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Abstract

We consider the relationship between stationary distributions for stochastic models of reaction

systems and Lyapunov functions for their deterministic counterparts. Specifically, we derive the

well known Lyapunov function of reaction network theory as a scaling limit of the non-

equilibrium potential of the stationary distribution of stochastically modeled complex balanced

systems. We extend this result to general birth-death models and demonstrate via example that

similar scaling limits can yield Lyapunov functions even for models that are not complex or

detailed balanced, and may even have multiple equilibria.

1 Introduction

Reaction network models are ubiquitous in the study of various types of population

dynamics in biology. For example, they are used in modeling subcellular processes in

molecular biology [7, 13, 24, 40], signaling systems [42, 43], metabolism [12], as well as the

spread of infectious diseases [1] and interactions between species in an ecosystem [35, 41].

Depending upon the relevant scales of the system, either a deterministic or stochastic model

of the dynamics is utilized.

This paper studies the connection between deterministic and stochastic models of reaction

systems. In particular, for the class of so-called “complex balanced” models, we make a

connection between the stationary distribution of the stochastic model and the classical

Lyapunov function used in the study of the corresponding deterministic models. Specifically,

we show that in the large volume limit of Kurtz [31, 32], the non-equilibrium potential of the

stationary distribution of the scaled stochastic model converges to the standard Lyapunov

function of deterministic reaction network theory. Further, we extend this result to birth-

death processes.
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In 1972, Horn and Jackson [28] introduced a Lyapunov function for the study of complex

balanced systems, and remarked on a formal similarity to Helmholtz free energy functions.

Since then the probabilistic interpretation of this Lyapunov function for complex balanced

systems has remained obscure. For detailed balanced systems, which form a subclass of

complex balanced systems, a probabilistic interpretation for the Lyapunov function is known

— see, for example, the work of Peter Whittle [44, Section 5.8] — though these arguments

appear to be little known in the mathematical biology community. The key ingredient that

enables us to extend the analysis pertaining to detailed balanced systems to complex

balanced systems comes from [4], where Anderson, Craciun, and Kurtz showed that the

stationary distribution for the class of complex balanced reaction networks can be

represented as a product of Poisson random variables; see equation (1) below.

While there are myriad results pertaining to either stochastic or deterministic models, there

are relatively few making a connection between the two. Perhaps the best known such

connections come from the seminal work of Thomas Kurtz [31, 32, 33], which details the

limiting behavior of classically scaled stochastic models on finite time intervals, and

demonstrates the validity of the usual deterministic ODE models on those intervals. There is

even less work on the connection between the deterministic and stochastic models on infinite

time horizons, that is, on the long term behavior of the different models, though two

exceptions stand out. As alluded to above, Anderson, Craciun, and Kurtz showed that a

stochastically modeled complex balanced system — for which the deterministically modeled

system has complex balanced equilibrium1 c — has a stationary distribution of product

form,

π(x) = 1
ZΓ

∏
i = 1

d ci
xi

xi!
, x ∈ Γ ⊂ ℤ ≥ 0

d , (1)

where Γ is the state space of the stochastic model and ZΓ > 0 is a normalizing constant [4].

On the other hand, in [5], Anderson, Enciso, and Johnston provided a large class of networks

for which the limiting behaviors of the stochastic and deterministic models are

fundamentally different, in that the deterministic model has special “absolutely robust”

equilibria whereas the stochastic model necessarily undergoes an extinction event.

In the present paper, we return to the context of complex balanced models studied in [4], and

show that the usual Lyapunov function of Chemical Reaction Network Theory (CRNT),

𝒱(x) = ∑
i

xi ln xi − ln ci − 1 + ci, (2)

can be understood as the limit of the non-equilibrium potential of the distribution (1) in the

classical scaling of Kurtz. We extend this result to the class of birth-death models. We then

demonstrate through examples that Lyapunov functions for an even wider class of models

can be constructed through a similar scaling of stationary distributions. It is not yet clear just

1By equilibrium we mean a fixed point of a dynamical system. In particular, what is referred to in the biochemistry literature as a
“non-equilibrium steady state” is also included in our use of the term equilibrium.
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how wide the class of models for which this specific scaling limit provides a Lyapunov

function is, and we leave this question open. Similar (non-mathematically rigorous) results

have been pointed out in the physics literature though the generality of these results remain

unclear [39]. See also [25] for recent mathematical work pertaining to the ergodicity of

stochastically modeled reaction systems and [37] for earlier related work pertaining to the

irreducibility and recurrence properties of stochastic models.

Before proceeding, we provide a key definition.

Definition 1.

Let π be a probability distribution on a countable set Γ such that π(x) > 0 for all x ∈ Γ. The

non-equilibrium potential of the distribution π is the function ϕπ:Γ ℝ defined by

ϕπ(x) = − ln(π(x)) .

We close the introduction with an illustrative example.

Example 2. Consider the catalytic activation-inactivation network

2A A + B, (3)

where A and B represent the active and inactive forms of a protein, respectively. The usual

deterministic mass-action kinetics model for the concentrations (xA, xB) of the species A
and B is

ẋA = − κ1xA
2 + κ2xAxB

ẋB = κ1xA
2 − κ2xAxB,

where κ1 and κ2 are the corresponding reaction rate constants for the forward and reverse

reactions in (3). For a given total concentration M =def xA(0) + xB(0) > 0, these equations have

a unique stable equilibrium

cA =
Mκ2

κ1 + κ2
, cB =

Mκ1
κ1 + κ2

, (4)

which can be shown to be complex balanced.

We now turn to a stochastic model for the network depicted in (3), that tracks the molecular

counts for species A and B. Letting V be a scaling parameter, which can be thought of as

Avogadro’s number multiplied by volume, see section 2.3.1, the standard stochastic mass-

action kinetics model can be described in several different ways. For example, the

Kolmogorov forward equations governing the probability distribution of the process are
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d
dt pμ xA, xB, t =

κ1
V xA + 1 xApμ xA + 1, xB − 1, t

+
κ2
V xA − 1 xB + 1 pμ xA − 1, xB + 1, t

−
κ1
V xA xA − 1 +

κ2
V xAxB pμ xA, xB, t ,

(5)

where xA, xB ∈ ℤ ≥ 0 are the molecular counts of A and B, respectively, and pμ(xA, xB, t)

denotes the probability that the system is in state (xA, xB) at time t given an initial

distribution of μ. Note that there is one such differential equation for each state, (xA, xB), in

the state space. In the biological context the forward equation is typically referred to as the

chemical master equation.

Assume that the initial distribution for the stochastic model has support on the set

ΓV =def xA, xB ∈ℤ ≥ 0
2 ∣ xA ≥ 1, xA + xB = VM , where M > 0 is fixed and V is selected so

that VM is an integer. Hence, the total number of molecules is taken to scale in V. The

stationary distribution can then be found by setting the left hand side of the forward equation

(5) to zero and solving the resulting system of equations (one equation for each (xA, xB) ∈
ΓV). Finding such a solution is typically a challenging, or even impossible task. However,

results in [4] imply that for this particular system the stationary distribution is (almost) a

binomial distribution and is of the form (1),

πV xA, xB = 1
ZV

VM
xA

κ2
κ1 + κ2

xA κ1
κ1 + κ2

xB
, xA, xB ∈ ΓV, (6)

where ZV is the normalizing constant

ZV =def 1 −
κ1

κ1 + κ2

VM

The distribution is not binomial since the state (xA, xB) = (0, VM) cannot be realized in the

system.

In order to make a connection between the stochastic and deterministic models, we convert

the stochastic model to concentrations by dividing by V. That is, for x ∈ ℤ we let

xV =def V−1x. Letting πV xV  denote the stationary distribution of the scaled process, we find

that

πV xV = 1
ZV

VM

VxA
V

κ2
κ1 + κ2

VxA
V

κ1
κ1 + κ2

VxB
V

,

where xV ∈ 1
V ΓV. We now consider the non-equilibrium potential of πV scaled by V
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− 1
V ln πV xV = 1

V ln ZV − 1
V ln((VM)!) + 1

V ln VxA
V ! + 1

V ln VxB
V !

− xA
Vln

κ2
κ1 + κ2

− xB
Vln

κ1
κ1 + κ2

.

Stirling’s formula says that

ln(n!) = nln(n) − n + O(ln(n)) for n > 0. (7)

Assuming that limV ∞xV = x ∈ ℝ > 0
2 , and after some calculations, equation (7) yields

lim
V ∞

− 1
V ln πV xV = xA lnxA − ln

κ2
κ1 + κ2

+ xB ln xB − ln
κ1

κ1 + κ2
− Mln(M)

=def 𝒱(x).

Recalling that xB = M − xA, we may rewrite 𝒱 in the following useful way

𝒱(x) = xA lnxA − ln
Mκ2

κ1 + κ2
− 1 −

Mκ2
κ1 + κ2

+ xB lnxB − ln
Mκ1

κ1 + κ2
− 1 −

Mκ1
κ1 + κ2

.

Remarkably, this 𝒱(x) is exactly the function we would obtain if we were to write the

standard Lyapunov function of CRNT, given in (2), for this model. □

The first goal of this paper is to show that the equality between the scaling limit calculated

for the stochastic model above, and the Lyapunov function for the corresponding

deterministic model is not an accident, but in fact holds for all complex balanced systems.

We will also demonstrate that the correspondence holds for a wider class of models.

The remainder of this article is organized as follows. In Section 2, we briefly review some

relevant terminology and results. In Section 3, we derive the general Lyapunov function of

Chemical Reaction Network Theory for complex balanced systems as a scaling limit of the

non-equilibrium potential of the corresponding scaled stochastic model. In Section 4, we

discuss other, non-complex balanced, models for which the same scaling limit gives a

Lyapunov function for the deterministic model. In particular, we characterize this function

when the corresponding stochastic system is equivalent to a stochastic birth-death process.
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2 Reaction systems and previous results

2.1 Reaction networks

We consider a system consisting of d species, {S1, …, Sd}, undergoing transitions due to a

finite number, m, of reactions. For the kth reaction, we denote by νk, νk′ ∈ ℤ ≥ 0
d  the vectors

representing the number of molecules of each species consumed and created in one instance

of the reaction, respectively. For example, for the reaction S1 +S2 → S3, we have νk = (1, 1,

0)T and νk′ = (0, 0, 1)T, if there are d = 3 species in the system. Each νk and νk′  is termed a

complex of the system. The reaction is denoted by νk νk′ , where νk is termed the source

complex and νk′  is the product complex. A complex may appear as both a source complex

and a product complex in the system.

Definition 3.—Let 𝒮 = S1, …, Sd , 𝒞 = ∪k = 1
m νk, νk′ , and ℛ = ν1 ν1′ , …, νm νm′

denote the sets of species, complexes, and reactions, respectively. The triple 𝒮, 𝒞, ℛ  is a

reaction network.

Definition 4.—The linear subspace S = span ν1′ − ν1, …, νm′ − νm  is called the

stoichiometric subspace of the network. For c ∈ ℝ ≥ 0
d  we say

c + S = x ∈ ℝd ∣ x = c + s for some s ∈ S  is a stoichiometric compatibility class,

(c + S) ∩ ℝ ≥ 0
d  is a non-negative stoichiometric compatibility class, and (c + S) ∩ ℝ > 0

d  is a

positive stoichiometric compatibility class.

2.2 Dynamical system models

2.2.1 Stochastic models—The most common stochastic model for a reaction network

𝒮, 𝒞, ℛ  treats the system as a continuous time Markov chain whose state X is a vector

giving the number of molecules of each species present with each reaction modeled as a

possible transition for the chain. The model for the kth reaction is determined by the source

and product complexes of the reaction, and a function λk of the state that gives the transition
intensity, or rate, at which the reaction occurs. In the biological and chemical literature,

transition intensities are referred to as propensities.

Specifically, if the kth reaction occurs at time t the state is updated by addition of the

reaction vector ζk =def νk′ − νk and

X(t) = X(t − ) + ζk .

The most common choice for intensity functions is to assume the system satisfies the

stochastic version of mass-action kinetics, which states that the rate functions take the form
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λk(x) = κk ∏
i = 1

d xi!
xi − νki !1

xi ≥ νki
, (8)

for some constant κk > 0, termed the rate constant, and where νk = (νk1, …, νkd)T. Under

the assumption of mass-action kinetics and a non-negative initial condition, it follows that

the dynamics of the system is confined to a particular non-negative stoichiometric

compatibility class given by the initial value X(0), namely X(t) ∈ (X(0) + S) ∩ ℝ ≥ 0
d .

The number of times that the kth reaction occurs by time t can be represented by the

counting process

Rk(t) = Yk ∫0
t
λk(X(s))ds ,

where the {Yk, k ∈ {1, …, m}} are independent unit-rate Poisson processes (see [6, 7, 34],

or [15, Chapter 6]]). The state of the system then satisfies the equation

X(t) = X(0) + ∑k Rk(t)ζk, or

X(t) = X(0) + ∑
k

Yk ∫
0

t
λk(X(s))ds ζk, (9)

where the sum is over the reaction channels. Kolmogorov’s forward equation for this model

is

d
dt Pμ(x, t) = ∑

k
λk x − ζk Pμ x − ζk, t − ∑

k
λk(x)Pμ(x, t), (10)

where Pμ(x, t) represents the probability that X(t) = x ∈ ℤ ≥ 0
d  given an initial distribution of μ

and λk(x−ζk) = 0 if x − ζk ∉ ℤ ≥ 0
d . So long as the process is non-explosive, the two

representations for the processes, the stochastic equation (9) and the Markov process with

forward equation (10), are equivalent [6, 15].

It is of interest to characterize the long-term behavior of the process. Let Γ ⊂ ℤ ≥ 0
d  be a

closed component of the state space; that is, Γ is closed under the transitions of the Markov

chain. A probability distribution π(x), x ∈ Γ, is a stationary distribution for the chain on Γ if

∑
k

π x − ζk λk x − ζk = π(x)∑
k

λk(x) (11)

for all x ∈ Γ. (If x − ζk ∉ Γ then π(x − ζk) is put to zero.) If in addition Γ is irreducible, that

is, any state in Γ can be reached from any other state in Γ (for example, ΓV in Example 2 is

an irreducible component) and π exists, then π is unique [30].
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Solving equation (11) is in general a difficult task, even when we assume each λk is

determined by mass-action kinetics. However, if in addition there exists a complex balanced

equilibrium for the associated deterministic model, then equation (11) can be solved

explicitly, see Theorem 6 below.

2.2.2 Deterministic models and complex balanced equilibria—For two vectors

u, v ∈ ℝ ≥ 0
d  we define uv =def ∏iui

vi and adopt the convention that 00 = 1.

Under an appropriate scaling limit (see Section 2.3.1) the continuous time Markov chain

model described in the previous section becomes

x(t) = x(0) + ∑
k

∫
0

t
f k(x(s))ds νk′ − νk , (12)

where

f k(x) = κkx1
νk1x2

νk2⋯xd
νkd = κkx

νk, (13)

and κk > 0 is a constant. We say that the deterministic system (12) has deterministic mass-
action kinetics if the rate functions fk have the form (13). The system (12) is equivalent to

the system of ordinary differential equations (ODEs) with a given initial condition x0 = x(0),

ẋ = ∑
k

κkx
νk νk′ − νk . (14)

The trajectory with initial condition x0 is confined to the non-negative stoichiometric

compatibility class x0 + S ∩ ℝ ≥ 0
d .

Some mass-action systems have complex balanced equilibria [27, 28],2 which have been

shown to play an important role in many biological mechanisms [9, 20, 29, 42]. An

equilibrium point c ∈ ℝ ≥ 0
d  is said to be complex balanced if and only if for each complex

z ∈ 𝒞 we have

∑
k:νk′ = z

κkc
νk = ∑

k:νk = z
κkc

νk,
(15)

where the sum on the left is over reactions for which z is the product complex and the sum

on the right is over reactions for which z is the source complex. For such an equilibrium the

total inflows and the total outflows balance out at each complex [16, 23].

2For example, it is known that all weakly reversible networks with a deficiency of zero give rise to systems that have complex
balanced equilibria [16, 17].
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In [28] it is shown that if there exists a complex balanced equilibrium c ∈ ℝ > 0
d  for a given

model then

1. There is one, and only one, positive equilibrium point in each positive

stoichiometric compatibility class.

2. Each such equilibrium point is complex balanced.

3. Each such complex balanced equilibrium point is locally asymptotically stable

relative to its stoichiometric compatibility class.

Whether or not each complex balanced equilibrium is globally asymptotically stable relative

to its positive stoichiometric compatibility class is the content of the Global Attractor

Conjecture, which has received considerable attention [2, 3, 8, 11, 21, 36]. The local

asymptotic stability is concluded by an application of the Lyapunov function (2).

2.2.3 Lyapunov functions

Definition 5.: Let E ⊂ ℝ ≥ 0
d  be an open subset of ℝ ≥ 0

d  and let f :ℝ ≥ 0
d ℝ. A function

𝒱:E ℝ is called a (strict) Lyapunov function for the system ẋ = f (x) at x0 ∈ E if x0 is an

equilibrium point for f, that is, f(x0) = 0, and

1. 𝒱(x) > 0 for all x ≠ x0, x ∈ E and V (x0) = 0

2. ∇𝒱(x) ⋅ f (x) ≤ 0, for all x ∈ E, with equality if and only if x = x0, where ∇𝒱
denotes the gradient of 𝒱.

If these two conditions are fulfilled then the equilibrium point x0 is asymptotically stable
[38]. If the inequality in (2) is not strict for x0 ≠ x then x0 is stable and not necessarily

asymptotically stable. If the inequality is reversed, 𝒱
.

(x) > 0, x ≠ x0, then the equilibrium

point is unstable [38].

We will see that in many cases the large volume limit of the non-equilibrium potential of a

stochastically modeled system is a Lyapunov function defined on the interior of the

nonnegative stoichiometric subspace.

2.3 Product form stationary distributions

The following result from [4], utilized in (6), provides a characterization of the stationary

distributions of complex balanced systems. See also [18, 26] for related work.

Theorem 6.—Let 𝒮, 𝒞, ℛ  be a reaction network and let {κk} be a choice of rate
constants. Suppose that, modeled deterministically, the system is complex balanced with a

complex balanced equilibrium c ∈ ℝ > 0
d . Then the stochastically modeled system with

intensities (8) has a stationary distribution on ℤ ≥ 0
d  consisting of the product of Poisson

distributions,
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π(x) = ∏
i = 1

d ci
xi

xi!
e

−ci, f or x ∈ ℤ ≥ 0
d . (16)

If ℤ ≥ 0
d  is irreducible, then (16) is the unique stationary distribution. If ℤ ≥ 0

d  is not

irreducible, then the stationary distribution, πΓ, of an irreducible component of the state

space Γ ⊂ ℤ ≥ 0
d  is

πΓ(x) = 1
ZΓ

∏
i = 1

d ci
xi

xi!
e
−ci, f or x ∈ Γ,

and πΓ(x) = 0 otherwise, where ZΓ is a positive normalizing constant.

Each irreducible component of the state space is necessarily contained in a single non-

negative stoichiometric compatibility class (Definition 4). The choice of the complex

balanced equilibrium point c in the theorem is independent of Γ and the particular

stoichiometric compatibility class containing it [4]. Since Γ ⊂ ℤ ≥ 0
d , it follows that

ZΓ = ∑
x ∈ Γ

∏
i = 1

d ci
xi

xi!
e

−ci ≤ ∑
x ∈ ℤ ≥ 0

d
∏
i = 1

d ci
xi

xi!
e

−ci = 1. (17)

2.3.1 The classical scaling—We may convert from molecular counts to concentrations

by scaling the counts by V, where V is the volume of the system times Avogadro’s number.

Following [4], define νk = ∑iνki. Let {κk} be a set of rate constants and define the scaled

rate constants, κk
V, for the stochastic model in the following way,

κk
V =

κk

V
νk − 1 (18)

(see [45, Chapter 6]). Let x ∈ ℤ ≥ 0
d  be an arbitrary state of the system and denote the

intensity function for the stochastic model by

λk
V(x) =

Vκk

V
νk

∏
i = 1

d xi!

xi − νki !

Note that x =def V−1x gives the concentrations in moles per unit volume and that if x = Θ(1)
(that is, if x = Θ(V)), then by standard arguments
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λk
V(x) ≈ Vκk ∏

i = 1

d
xi
νki = Vλk(x),

where the final equality determines λk, and justifies the definition of deterministic mass-

action kinetics in (13).

Denote the stochastic process determining the abundances by XV(t) (see (9)). Then,

normalizing the original process XV by V and defining XV =def V−1XV yields

XV(t) ≈ XV(0) + ∑
k

1
V Yk V∫0

t
λk XV(s))ds ζk .

Since the law of large numbers for the Poisson process implies V−1Y (V u) ≈ u, we may

conclude that a good approximation to the process XV is the function x = x(t) defined as the

solution to the ODE

ẋ = ∑
k

κkx
νk νk′ − νk ,

which is (14). For a precise formulation of the above scaling argument, termed the classical
scaling, see [7].

The following is an immediate corollary to Theorem 6, and can also be found in [4]. The

result rests upon the fact that if c is a complex balanced equilibrium for a given reaction

network with rates {κk}, then V c is a complex balanced equilibrium for the reaction

network endowed with rates κk
V  of (18).

Theorem 7.: Let 𝒮, 𝒞, ℛ  be a reaction network and let {κk} be a choice of rate constants.
Suppose that, modeled deterministically, the system is complex balanced with a complex

balanced equilibrium c ∈ ℝ > 0
d . For some V > 0, let κk

V  be related to {κk} via (18). Then

the stochastically modeled system with intensities (8) and rate constants κk
V  has a

stationary distribution on ℤ ≥ 0
d  consisting of the product of Poisson distributions,

πV(x) = ∏
i = 1

d Vci
xi

xi!
e

−Vci, f or x ∈ ℤ ≥ 0
d . (19)

If ℤ ≥ 0
d  is irreducible, then (19) is the unique stationary distribution. If ℤ ≥ 0

d  is not

irreducible, then the stationary distribution, πΓ
V, of an irreducible component of the state

space Γ ⊂ ℤ ≥ 0
d  is
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πΓ
V(x) = 1

ZΓ
V ∏

i = 1

d Vci
xi

xi!
e

−Vci, f or x ∈ Γ, (20)

and πΓ
V(x) = 0 otherwise, where ZΓ

V is a positive normalizing constant.

Note that Theorem 7 implies that a stationary distribution for the scaled model XV is

πV xV = πV VxV , for xV ∈ 1
V ℤ ≥ 0

d . (21)

3 Complex balanced systems

We are ready to state and prove our first result. For an increasing series of volumes Vi, i = 1,

2, …, we consider converging sequences of points x
Vi in 1

Vi
ℤ ≥ 0

d . To ease the notation we

omit the index i and write, for example, limV ∞xV instead of limi ∞x
Vi.

Theorem 8.

Let 𝒮, 𝒞, ℛ  be a reaction network and let κk  be a choice of rate constants. Suppose that,

modeled deterministically, the system is complex balanced. For V > 0, let κk
V  be related to

{κk} via (18). Fix a sequence of points xV ∈ 1
V ℤ ≥ 0

d  for which limV ∞xV = x ∈ ℝ > 0
d .

Further let c be the unique complex balanced equilibrium within the positive stoichiometric
compatibility class of x.

Let π V be given by (19) and let πV be as in (21) , then

lim
V ∞

− 1
V ln πV xV = 𝒱(x),

where 𝒱 satisfies (2) . In particular, 𝒱 is a Lyapunov function (Definition 5).

Further, suppose ΓV ⊂ Z ≥ 0
d  is an irreducible component of the state space for the Markov

model with rate constants κk
V such thatV ⋅ xV ∈ ΓV: Let π

ΓV
V be given by(20). For wV ∈ 1

V ΓV,

define π
ΓV
V wV =def π

ΓV
V VwV , then

lim
V ∞

V−1ln Z
ΓV
V = 0, (22)

and
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lim
V ∞

−V−1ln(π
ΓV
V (xV)) = 𝒱(x), (23)

where 𝒱 satisfies(2). In particular, 𝒱 is a Lyapunov function (Definition 5).

Proof. We prove the second statement. The proof of the first is the same with the exception

that Z
ΓV
V ≡ 1.

We first consider the limit (22). Begin by supposing that there is a sequence yV ∈ 1
V ΓV for

which yV c. In this case,

1 ≥ Z
ΓV
V = ∑

y ∈ ΓV
∏

i = 1

d Vci
yi

yi!
e
−Vci ≥ ∏

i = 1

d Vci
Vyi

V

Vyi
V !

e
−Vci ≥ C ∏

i = 1

d 1
Vyi

V

ci

yi
V

Vyi
V

e
V yi

V − ci ,

where the first inequality follows from (17) and the third from an application of Stirling’s

formula (C is a constant). Taking the logarithm and dividing by V, it follows that

limV ∞V−1ln Z
ΓV
V = 0. Thus, the limit (22) will be shown so long as we can prove the

existence of the sequence yV ∈ 1
V ΓV converging to the complex balanced equilibrium c.

For M > 0, define the set M + ℤ ≥ 0
d = w ∈ ℤd:wi ≥ M for each i ∈ 1, …, d . for each i ∈

{1, …, d}}. From the remark below Lemma 4.1 in [37], there is an M0 > 0 so that for all V
large enough

ΓV ∩ M0 + ℤ ≥ 0
d = V ⋅ xV + spanℤ ζk ∩ M0 + ℤ ≥ 0

d . (24)

Thus, for V large enough, ΓV has constant positive density on its stoichiometric

compatibility class. Let V ⋅ cV be the unique complex balanced equilibrium in the positive

stoichiometric compatibility class of V ⋅ xV. It follows that cV is the unique complex

balanced equilibrium in the positive stoichiometric compatibility class of xV, from which we

may conclude that limV ∞ cV − c = 0 (since xV x  [10]. Finally, define yV via the relation

V ⋅ yV = VcV ,

where VcV  is a minimizer of f (z) = z − VcV  over the set ΓV ∩ M0 + ℤ ≥ 0
d . Note that

yV ∈ 1
V ΓV. From (24), we see that yV − cV = O V−1 , which, when combined with

limV ∞ cV − c 0, gives the desired result.

We now turn to (23). We have
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−V−1ln(π
ΓV
V (xV)) = − V−1ln ∏

i = 1

d
e
−Vci Vci

Vxi
V

Vxi
V !

+ V−1ln Z
ΓV
V

= − V−1 ∑
i = 1

d
−Vci + Vxi

V ln(V) + Vxi
V ln ci − ln Vxi

V ! + V−1ln ZΓV
V .

Applying Stirling’s formula (7) to the final term and performing some algebra yields

−V−1ln(π
ΓV
V (xV)) = − V−1 ∑

i = 1

d
−Vci + (Vxi

V)ln(V) + (Vxi
V)ln(ci)

− (Vxi
V)ln(Vxi

V) − (Vxi
V) + O(ln(Vxi

V)) + V−1ln(Z
ΓV
V )

= ∑
i = 1

d
xi
V ln(xi

V) − ln(ci) − 1 + ci + O(V−1ln(Vxi
V)) + V−1ln(Z

ΓV
V ) .

The sum is the usual Lyapunov function 𝒱, and the result is shown after letting V → ∞,

utilizing (22), and recalling that xV x ∈ ℝ > 0
d . □

The theorem above can be applied to Example 2. The unique equilibrium point given in (4)

is easily seen to fulfil the complex balanced condition in (15).

4 Non-complex balanced systems

4.1 Birth-death processes and reaction networks

In this section we will study reaction networks that also are birth-death processes. Many

results are known for birth-death processes. In particular, a characterization of the stationary

distribution can be accomplished [30].

Let 𝒮, 𝒞, ℛ  be a reaction network with one species only, 𝒮 = S , and assume all reaction

vectors are either ζk = (−1) or ζk = (1). This implies that the number of molecules of S goes

up or down by one each time a reaction occurs. For convenience, we re-index the reactions

and the reaction rates in the following way. By assumption, a reaction of the form nS → n′S
will either have n′ = n + 1 or n′ = n − 1. In the former case we index the reaction by n and

denote the rate constant by κn and in the latter case by −n and κ−n, respectively. Note that

this stochastically modeled reaction network can be considered as a birth-death process with

birth and death rates
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pi = ∑
n ∣ ζn = (1)

λn
V(i) = ∑

n ≥ 0
λn

V(i),

qi = ∑
n ∣ ζn = ( − 1)

λn
V(i) = ∑

n < 0
λn

V(i),
(25)

for i ≥ 0, respectively.

If the stochastically modeled system has absorbing states (i.e. states for which pi = qi = 0)

we make the following modification to the intensity functions of the system. Let i0 ∈ ℤ ≥ 0
be the smallest value such that (i) all birth rates of i0 are non-zero, that is, λn(i0) > 0 for n ≥

0, and (ii) all death rates of i0 + 1 are non-zero, that is, λn(i0 + 1) > 0 for n < 0. We modify

the system by letting λn(i0) = 0 for n < 0. Note that the modified system has a lowest state i0,

which is not absorbing.

As an example of the above modification, consider the system with network

3S
κ−3 2S, 4S

κ4 5S . (26)

This model has rates λ4(x) = κ4x(x − 1)(x − 2)(x − 3) and λ−3(x) = κ−3x(x − 1)(x − 2). The

modified system would simply take λ−3(4) = 0.

Let nu (u for ‘up’) be the largest n for which κn is a non-zero reaction rate and similarly let

nd (d for ‘down’) be the largest n for which κ−n is a non-zero rate constant. For the network

(26), nu = 4 and nd = 3.

Theorem 9.—Let 𝒮, 𝒞, ℛ  be a reaction network with one species only. Assume that all
reaction vectors are of the form ζn = (−1) or ζn = (1), and assume that there is at least one of

each form. Let {κn} be a choice of rate constants and assume, for some V > 0, that κn
V  is

related to {κn} via (18). Then a stationary distribution, πV , for the modified birth-death

process with rates (25) and rate constants κn
V exists on the irreducible component Γ = {i|i ≥

i0} if and only if either of the following holds,

1. nd > nu, or

2. nd = nu and κ−nd
> κnu

,

in which case such a πVexists for each choice of V > 0.

If either of conditions (1) or (2) holds, and if xV x ∈ (0, ∞), where each xV ∈ 1
V ℤ ≥ 0, then

lim
V ∞

− V−1ln πV xV = g(x) =de f − ∫
xmax

x
ln

∑n ≥ 0κnu
νn

∑n < 0κnu
νn

du, (27)
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where πV is the stationary distribution for the stochastic model scaled by V > 0 and state

space 1
V ℤ ≥ 0 (as in (21)), and xmax is a value of x ∈ [0, ∞) (potentially not unique) that

maximizes the integral

∫0
x

ln
∑n ≥ 0κnu

νn

∑n < 0κnu
νn

du .

Further, the function g(x) of (27) fulfills condition (2) in Definition 5; that is, g(x) decreases
along paths of the deterministically modeled system with rate constants {κn}.

Proof. Since all reactions have ζn = (1) or ζn = (−1) it follows that the system is equivalent

to a birth-death process with birth and death rates (25). As in the discussion below (25), let

i0 be the smallest value the chain may attain. Potentially after modifying the system as

detailed above, we have that pi > 0 for all i ≥ i0 and qi > 0 for all i ≥ i0 + 1. Hence,

Γ = i ∈ ℤ ∣ i ≥ i0  is irreducible and the stationary distribution, if it exists, is given by (see

[30])

πV(x) = 1
ZV ∏

i = i0 + 1

x pi − 1
qi

= 1
ZV

pi0
⋯px − 1

qi0 + 1⋯qx
, x ≥ i0,

where the empty product Πi = i0 + 1
i0  is taken to be equal to 1, and the partition function ZV

satisfies

ZV = ∑
x = i0

∞
∏

i = i0 + 1

x pi − 1
qi

(28)

Let δ = nd − nu. Note that for ϵ > 0 arbitrarily small, there exists an m > 0 such that

(1 + ϵ)Vδ

iδ

κnu
κ−nd

≥
pi − 1

qi
≥ (1 − ϵ)Vδ

iδ

κnu
κ−nd

for i > mV , (29)

for all V > 0. Hence,

ZV = Θ ∑
i = i0

∞ Vδi

(i!)δ

κnu
κ−nd

i

(1 + ϵ)i ,

which is finite if and only if one of the two conditions (1) and (2) in the theorem is fulfilled,

in which case it is finite for all V > 0. If δ = 0, one should choose ϵ such that

Anderson et al. Page 16

Bull Math Biol. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(1 + ϵ)κnu
/κ−nd

< 1. Since a stationary distribution exists if and only if ZV is finite (see [30]),

this concludes the first part of the theorem.

We assume now that the stationary distribution exists, that is, that one of the two conditions

(1) and (2) are fulfilled, and consider the non-equilibrium potential. Letting xV = V−1x with

x ≥ i0, the scaled non-equilibrium potential takes the form

−V−1ln πV xV = − V−1ln πV VxV

= − V−1 ∑
i = i0 + 1

VxV

ln pi − 1 − ln qi + V−1ln ZV .

(30)

Using the definitions of pi, qi and λn
V(i), the first term in (30) becomes

−V−1 ∑
i = i0 + 1

VxV

ln ∑
n ≥ 0

κn
(i − 1)(i − 2)⋯ i − νn

V
νn − 1

− ln ∑
n < 0

κn
i(i − 1)⋯ i − νn + 1

V
νn − 1

.

Noting that this is a Riemann sum approximation, we have for xV x ∈ (0, ∞),

−V−1 ∑
i = i0 + 1

VxV

ln pi − 1 − ln qi − ∫
0

x
ln

∑n ≥ 0κnu
νn

∑n < 0κnu
νn

du =def g1(x), (31)

as V → ∞.

We next turn to the second term of (30). First, we consider the infinite series in equation

(28). By (29), for ϵ > 0 small enough there is an m > 0 so that if i > mV, then

pi − 1
qi

≤ (1 + ϵ)
knu

k−nd

1
m =def β < 1. (32)

Let mV = ⎿mV⏌ + 1. Hence, it follows that the tail of the partition function ZV fulfills

∑
x = mV

∞
∏

i = i0 + 1

x pi − 1
qi

= ∏
i = i0 + 1

mV pi − 1
qi

∑
x = mV

∞
∏

i = mV + 1

x pi − 1
qi

≤ ∏
i = i0 + 1

mV pi − 1
qi

∑
x = mV

∞
β

x − mV

= ∏
i = i0 + 1

mV pi − 1
qi

1
1 − β .

(33)
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Next we bound ZV above, using (33),

ZV = ∑
x = i0

∞
∏

i = i0 + 1

x pi − 1
qi

≤ ∑
x = i0

mV − 1

∏
i = i0 + 1

x pi − 1
qi

+ ∏
i = i0 + 1

mV pi − 1
qi

1
1 − β

= ∑
x = i0

mV
exp ∑

i = i0 + 1

x
ln pi − 1 − ln qi − δmV

(x)ln(1 − β)

≤ 1
1 − β ∑

x = i0

mV
exp ∑

i = i0 + 1

x
ln pi − 1 − ln qi ,

(34)

with the convention that the empty sum is zero, and where δa(x) is an indicator function that

takes the value 1 if x = a, and is zero otherwise. In the last inequality we have used that

−δa(x)ln(1 − β) ≤ −ln(1 − β).

Consider the right side of (34). Let xV be the value of x ≤ mV for which the sum attains it

maximum. Hence, we have

ZV ≤
mV

1 − βexp ∑
i = i0 + 1

xV
ln pi − 1 − ln qi . (35)

The sequence V−1xV ∈ 0, V−1mV ⊆ [0, m + 1] has an accumulation point xmax in [0, m + 1]

since the interval is compact. Using (31) and mV = ⎿mV⏌ + 1, we obtain from (35)

limsup
V ∞

V−1ln ZV ≤ ∫
0

xmax
ln

∑n ≥ 0κnu
νn

∑n < 0κnu
νn

du =def g0 . (36)

Note that xmax is a global maximum of the integral on the entire [0, ∞) (though it might not

be unique): according to (32), the terms in the inner sum in (34) are negative for x > xV.

To get a lower bound for ZV, we choose a sequence of points xV ∈ 1
V ℤ ≥ 0, such that

xV xmax as V → ∞. Then, with xV = VxV,

ZV ≥
pi0

⋯pxV − 1
qi0 + 1⋯qxV

,

and consequently,
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liminf
V ∞

V−1ln ZV ≥ ∫
0

xmax
ln

∑n ≥ 0κnu
νn

∑n < 0κnu
νn

du = g0, (37)

by arguing as in (31). Combining (36) and (37) yields the desired result that V−1 ln(ZV) →
g0 as V → ∞.

Hence, we may conclude that the non-equilibrium potential converges to the function

g(x) = g1(x) + g0, as stated in the theorem. To conclude the proof, we only need to confirm

that g fulfills condition (2) in Definition 5, which we verify by differentiation,

d
dt g(x(t)) = g′(x(t))x′(t)

= − ln
∑n ≥ 0κnx

νn

∑n < 0κnx
νn

⋅ ∑
n ≥ 0

κnx
νn − ∑

n < 0
κnx

νn

This is strictly negative unless

∑
n ≥ 0

κnx
νn − ∑

n < 0
κnx

νn = 0,

in which case we are at an equilibrium. □

For this particular class of systems we have

ẋ = ∑
n ≥ 0

κnx
νn − ∑

n < 0
κnx

νn,

so that the ratio in equation (27) is simply the ratio of the two terms in the equation above.

The local minima and maxima of g(x) are therefore the equilibrium points of the

deterministically modeled system. Further, by inspection, it can be seen that g xmax = 0 and

g(x) ∞ as x ∞. If none of the extrema of g(x) are plateaus, then it follows that

asymptotically stable and unstable equilibria must alternate and that the largest equilibrium

point is asymptotically stable (Definition 5). Around each of the stable equilibria the

function g(x) is a Lyapunov function.

Example 10. Consider the following network which has three equilibria (for appropriate

choice of rate constants), two of which may be stable,

∅
κ0

κ−1
X, 2X

κ2
κ−3

3X .
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The deterministic model satisfies

ẋ = κ0 − κ−1x + κ2x2 − κ−3x3 .

We have nu = 2 and nd = 3 such that condition (1) of Theorem 9 is fulfilled. Hence, the non-

equilibrium potential converges to the function

g(x) = − ∫
xmax

x
ln

κ0 + κ2x2

κ−1x + κ−3x3 dx . (38)

The stationary distribution of the stochastically modeled system can be obtained in closed

form [19],

πV(x) = πV(0) ∏
i = 1

x B[(i − 1)(i − 2) + P]
i(i − 1)(i − 2) + Ri ,

where

B =
κ2

κ−3
, R =

κ−1
κ−3

, and P =
κ0
κ2

.

If P = R, then the distribution is Poisson with parameter B and, in fact, the system is

complex balanced. In this case, xmax = κ2/κ−3 and the Lyapunov function (38) reduces to

g(x) = xln(x) − x − xln
κ2

κ−3
+

κ2
κ−3

,

in agreement with Theorem 8.

For a concrete example that is not complex balanced, consider the model with rate constants

κ0 = 6, κ−1 = 11, κ2 = 6, κ−3 = 1. In this case

ẋ = 6 − 11x + 6x2 − x3 = − (x − 1)(x − 2)(x − 3),

and there are two asymptotically stable equilibria at c = 1, 3 and one unstable at c = 2.

Hence, the function g(x) is a Lyapunov function locally around x = 1, 3, and takes the form

g(x) = x ln
x x2 + 11

x2 + 1
− ln(6) − 1 + 2 11arctan x

11 − 2arctan(x)

− 2 11arctan 1
11 + 1 + 1

2π,
(39)

Anderson et al. Page 20

Bull Math Biol. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where, for this example, xmax = 1. In Figure 1, we demonstrate the convergence of the scaled

non-equilibrium potential, − 1
V ln πV xV , of the scaled process to g(x) of (39).

Example 11. Consider the reaction network

X
k ∅ , X

k1 2X,

which is equivalent to a linear birth-death process with absorbing state 0. This model has nu

= nu = 1, and so for a stationary distribution to exist the second condition of Theorem 9 must

hold. If we put the death rate λ−1(1) to 0 and assume κ−1 > κ1, then condition (2) is fulfilled

and

g(x) = − ∫
0

x
ln

κ1x
κ−1x dx = − xln

κ1
κ−1

(40)

is a Lyapunov function. In fact, the stationary distribution of the modified system is

proportional to

πV(x) ∝
κ1

κ−1

x − 11
x ,

which is independent of V. It follows that for xV x,

− 1
V ln πV xV ≈ − xV − 1

V ln
κ1

κ−1
+ 1

V ln xV + 1
V ln(V)

− xln
κ1

κ−1
,

in agreement with (40). In this particular case the deterministic system converges to zero –

the absorbing state of the stochastic system – though this correspondence will not hold in

general for systems with an absorbing state. □

4.2 Other examples

Example 12. Consider the reaction network,

∅ κ
X, 2X

κ2 ∅ ,

The network is not complex balanced, nor is it a birth-death process, hence the theory

developed in the previous sections is not applicable. The stationary distribution with scaled

rate constants as in (18) can be given in explicit form [14],
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π(x) = 1
2I1(2 2aV)

(aV)x
x! Ix − 1(2aV), x ∈ ℤ ≥ 0, and a =

κ1
κ2

,

where In(z) is the modified Bessel function of the nth kind. To evaluate the non-equilibrium

potential we need two asymptotic results for the modified Bessel functions [22]:

I1(z) ∝ 1
2πz

ez, for large z,

In(nz) ∝ 1
2πn

eηn

1 + z2 1/4 1 + ∑
k = 1

∞ uk(t)

nk , for large n

where

η = 1 + z2 + ln z

1 + 1 + z2 , t = 1
1 + z2,

and uk(t), k ≥ 1, are functions of t. Note that the sum involving uk(t) decreases proportionally

to n−1u1(t) as n gets large (the other terms vanish faster than 1
n).

After some cumbersome calculations using the asymptotic relationships for the modified

Bessel function, we obtain that the non-equilibrium potential satisfies

− 1
V ln πV xV g(x), for xV x as V ∞,

where g(x) is defined by

g(x) = 2 2a − 2xln(a) + xln(x) − x(1 + ln(2)) − x2 + 4a2 + xln x + x2 + 4a2 .

Another straightforward, but likewise cumbersome, calculation, shows that g(x) in fact fulfils

condition (2) in Definition 5. By differentiation twice with respect to x, we find that

g′′(x) > 0, hence g(x) is a Lyapunov function. □

Example 13. As a last example consider the reaction network:

X
κ ∅ , ∅

κ2 2X .

It is not weakly reversible, hence not complex balanced for any choice of rate constants. It is

not a birth-death process either, as two molecules are created at each “birth” event. It is

similar to Example 12, but with the reactions going in the opposite direction.
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Let the rate constants {κk} be given and let the scaled rates κk
V  be given accordingly. The

deterministically modeled system takes the form

ẋ = 2κ2 − κ1x (41)

such that there is a unique equilibrium at C =
2κ2
κ1

. Let a =def κ2
2κ1

 so that c = 4a. The

stationary distribution exists for all reaction rates and is most easily characterized in the

following way (see Supporting Information):

N = N1 + 2N2, N1 Po(2aV), and N2 Po(aV),

where N1 and N2 are two independent Poisson random variables with intensities 2aV and

aV, respectively. Hence, the stationary distribution can be written as

π(x) = e−3Va ∑
k, m: x = k + 2m

(2Va)k
k!

(Va)m
m! .

In the Supporting Information it is shown that the limit of the non-equilibrium potential

exists as V → ∞ with xV x:

lim
V ∞

− 1
V ln πV xV = g(x),

where

g(x) = ∫0
x

ln 1 + 2x
a − 1 dx − ln(2)x

(the integral can be solved explicitly, see Supporting Information). The first derivative of g
fulfils

g′ x > 0 if and only if 4a < x,

and zero if and only if 4a = x. Comparing with (41) yields

g′(x)ẋ ≤ 0 for all x > 0,

and equality only if 4a = x. The second derivative of g is positive for all x. Hence, g(x) is a

Lyapunov function.
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5 Discussion

We have demonstrated a relationship between the stochastic models for reaction systems and

an important Lyapunov function for the corresponding deterministic models. In particular,

we showed that this relationship holds for the class of complex balanced systems, which

contains the class of detailed balanced systems that have been well studied in both the

physics and probability literature [44]. Further, we showed the correspondence holds for a

wider class of models including those birth and death systems that can be modeled via

reaction systems. It remains open just how wide the class of models satisfying this

relationship is.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1:

Plots of the scaled non-equilibrium potential (NEP), − 1
V ln πV xV , of the scaled birth-death

process of Example 10 are given for V ∈ {10, 102, 103}, as is the function g(x) of (39).
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