the FIX-denoised version of the data (Salimi-Khorshidi et al.
2014), and further excluded subjects that did not pass our quality
check for head motion or had incomplete behavioral measures,
resulting in 410 subjects in total. For head motion, subjects were
excluded if the average frame-to-frame motion value was above
0.14 (Finn et al. 2015) for at least one of the four resting-state
scans. All procedures were conducted according to the HCP data
use guidelines.

Behavioral Measures

The behavioral measures selected for this study include 15
frequently-used measures that tap into human cognition,
emotion, and quality of life (Liegeois et al. 2019), which we
collectively refer to as “behavioral measures” for simplicity:
(1) Attention, (2) CardSort—Cognitive Flexibility, (3) Dexterity,
(4) ER40_CRT—Emotion Recognition, (5) Flanker—Inhibition
(Flanker Task), (6) ListSort—Working Memory (List Sorting),
(7) PMAT24_A_CR—Fluid Intelligence, (8) PSQI_Score—Sleep
Quality, (9) PicSeq—Visual Episodic Memory, (10) ProcSpeed—
Processing Speed, (11) Relational Task Acc—Relational Pro-
cessing, (12) SCPT SEN—Sustained Attention (Sens.), (13) SCPT
SPEC—Sustained Attention (Spec.), (14) VSPLOT TC—Spatial
Orientation, and (15) WM Task Acc—Working Memory (N-back).

Calculation of SampEn

SampEn quantifies dynamic properties of physiological signals.
It can be calculated using the following steps (Sokunbi et al. 2013;
Sokunbi 2014; Jia et al. 2017).

First, given a time series (a row vector), x = [x1, x2, x3, . . . , xN],
and an embedding dimension, m, an embedding vector with
m consecutive data points can be extracted from x: vi =
[xi, xi+1, xi+2, . . . , xi+m−1]. Second, for each i ∈ [1, N − m], we have

Cm
i = 1

N − m − 1

N−m∑
j=1,j�=i

�
(
r −

∥∥∥vi − vj

∥∥∥
1

)
, (1)

r indicates a tolerance distance (value), which can be calculated
as r = ε/σx, where ε is a scaling parameter and σx is the standard
deviation of input signal vector. �(•) is the Heaviside function:

�(x) =
{

0, x < 0
1, x ≥ 0

, (2)

and ‖ ∗ ‖1 represents the Chebyshev distance, which can be
expressed as:∥∥∥vi − vj

∥∥∥ = max
(∣∣∣xi − xj
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(3)
Therefore, Cm

i indicates the proportion of vj(j �= i) whose
distances to vi are less than r. In same rationale, for each i ∈
[1, N − m] we further define:

Cm+1
i = 1

N − m − 2
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)
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where Cm+1
i indicates the proportion corresponding to the

dimension of m + 1; Cm
i and Cm+1

i have the same form, but
embedding vectors in the two cases are defined in different
phase spaces.
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Next, we average across all embedding vectors to obtain:

Um = 1
N − m

N−m∑
i=1

Cm
i , (5)

and

Um+1 = 1
N − m

N−m∑
i=1

Cm+1
i , (6)

Finally, the SampEn of x is computed as

SampEn(x) = −ln
(
Um+1/Um

)
. (7)

There is no rigorous guidance for the choice of r and m, and
it is usually application-specific (Sokunbi et al. 2013; Sokunbi
2014; Jia et al. 2017). To our knowledge, frequently-used ranges
for r and m in the biomedical signal processing literature are m ∈
{1, 2} and r ∈ [0.1, 0.5]. For this work, we chose m = 2 and r = 0.5
for as the parameters for calculating SampEn. It has been shown
that m = 2 may enable more detailed reconstruction of the joint
probabilistic dynamics compared to m = 1 (Sokunbi 2014).

Fractional Amplitude of Low-Frequency Fluctuations
(fALFF)

fALFF quantifies the ratio of the power spectrum in a low-
frequency band to that of the entire frequency range (i.e., up to
the Nyquist frequency). The time series for each ROI was trans-
formed to the frequency domain using Fast Fourier Transform
(FFT), and the corresponding power spectrum was obtained as
the square of the magnitude. The low-frequency cut-off was
chosen as 0.1 Hz.

Calculation of Intraclass Correlation

Intraclass correlation (ICC) was used to quantify the across-scan
reliability of SampEn and fALFF. Within a given ROI or network,
we can treat each subject’s regional SampEn and fALFF features
across four scans as four “judgments/ratings,” whose reliability
can be measured using ICC. There are three steps for select-
ing the most appropriate ICC calculation among 10 different
possible forms defined by McGraw et al. (McGraw and Wong
1996) and Koo et al. (Koo and Li 2016). First, we chose “Two-Way
Random-Effects Model,” to consider those scans/ratings (which
differ by acquisition time) as random draws from a population
of scans acquired at different times. Second, we used “sin-
gle measurement/rater” type, because we are interested in the
repeatability of values across individual scans (i.e., the reliability
of a single rater, as opposed to the mean value of multiple raters).
Finally, there are two ICC definitions: “absolute agreement” and
“consistency.” We choose the “absolute agreement” because we
are interested in the reliability of the exact values across the
four scans, without allowing for the possibility of systematic
differences. Therefore, the form we used to calculate ICC is
ICC(2, 1): “Two-Way Random-Effects, absolute agreement, single
rater/measurement.”

Other Relevant Brain Complexity Features

While fALFF and SampEn were the main metrics considered
here, we also considered two alternate, complementary metrics

to ensure that our results were robust across various measures
of temporal complexity. The amplitude of low-frequency fluc-
tuations (ALFF) (Zang et al. 2007) measures the integral of the
power spectrum of the entire frequency range. The calcula-
tion corresponds to the numerator of the fALFF metric. Percent
amplitude of fluctuation (PerAF) (Jia et al. 2020) quantifies the
percentage of BOLD fluctuations relative to the mean BOLD
signal intensity for each time point, which was further averaged
across the whole time series. PerAF can be calculated as follows:

PerAF = 1
n

n∑
i=1

∣∣∣∣ xi − μ

μ

∣∣∣∣ × 100%, (8)

μ = 1
n

n∑
i=1

xi, (9)

where xi is the signal intensity of the ith time point, n is the total
number of time points of the time series, and μ is the mean value
of the time series.

Canonical Correlation Analysis

We employed canonical correlation analysis (CCA) as an
approach for probing relationships between fMRI temporal
complexity and cognitive measures. The two sets of variables
input to CCA consisted of a neuroimaging feature matrix (410
subjects × 90 ROI matrix, where the (i, j) entry corresponds to
either SampEn or fALFF for the ith subject in the jth ROI) and
a behavioral measures matrix (410 subjects × 15 behavioral
measures). The neuroimaging feature matrix was averaged
across all 4 resting-state scans. Prior to CCA, we applied Principal
Component Analysis (PCA) to reduce the dimensionality of both
matrices, where the number of selected PCA components was
based on preserving 75% of the variance.

Two statistical analyses were conducted. In the first, we
fit CCA model between these two sets of variables for all 410
subjects, and applied a permutation test to assess the signifi-
cance of the first mode (i.e., the mode with the highest corre-
lation between linear combinations of neuroimaging features
and behavioral measures). The permutation test was conducted
by shuffling the rows of the neuroimaging feature matrix at
each iteration. To visualize the contributions of each ROI and
behavioral measure, the resulting CCA coefficients were used
to project the first mode back to the original brain and behav-
ior space. As a more stringent test of generalization, we also
conducted a split-halves “out-of-sample” test. Here, we applied
CCA to the first half of the subjects (205 subjects; “training set”),
resulting in trained CCA coefficients. These coefficients were
then applied to the second half of the subjects (205 subjects;
“test set”). Prior to CCA, the PCA step was applied to training
set (again, preserving 75% of the variance), and the resulting
loadings were applied to the test set.

Identification Rate Associated with Different
fALFF/ALFF Frequency Bands

Given that fALFF requires the selection of a particular frequency
band, we also investigated the effects of different frequency
bands on the fingerprinting identification rate. Based upon
a previous study (Gong et al. 2021), we also examined fALFF
and ALFF for the following 5 frequency bands features: 0.607–
0.694 Hz, 0.223–0.607 Hz, 0.082–0.223 Hz, 0.03–0.082 Hz, and
0.012–0.03 Hz.
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Figure 1. Regional SampEn and fALFF, calculated over 410 subjects for each run.

Both of these features exhibited consistent patterns over the four runs. “REST1”
and “REST2” indicate the two different sessions (days) over which the scans
were collected, where each session contains two different scans that differed

by phase-encoding direction (“LR” and “RL”).

Results
Stability of fMRI Temporal Features Across Repeated
Scans

In the HCP database, each subject has two resting-state fMRI
scans (denoted “LR,” “RL”) in each of two different sessions
collected on different days (denoted “REST1,” “REST2”). From
each scan, we extracted the SampEn and fALFF of the average
time course in each of 90 ROIs (Shirer et al. 2012), resulting in a
410 × 90 matrix for each of the four scans and for each of the two
temporal measures. The four corresponding SampEn matrices
and fALFF matrices (Fig. 1) were qualitatively consistent with
one another, indicating that both of these temporal features are
largely stable across repeated measurements. The clear vertical
patterns in these matrices also indicate that certain regions
tended to have consistently higher or lower SampEn/fALFF fea-
tures across all subjects, which we further investigate below
(see the section “Dependence of temporal complexity on ROI
size and data processing methods”). To examine whether these
results were specific to the selected parameters, we repeated the
analysis with a different choice of embedding dimension (m = 5)
for SampEn, obtaining similar results (Supplementary Fig S1).
Intraclass correlation (ICC) values, calculated for each ROI, were
found to have a wide range across the 90 ROIs, from 0.006–0.788
for SampEn and 0.059–0.803 for fALFF (Fig. 2). Since the present
study focuses on region-level measures, all ICC analyses were
based on region-level (ROIs) rather than voxel-wise time series.

We also observed that the SampEn- and fALFF-based features
yielded similar anatomic trends across resting-state networks.
As our 90-ROI atlas is composed of 14 core resting-state net-
works (RSNs), we examined these network-level trends by aver-
aging SampEn and fALFF values, respectively, within each of the
14 networks (Supplementary Fig S2a,b).

Figure 3 indicates that, under the parameter settings used
here, SampEn and fALFF themselves exhibit a clear inverse
relationship. SampEn quantifies the amount of irregularity and

unpredictability of fluctuations in a time series, and fALFF rep-
resents the proportion of low-frequency components, relating
to the smoothness of the signals, which may be expected to
be related inversely to SampEn. Figure 3 also indicates that the
strength of this relationship varies with the embedding dimen-
sion m, with m = 2 yielding a closer match between SampEn
and the low-frequency fluctuation amplitude (in the <0.1 Hz
band) compared with m = 5. Spearman’s correlation was used
because the relationship between SampEn and fALFF appears
monotonic but not linear. A table listing the Spearman correla-
tions between fALFF and SampEn (m = 2, 5) for each ROI is shown
in (Supplementary Table S1).

Inter-individual Differentiation of Regional Temporal
Profiles

Given that SampEn and fALFF may constitute stable features
of brain activity, we also investigated their ability to uniquely
differentiate between subjects. To examine this possibility, an
individual’s temporal variability profile (constructed as the 1×90
vector of SampEn or fALFF calculated in 90 ROIs) from a given
scan was compared to that of all individuals’ profiles from a
different scan using Pearson correlation. If such a profile is
indeed unique to an individual, then we would expect that
the correlation of subject k’s profile during one scan would
be highest with that of subject k’s profile in a different scan,
compared to that of all other subjects.

We observed that these SampEn and fALFF profiles are
indeed able to identify subjects across different scans with
high identification (ID) rate, defined by the fraction of total
subjects where the best correlation of the profile from another
scan is with itself (Fig. 4). Given that each subject’s four fMRI
scans were collected within two sessions, we also consider the
case of averaging the profiles from the two scans acquired in
one day (REST1) and the two scans acquired on a different day
(REST2). Comparing the average of scans in REST1 with that of
REST2 (Figs. 4a,d) proved to yield the strongest identification
power, for both SampEn (Fig. 4b, 86%) and fALFF (Fig. 4e, 89%).
Here, the blue-colored diagonal elements indicate that each
subject’s profiles have stronger correlation with itself than
any other subjects from another session. Fig. 4b and e further
indicate that the within-session ID rate is always higher than
between-session ID rate.

To probe whether a more condensed, network-level profile
can also successfully identify the subjects across different scans,
we collapsed the original profiles by averaging the original Sam-
pEn and fALFF vectors within each core RSN, resulting in a
1 × 14 profile. Compared to the ID rate when using 90 ROIs, this
network-based profile was not nearly as high (Figs. 4c and f ).

Since the group of 410 subjects may contain some subjects
who are genetically related to one another, we also conducted
an identical analysis on a subset of unrelated subjects, hypoth-
esizing that these subjects may be more distinct from one
another in their temporal variability profiles. From the HCP 100
Unrelated Subjects release, we used 87 subjects who passed the
head-motion threshold and had FIX-corrected data available.
These subjects indeed showed higher ID rates, reaching 88.5%
for SampEn and 93% for fALFF based on profiles with 90 ROIs.
For these subjects, network-level performances were also better
than those based on 410 subjects for both the SampEn com-
parisoxns and the fALFF comparisons. Results for SampEn are
shown in Fig. 5.
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Figure 2. Intraclass correlation of SampEn and fALFF across 90 ROIs. (a) ICC within each ROI, quantifying the consistency of each region’s SampEn across four resting-
state fMRI runs. (b) Similar to (a), the ICC brain mapping for fALFF.

Figure 3. (Left) The relationship between regional SampEn and fALFF. Each dot represents one ROI, whose SampEn or fALFF is averaged across all subjects as well as
across all four runs. The orange and purple dots correspond to SampEn calculated with two different embedding dimensions (m = 2, 5). (Right) Relationship between
SampEn and fALFF within each ROI, calculated as the Spearman correlation between SampEn and fALFF values across subjects. Regions are shown ranked according

to the Spearman correlation magnitude, from strongest to weakest negative correlation.

Linking fMRI Temporal Signatures with Behavioral
Measures: CCA Analysis

Since SampEn and fALFF may indeed carry reliable inter-
individual signatures, we further investigate their ability to
characterize individual behavioral phenotypes. Here, we apply
Canonical Correlation Analysis (CCA) to examine the relation-
ship between SampEn- and fALFF-based profiles (here, averaged
over all 4 scans) and 15 selected behavioral/self-report measures
available in the HCP (see Methods). CCA is a widely used method
for investigating the underlying relationships between two sets
of variables, seeking to find linear combinations of two sources
of data (“modes”) that maximize the correlation (r) between
them. Given the similarity between fALFF and SampEn, we only
report the results based on SampEn in this section, and the
fALFF-based results are reported in SI (Supplementary Fig S3).
Prior to CCA, we applied Principal Component Analysis (PCA) to
reduce the dimensionality of data (Smith et al. 2015), where the

number of selected PCA components is based on preserving
75% of the variance in both sets of variables. As shown in
Fig. 6a, the first mode generated a significant r value (r = 0.44,
P = 0.003; permutation testing, 5000 iterations). We projected
the first mode back to the original brain and behavior space to
visualize the contributions of each ROI and behavioral measure
(Fig. 6c,d). One observation is that some regions, such as those
falling within Ventral Default Mode Network (DMN) and Dorsal
Anterior Salience Network, have high canonical coefficients, as
do Dexterity and Relational Processing in behavioral measure
space, indicating these ROIs and measures strongly contribute
to the first CCA mode. Note that the way we projected the first
behavioral measure mode back to original space was to multiply
the loadings of PCA, applied to behavioral measures matrix prior
to CCA, with the corresponding CCA coefficients. Therefore, the
final result included negative values, which we call “negative
contribution”.
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Figure 4. Between-subject differentiation of SampEn (first row) and fALFF-based profiles (second row). In this figure, we use ‘R1’ and ‘R2’ to denote REST1 (session 1)

and REST2 (session 2), for brevity. (a,d) Pairwise similarity (Pearson correlation) between profiles of different subjects across two different sessions. Here, the average
profiles across the two scans acquired within the first session (REST1) were compared to the average of those acquired in the second session (REST2). The diagonal
elements indicate the correlation of profiles for same subjects across different scans. These profiles were calculated using 90 ROIs. (b,e) The identification rate for
different pairwise combinations of scans. The blue and gray bars indicate within-session and between-session comparisons, respectively. The red bars denote the

between-session comparison where the average of the two scans in REST1 is compared with the average of the two scans in REST2. Panels (c) and (f ) show the
corresponding results for (b) and (e) based on the profiles constructed from 14 core resting-state networks, respectively. The ID rate drops drastically for all situations
in comparison to (b) and (e).

Figure 5. Between-subject differentiation of SampEn for 87 unrelated subjects, with ID rates based on 90 ROIs (b) or 14 core RSNs (c). Panel (a) shows the pairwise
similarity (Pearson correlation) between profiles of different subjects across two different sessions. Here, the average of profiles across the two scans acquired within
the first session (REST1) was compared to the average of those acquired in the second session (REST2).

To further investigate the predictive power of CCA, we also
examined the extent to which these canonical coefficients
produced a significant brain-behavior mode in an independent

sample of participants. Here, the first half of the subjects
(training set) was used to calculate the canonical coefficients,
which were then applied to the second half (test set) (Helmer
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Figure 6. Canonical correlation analysis indicates a multivariate association between SampEn and behavioral traits. (a) The first CCA mode reveals significant

relationship between brain canonical variate and behavioral variate (dash line indicates the unity line—perfect fitting). (b) Split-halves validation: the canonical
coefficients of the first mode were calculated on the first half of the subjects (205 subjects) as a training set, and applied to the remaining 205 subjects as a testing set.
The panel indicates the resulting brain-behavior mode on testing set. (c) The projection of first brain mode back to original space, indicating different contribution of
ROIs to the mode. (d) The first behavioral measure mode projected back to original space.

et al. 2020). The first mode of brain-behavior correlation on
the test set, using those predetermined CCA coefficients, is
shown in Fig. 6b, where r = 0.22, P = 0.002. In addition, since
the 410 subjects may include twins/siblings, we also repeated
the split-halves validation after randomly selecting one subject
from any set of twins or siblings. This analysis yielded positive
correlations (Supplementary Fig. S4), though they did not reach
significance in this sample (P = 0.056 for SampEn, P = 0.2 for
fALFF; see Discussion for further details).

Finally, we note that sleep quality measure is not strictly
a measure of cognition/behavior, and it is also a self-report
rather than an objective measure. Given that sleep quality rep-
resents the largest load in the behavioral mode (Fig. 6d), we
also carried out experiments after removing sleep quality from
the CCA analysis. As shown in Supplementary Fig S5, the cor-
relation values of the first mode decreased slightly, although
these were still significant. We discuss this point in detail in the
Discussion.
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Figure 7. Correlations between regional temporal complexity features and individual cognitive measures. For all panels, color of the (i,j) element indicates the
correlation between the SampEn- or fALFF-based features in the ith ROI and the jth cognitive measure, taken across 410 subjects. Both types of features were averaged
over all four scans.

Correlations of Regional Temporal Features
with Behavioral Measures

We then more closely investigated the links between both
SampEn- and fALFF-based features and behavioral traits in
individual brain regions. To do this, we calculated one (410
subjects × 90 regions) matrix for SampEn and one matrix for
fALFF features, where we averaged over all four scans. We then
correlated the columns of each matrix against the columns of a
410 × 15 matrix of cognitive measures, thereby generating two
correlation matrices that capture the association between each
ROI and each behavioral measure. Here, we use (1-fALFF) instead
of fALFF to facilitate visual comparison with SampEn, due to
their inverse relationship. As shown in Fig. 7, SampEn– and
fALFF–behavior correlations are also similar to each other, which
is consistent with their strong relationship (Fig. 3). Some of the
behavioral measures, such as Fluid Intelligence, tend to anti-
correlate with the temporal complexity across a large number
of brain regions in both sessions and for both SampEn and
fALFF profiles, while some other measures, such as Processing
Speed, showed more positive correlations with the features in
multiple regions. Finally, we note that although the individual
entries of these matrices may not be significant if corrected for
multiple comparisons, this analysis was conducted to examine
the qualitative patterns and their similarities across runs.

Dependence of Temporal Complexity on ROI Size
and Data Processing Methods

While SampEn and fALFF were found to be consistent over
different fMRI sessions, we also observed strong global trends
wherein certain regions tended to have consistently high or low
complexity measures across all subjects (Fig. 1). We hypothe-
sized that one factor may relate to the size of the ROI (number of
voxels it contains), where larger ROIs may have smaller SampEn,
that is, larger fALFF, since averaging over a larger spatial extent
tends to result in smoother time courses. The first row in Fig. 8
indeed points to a general anti-correlated relationship between
the size of each ROI and the SampEn (where the latter is aver-
aged over all subjects and within the two scans acquired within

REST1 and REST2, respectively), and the second row reveals a
positive correlation between fALFF and ROI size. However, we
observe a large spread of values for both SampEn and fALFF
for ROIs with small numbers of voxels. For each panel in Fig. 8,
Spearman (rank) correlations of ROI size with each subject’s
brain features in 90 ROIs (averaged across four scans), and their
associated P-values, were as follows: (r, P): (−0.81, 4.75×10−22) for
SampEn REST1, (−0.81, 5.28 × 10−22) for SampEn REST2, (−0.81,
2.03 × 10−22) for fALFF REST1, (−0.81, 2.25 × 10−22) for fALFF
REST2. The sign of Spearman correlation values for fALFF was
inverted to maintain consistency between SampEn and fALFF.
However, while there is a strong relationship between ROI size
and SampEn/fALFF, the successful discrimination of individual
subjects (Figs. 4 and 5) suggests that there are important subject-
to-subject differences.

Nonetheless, this result motivates examining an alternate
way of calculating SampEn or fALFF profiles. Specifically,
rather than calculating SampEn or fALFF on time courses that
had been averaged within an ROI, one could first calculate
SampEn or fALFF within each individual voxel, and then average
over the voxels contained within each ROI. We tested this
alternate procedure in an 87-subject subset of the 100 Unrelated
Subjects release (Van Essen et al. 2012; Van Essen et al. 2013).
Consistent with the above results, this procedure was found
to yield consistent temporal complexity values across scans
(Supplementary Fig. S6) as well as high identification rates
(Supplementary Fig. S7), comparable with the results of Fig. 5.
This result was calculated using a different preprocessing
pipeline (HCP minimally preprocessed data (Glasser et al. 2013),
followed by removal of linear and quadratic trends and band-
pass filtering in the 0.01–0.5 Hz range), suggesting the relative
insensitivity of the main results to processing methodology.

Identification Rate Associated with Different
fALFF/ALFF Frequency Bands

As shown in Supplementary Fig. 8a, fALFF yielded different
ID rates across different frequency bands. Specifically, among
the higher frequency bands considered, the 0.223–0.607 Hz
band had the strongest identification power. This may be
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Figure 8. Relationship between SampEn and fALFF versus ROI size, for SampEn (top row) and fALFF (bottom row).

explained, in part, by the fact that the fractional power in this
wide band conveys nearly the same information as original
fALFF band (i.e., is complementary to the original band of 0.01–
0.1 Hz). Due to this ambiguity in interpretation when using the
(fALFF) metric, we repeated the analysis for ALFF. As shown
in Supplementary Fig S8b, the best-performing bands were in
the low frequencies (spanning 0.012–0.082 Hz; close to the
low-frequency band used in our original analysis).

Identification Rate for Alternate Brain Temporal
Features

Several studies have shown that the fALFF has lower test–retest
reliability than ALFF (Somandepalli et al. 2015), and that PerAF
has similar intra-scanner test–retest reliability but better inter-
scanner reliability than ALFF (Zhao et al. 2018). Motivated by
these studies, we conducted a fingerprinting analysis for these
two additional features to complement our above analysis of
SampEn and fALFF. Further, as other publications have sug-
gested that global standardization (i.e., subtracting and dividing

by the spatial mean of these values) may enhance test–retest
reliability of certain metrics (Yan et al. 2013) we also carried out
a corresponding analysis with standardization.

As shown in Fig. 9, PerAF-based brain features generated
higher ID rates than those for ALFF-based features, which is
consistent with to the claim that perAF has better inter-scanner
reliability than ALFF. However, overall, both PerAF- and ALFF-
based features did not yield identification power as high as
that of fALFF-based features (Fig. 9c,d). The corresponding ICC
analyses indicate that PerAF is more stable than ALFF (see
Supplementary Fig. S10). Finally, although standardized features
generated almost same identification power as for the non-
standardized features, the corresponding ICC was generally
higher for standardized features (Supplementary Fig. S10).

Discussion
Overall, the present results indicate that fMRI temporal fea-
tures—here, captured by SampEn and fALFF—are stable across
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Figure 9. Inter-individual identification analysis for ALFF and PerAF features, with and without global standardization. The results for fALFF-based features are shown
in panels (c) and (d) for comparison.

sessions and days, uniquely distinguish between individuals
with high accuracy, and exhibit a significant relationship to
behavioral measures. This study extends prior studies on the
neurobiological relevance of fMRI temporal complexity and vari-
ability features, suggesting that regional fMRI signal variabil-
ity may provide stable markers of individual differences and
behavior in healthy young adults. It also extends the growing
literature on the search for sensitive neuro-markers of indi-
vidual brain function, which to date has focused most heavily
on pairwise functional connectivity (e.g., Miranda-Dominguez
et al. 2014; Finn et al. 2015; Gordon et al. 2017; Dubois et al.
2018; Jalbrzikowski et al. 2020). Another main observation of this
work is that sample entropy (nonlinear complexity) and fALFF
(a spectral measure), which are often considered separately in
the fMRI literature, have a close relationship with one another in
HCP fMRI data under certain parameter ranges examined here,
which is consistent with a recent study (Song et al. 2019a) as well
as computational simulations and observations in electrophys-
iological data (Kosciessa et al. 2020). This observation helps to
bridge between studies that have considered either of the two
measures (further discussed below).

We observed that both SampEn and fALFF features exhibit
high stability across different resting-state fMRI scans (Fig. 1),
which is further corroborated by the fact that their correlations
with behavioral measures were also reproducible across
different runs (Fig. 7). The consistency of SampEn over scans
also held with a different choice of embedding dimension
(m = 5; Supplementary Fig. S1). Along similar lines, it was
recently demonstrated that regional brain complexity, captured
by multiscale entropy, was reproducible across individuals
over four rs-fMRI runs (Omidvarnia et al. 2021). Our findings

of network-based differences in entropy are also consistent
with those of (McDonough and Nashiro 2014); including high
temporal complexity in default model network and lower
complexity in high-visual networks (Supplementary Fig. S2).

Motivated by the question of which brain areas are more
consistent than others, we used ICC to quantify the within-
subject consistency of SampEn and fALFF for each ROI (Fig. 2).
We found that subcortical brain regions have lower ICC com-
pared to cortical regions, and that some of the cortical regions
with the highest ICC are small areas in parietal lobe. We also
calculated the ICC within 14 functional networks, finding val-
ues of 0.57–0.71 for SampEn, and 0.56–0.68 for fALFF. Although
the mean values of ICC across 14 RSNs are higher than those
across 90 ROIs, it appears that stronger consistency (higher
ICC) does not always manifest in better differentiation between
subjects, as the ID rate dropped drastically for both SampEn- and
fALFF-based brain features (Figs. 4 and 5). These observations
motivate future studies on resolving why cortical brain regions
(even small ones) have higher ICC in comparison to subcortical
regions.

Aside from their consistency across scans, we further
observed that these temporal features appeared to be unique
across individuals, such that they could successfully identify a
given subject out of 409 other subjects. Note that compared to
the widely used connectome-based fingerprinting (Finn et al.
2015; Amico and Goni 2018), the regional temporal features
examined here present a much more concise representation
for each subject (a #ROI × 1 vector, as compared to the upper-
triangle of a #ROI × #ROI correlation matrix), yet still generate
high ID rates (∼90% for fALFF, in the case where the average
of the two REST1 scans is compared to the average of the two
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REST2 scans). However, further compression of the features
along pre-defined network boundaries (to a 14 × 1 vector) led to
much lower performance, suggesting that this within-network
averaging removed features that were necessary to capture
individuals’ physiological signatures. We also note that the
functional connectivity features (Ma et al. 2013; Plitt et al. 2015;
Jia et al. 2017; Cui and Gong 2018; Yoo et al. 2018; Mu et al. 2020;
Wang et al. 2020) more commonly used in the literature are
calculated based on pairwise correlations of individual brain
regions’ time series, from which regional temporal complexity
features are built. Therefore, our study may pave the way
for future investigations of how regional times series-based
fingerprinting relates to connectivity-based fingerprinting.

The empirical results from this study and others have
indicated a close qualitative relationship between SampEn and
fALFF, and it makes intuitive sense that spectral properties
and entropy are related. However, the link between fALFF
and SampEn, as well as the performance of these metrics for
individual identification, may be dependent on parameters of
the acquisition as well as the choice of frequency band. HCP
data used a fast TR (0.72 s), which is not typical of most datasets.
Therefore, we probed the impact of different fMRI acquisition
parameters by under-sampling the time series in each voxel by
factor of 3 (i.e., TR = 2.16 s), and then re-analyzed the fingerprint-
ing results and ICC maps. There are several key observations for
this new analysis (Supplementary Figs S12–S14). First, compared
to left panel in Fig. 3, Supplementary Fig S12 shows that SampEn
and fALFF measures do not have as clean a relationship at this
new sampling rate. This effect may stem from the fact that
SampEn depends on a parameter m that governs the length of
the sequence (in samples) used for pattern-matching. When m is
kept fixed but the underlying sampling rate changes, a sequence
of length m samples now captures a different time scale of
the data. However, fALFF—which quantifies the fractional
low frequency content of a signal—should be relatively
stable (over a range of sampling rates that avoid aliasing
the power spectrum of the BOLD hemodynamic response or
shifting aliased cardiac and respiratory peaks in or out of
the low-frequency band). Consistent with this observation,
the corresponding identification rate (Supplementary Fig. S13)
and ICC (Supplementary Fig. S14) analysis demonstrated that
fALFF-based brain features were more stable than SampEn after
undersampling the time series. In addition to the sampling rate,
we also examined the dependence of fALFF across different
frequency bands (Results section: “Identification rate associated
with different fALFF/ALFF frequency bands”). The reliability of
these features was indeed affected by the choice of frequency
band (Supplementary Fig S8a), motivating the future analysis to
investigate if there is a “golden frequency range” for achieving
the best individual identifiability or test–retest reliability.

In the HCP dataset, resting-state runs that differed by phase-
encoding direction (LR and RL) were acquired, which also moti-
vates the question of whether SampEn or fALFF patterns could
differ across these phase-encoding directions. First, we note that
our analysis used 90 regions of interest derived from a func-
tional atlas spanning core resting-state networks rather than
the whole brain, and that most of these atlas regions did not
cover areas that tend to be prominently affected by difference
in RL/LR phase encoding direction. Difference maps (calculated
within each parcel) did, however, indicate some differences
between RL and LR (Supplementary Fig. S11). Therefore, together
with the ICC maps (Fig. 2), we might conclude that while both
SampEn and fALFF generated reproducible patterns on average,

the reproducibility was higher in some ROIs than others and may
be impacted by acquisition parameters.

All of the brain complexity features involved in this study can
be employed either with or without standardization, and previ-
ous studies have suggested that test–retest reliability based on
standardized features would be higher. Supplementary Fig S10
and S15 and Fig. 8 indicate that, compared to the fingerprinting
results without standardization, the standardized brain com-
plexity features did not seem to improve the ID rates for most
comparisons, but did increase the test–retest reliability, which
was supported by the corresponding ICC analysis.

The CCA analysis employed in this study revealed a rela-
tionship between brain temporal features and behavioral mea-
sures. Our CCA analysis was inspired by the study of Smith
et al. (Smith et al. 2015), which investigated the relationship,
in a holistic manner, between subjects’ functional connectivity
and behavioral and demographic measures. This link between
temporal complexity features and behavioral measures lends
further support to the notion that resting-state complexity may
indeed represent neurobiologically relevant properties of indi-
vidual subjects. Further, the split-halves validation (Fig. 6b) pro-
vides additional evidence that the relationship is generalizable,
and indicates the extent to which CCA was overfitted in-sample
(Fig. 6a). It is known that association strengths using metrics
like CCA can be over-estimated (Helmer et al. 2020), even by
permutation testing (Winkler et al. 2020), motivating us to carry
out the additional out-of-sample validation. We also conducted
an extra analysis for the split-halves validation after removal of
twins and siblings from the original 410 subjects. Although it is a
limitation that our analysis is not significant for out-of-sample
testing when siblings are removed, this result may also suggest
that SampEn and fALFF metrics are capturing family structure,
since including twins/sibling relationships boosted this result.
Further investigation of the relationship between SampEn or
fALFF and family structure may be an interesting avenue of
future work.

One of the strongest weights in the CCA was sleep qual-
ity, and removing the sleep quality from original CCA analysis
generated lower correlation in the first mode. This finding is
consistent with previous literature suggesting that sleep and
brain complexity are closely related. For example, the descent
into sleep has been shown to be accompanied by a dynamic
increase in the amplitude and low-frequency content of fMRI
signals (Horovitz et al. 2008; Larson-Prior et al. 2009). If the sleep
quality index is inversely correlated with the drowsiness level of
a subject during the fMRI scan, then one possibility is that the
relationships with SampEn and fALFF is capturing state-related
differences in brain activity.

In addition, this CCA result also indicates that the tem-
poral complexity of resting-state networks may be function-
ally relevant across multiple demographic factors and assess-
ments. Projecting the first CCA mode back to the original brain
and behavior space yielded several results that resemble pre-
vious findings: for example, relational processing and working
memory are typically associated with the frontal and superior
parietal cortices (Barch et al. 2013), and these behavioral and
brain regions all had strong negative canonical coefficients.
Dexterity was another strongly negative canonical coefficient,
which may relate to the large negative coefficients in motor-
related brain areas such as the precentral and postcentral gyri
or the right caudate (Kuhtz-Buschbeck et al. 2001). While these
previous studies examined BOLD activity during these behav-
iors, the present study suggests that the resting-state temporal
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complexity of these regions may also be linked to the per-
formance in these tasks. Yet, the multivariate nature of this
analysis limits the conclusions we can draw about individual
brain regions or behaviors, and so we hope this analysis may
motivate future studies to examine these relationships more
comprehensively.

Probing the relationships between dynamic brain features
and behavioral or cognitive measures has been of recent interest
to the fMRI community (Takahashi 2013; Finn et al. 2015; Cohen
2018; Qian et al. 2018; Wang et al. 2018; Kashyap et al. 2019;
Liegeois et al. 2019; Lin et al. 2019; Gao et al. 2020), and our study
may motivate further studies that generate stronger predictive
power and for a broader range of cognitive measures. As the cur-
rent behavioral measures in HCP were only collected only once,
we also expect that future studies may examine the stability of
these measures over time, and in relation to the stability of fMRI
temporal complexity measurements.

As might be expected, SampEn and fALFF were found to
relate to the number of voxels in each ROI. The anti-correlations
between SampEn and ROI size likely stems from the increased
smoothing that arises when averaging larger numbers of voxels,
resulting in lower entropy values. Similarly, smoother signals
generate a higher proportion of low-frequency content, produc-
ing lower SampEn (and higher fALFF) values, leading to positive
correlations between fALFF and ROI size. Yet, while ROI size
may have led to strong commonalities in SampEn and fALFF
across subjects, as evident in both Fig. 1 and Fig. 7, we found
that individual subjects also maintained unique enough profiles
to enable fingerprinting with a high degree of accuracy (Figs 4
and 5). Furthermore, calculating SampEn and fALFF on a voxel-
wise basis within each ROI, rather than on the average time
course, also led to high ID rate and across-scan consistency
(Supplementary Fig. S7).

Recent publications have emphasized the importance of
understanding the reliability and validity in fMRI data analysis
(Zuo et al. 2019; Bridgeford et al. 2020). In present study, the
features examined in this work (fALFF, SampEn) showed both
high ID rates and high ICC using the 90-ROI parcellation;
further, Supplementary Fig. S13 shows that undersampling
the fMRI time course leads to a decrease in both the ID rate
(“validity”) and ICC (“reliability”) of SampEn (but not fALFF).
Interestingly, however, we also observed that high ICC did not
always imply a higher fingerprinting accuracy: our 14-network-
level analysis showed higher ICC than with the 90 ROIs, but
lower fingerprinting accuracy (Fig. 4c,f ). This observation may
demonstrate that, while high fingerprinting may come with
higher ICC, perhaps the converse is not true. The limitations
of fingerprinting and ICC for assessing validity and reliability
should also be considered (Bridgeford et al. 2020).

While the present work does not address the underpin-
nings of inter-individual differences in temporal profiles, other
potential factors that may shape individual-subject differences
in SampEn/fALFF include subject-specific anatomical bound-
aries, low-frequency cardiorespiratory activity, vascular varia-
tions, and signal-to-noise ratio. Another limitation of our study
lies in the limited power of the current temporal complexity
features for predicting behavioral measures, as out-of-sample
prediction rates were significant but of moderate effect size, and
just below significance when twins/siblings were not included.
It is possible that greater accuracy could be achieved using
different brain atlases. We expect that further information about
brain function, based on temporal complexity and variability,
may be extracted in future studies.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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