
© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(10):4461-4474 | https://dx.doi.org/10.21037/qims-21-370

Introduction

Body composition imaging relies on assessment of tissues 
composition and distribution. Quantitative data of body 
composition have been linked to pathogenesis and clinical 
outcomes of a wide spectrum of diseases, including 
oncological and cardiovascular. 

Obesity classification is based on body mass index (BMI) 
which has the shortcoming not to provide any information 

on the distribution of adipose tissue and skeletal muscle 
tissue, nor does it allow to distinguish the two main 
compartments of abdominal adipose tissue: visceral adipose 
tissue (VAT) and subcutaneous adipose tissue (SAT). Indeed, 
patients with the same BMI may have remarkably different 
amount and distribution of VAT and SAT.

Abdominal obesity is a widespread disorder among 
the population of all ages, related to various pathological 
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conditions such as cardiovascular disease, metabolic 
syndrome, diabetes, chronic inflammation, and cancer (1).

It would be of paramount importance for clinicians to 
stratify patients according to different risk profiles based on 
obesity phenotypes (e.g., visceral metabolic or non-visceral 
“benign” obesity).

Computed tomography (CT) and magnetic resonance 
(MR) imaging (MRI) allow for non-invasive and precise 
measurement of  body composit ion (2) .  However, 
segmentation of the abdominal compartments is not 
routinely performed since the procedure is cumbersome 
and time-consuming (3). Different methods for automated 
and reproducible segmentation of body composition have 
been proposed. However, due to the complex anatomy of 
the abdominal compartments, time-consuming manual 
correction of automatic segmentation is required in 
most of the cases (3). To address this issue, single slice 
area segmentation technique on a two-dimensional (2D) 
abdominal CT image has been proposed, showing good 
correlation with three-dimensional (3D) data of the entire 
volume (3). Indeed, it has been shown that segmentation 
of VAT area on a single slice (located 3 cm above the lower 
margin of L3 vertebra) correlates with VAT volume and 
body weight, being a good method for VAT segmentation 
despite limitations of abdominal anatomy and inter/intra-
reader variabilities (4).

Therefore, a fully automated segmentation method for 
abdominal adipose tissue analysis would be helpful in order 
to improve accuracy and speed-up the process.

For instance, an early work by Kullberg et al. in 2007 
reported on a fully automatic segmentation technique 
for VAT and SAT on abdominal MR images, excluding 
intramuscular adipose tissue and bone marrow (5). The 
method was found to be reproducible, but accuracy was 
limited in lean subjects (5). 

More recently, AMRA profiler (AMRA Medical AB, 
Linköping, Sweden) has been proposed as a fast and 
accurate strategy to perform body composition analysis, 
including adipose tissue, on MR images (6).

Artificial intelligence (AI), including machine learning 
and deep learning, is a breakthrough technology which has 
been recently proposed as a solution to obtain automatic and 
reliable analysis of abdominal adipose tissue (7,8). Machine 
learning is a class of techniques allowing for computer 
learning aimed to extrapolate or classify models (7). Machines 
can also be capable of analyze a series of big data and 
extract features beyond the human skills (8). Deep learning 
is a subset of artificial neural network (ANN) algorithms 
organized with a structure composed by multiple layers to 
obtain high-level abstractions in the data (9-12) (Figure 1). 

In this review we summarize the available evidence on 
the importance of adipose tissue and AI algorithms aimed to 

Figure 1 Scheme of AI backbone with subsets: machine learning and deep learning. AI, artificial intelligence.

DEEP LEARNING

Subset of machine learning 

consisting of systems that 

learn through the use of 

neural networks from a vast 

amount of data without 

human instructions

MACHINE LEARNING 
Algorithms that learn about structured data by improving

their skills as they are exposed to more data over time

ARTIFICIAL INTELLIGENCE 
Programs that learn, react and adapt mimicking human behaviors



4463Quantitative Imaging in Medicine and Surgery, Vol 11, No 10 October 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(10):4461-4474 | https://dx.doi.org/10.21037/qims-21-370

segmentation of VAT and SAT compartments on CT and 
MR images.

Abdominal adipose tissue

Adipose tissue was believed to be a long-term energy depot 
organ from which free fatty acids can be released to meet 
the body’s energy needs during fasting. More recently, it 
has become clear that adipose tissue is to be considered as 
an endocrine organ that possesses a dynamic and complex 
activity aimed to regulate whole body homeostasis (13,14). 

The adipocytes are cells with metabolic activity 
expressed by secreting a great number of adipokines active 
in the regulation of glucose and lipid metabolism, appetite, 
cardiovascular homeostasis, inflammatory, immune, and 
reproductive functions, as well as other fundamental 
biological and physiological functions (15,16). 

Abdominal adipose tissue is divided into two main 
compartments: VAT and SAT. These two compartments 
with different molecular, biological, and anatomical 
compositions, have a different meaning and importance. 
While SAT shows a greater activity for long-term energy 
storage, VAT has a greater metabolic and hormonal activity 
through the release of adipokines (17,18). Increased VAT 
has an impact on health, being connected with a wide 
spectrum of pathologies.

Patients with a higher amount of VAT show a greater 
risk of developing insulin resistance (19) and metabolic 
syndrome (20). Indeed, excessive accumulation of 
VAT is associated with metabolic disorders such as 
hyperinsulinemia, hyperglycaemia, hypertriglyceridemia, 
increased apolipoproteins B-rich lipoproteins, impaired 
glucose tolerance, constellation of features linked to insulin 
resistance syndrome (17). 

Visceral obesity, hyperinsulinemia and insulin resistance 
often precede the onset of the metabolic syndrome (21).  
Elevated blood pressure values in viscerally obese 
individuals are associated to insulin resistance and 
compensative hyperinsulinemia (22). High blood pressure 
can also be induced by visceral obesity through increased 
activity of the adipose tissue renin-angiotensin-aldosterone 
system (17). 

Increased  VAT has  a l so  been  corre la ted  wi th 
cardiovascular disorders. For instance, a correlation was 
found with hypercoagulability due to increased secretion of 
plasminogen activator inhibitor 1 (PAI-1), increased intima-
media thickness and peripheral arterial disease (23,24). 
Furthermore, hyperinsulinemia in a clinical picture of 

visceral obesity is a predictor of coronary artery disease (25).  
Obese individuals with increased VAT are at risk of 
developing cardiovascular diseases and type 2 diabetes (26).

Adipokines, growth factors and proinflammatory 
cytokines secreted by VAT are considered mediating factors 
linked to the development of obesity-related tumors (27,28). 
Indeed, specific fingerprints of abdominal adipose tissue 
amount and distribution have been associated to several 
disorders (including oncological), in terms of risk, intra-
tumoral genetic mutations, prognosis, and post-treatment 
effects and complications (29-35). 

Skeletal muscle 

Cachexia is defined as progressive functional deterioration 
characterized by loss of adipose tissue and skeletal muscle 
that cannot be fully compensated with nutrition (36).

The loss of skeletal muscle mass is called sarcopenia and 
can be associated to cancer or chronic diseases including 
chronic kidney disease (37,38). 

Muscle mass quantification is of great clinical importance 
since sarcopenia correlates with several adverse clinical 
outcomes (39). This assessment can be performed by 
means of several imaging technique and using variable 
methodologies (40-46). For instance, quantitative evaluation 
of total skeletal muscle area at L3 level or psoas muscle 
area only are common approaches, being also these two 
measures correlated one to another (47). Multiple research 
studies established that psoas muscle area, measured on 
medical images, is a robust biomarker of sarcopenia showing 
association with conditions including osteoporotic fractures 
risk in the elderly, mortality after liver transplantation, 
mortality after ruptured aneurysm surgery and cortisol 
levels in patients with hypercortisolism (48-51).

Thus, quantification of adipose tissue distribution as well 
as of skeletal muscle mass are both relevant targets to be 
included, separate or combined, in the assessment of body 
composition.

Artificial intelligence

Machine learning

Machine learning is based on algorithms that allow 
computers to learn and make predictions without 
programming by explicit rules, possibly improving as 
a function of experience (7). Depending on task to be 
accomplished, machine learning is classified into three 
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categories: supervised, unsupervised and reinforcement 
learning (Figure 2) (7). Supervised machine learning is so 
called as it consists of training supervision, in which data 
labels are supplied to the algorithm. In this category of 
machine learning the expected outputs are usually labeled 
by human experts. The major function of the algorithm is 
to associate inputs to outputs. 

In unsupervised machine learning no data labels are 
supplied to the algorithm. Machine learning aims to find 
the hidden structure in the data and separate them into 
clusters or groups.

In reinforcement machine learning, a certain task 
is performed by the computer program in a dynamic 
environment in which positive or negative reinforcement 
feedback is received. In this category, learning is provided 
by interactions with an environment without explicit 
instruction (52).

Artificial neural networks

ANNs are subset of automatic learning made up of 
statistical and mathematical models, inspired to biological 
nervous system processes information through a number 
of elements called neurons linked together by multiple 

connections (i.e., nodes and edges) (7). This type of network 
is made up of “hidden layers” and an output layer, which in 
turn consists of neurons connected to all the other neurons 
of the layers (7). Learning in this type of network can be 
supervised, partially supervised, or unsupervised (7).

Deep learning

Deep learning is a subset of neural networks algorithms 
that contains several hidden (hence “deep”) layers. These 
are algorithms seek to model high-level abstractions in the 
data. For instance, deep learning is typically applied for 
recognizing objects in images (Figure 3).

There are different deep learning models: there are 1D 
convolutional neural networks (CNNs) in popular deep 
learning framework (i.e., pytorch and tensorflow) and 2D 
or 3D models. These two different models are called fully 
connected neural network and CNNs respectively, being 
the latter the most commonly applied learning technique in 
the medical imaging field.

Methods

The literature research was performed on December 2020 

Figure 2 Schematic structure of the three sub-categories of machine learning: supervised, unsupervised and reinforcement, according to the 
task to be accomplished.
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using MEDLINE PubMed Central, taking into account only 
articles written in English and without limits of time span. 
Combinations of keywords for articles search were: “adipose 
tissue artificial intelligence”, “adipose tissue deep learning” or 
“adipose tissue machine learning”. Relevant articles related to 
abdominal adipose tissue and AI were selected also from the 
reference list of each identified article.

AI and abdominal adipose tissue 

Mounting evidence in recent years evaluated the automated 
abdominal adipose tissue segmentation on CT and MRI 
scans by means of machine learning and deep learning 
algorithms. On this respect, the Dice Score is a common 
metric to assess the spatial overlap between the predicted 
label maps and the ground truth. It provides both size and 
localization consensus for any type of method, not only AI. 

Dice coefficient is the most commonly used tool in 
order to validate AI-derived algorithms tailored to image 
segmentation (Figure 4) (53). 

Computed tomography

Several papers investigated the impact of AI on the 
abdominal fat CT-based segmentation (Table 1).

Weston et al. proposed an automatic approach for 
abdominal segmentation using deep CNN (3). This deep 
learning model allowed to segment VAT, SAT, muscle, bone 
and abdominal organs, matching or even outperforming the 
accuracy reached by manual segmentation (3). Segmentation 
was performed at the level of L3 vertebra transverse 
processes (3). When comparing U-Net segmentation and 
semi-automatic segmentation, no significant differences 

Figure 3 Deep learning model architecture with neural network and multiple hidden layers. This model includes a complex system of neural 
networks capable of learning tasks without human training.

Figure 4 Scheme to explain how Dice coefficient is calculated. 
The light red and light green circles highlight the concept of 
2*overlapped pixels (top row) divided by total number of pixels 
(bottom row).
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Table 1 Summary of CT comparative studies with proposed networks and results of abdominal VAT and SAT quantification

Authors AI category Method
Number  
of patients

Segmentation  
level

VAT Dice scores  
(mean ± standard deviation)

SAT Dice scores  
(mean ± standard deviation)

Weston et al. 
(2019) (3)

Deep learning  
(supervised)

U-Net 2,369 Transverse  
processes of  
the L3 

– 0.98±0.05

Nowak et al. 
(2020) (54)

Deep learning  
(supervised)

Deep19 model 1,143 L3/L4 0.950±0.053 0.974±0.041 

Koitka et al. 
(2021) (55)

Deep learning  
(supervised)

U-Net 3D 50 Whole  
abdomen

– 0.9953

Park et al.  
(2020) (56)

Deep learning  
(supervised)

FCN-based  
segmentation  
system

946 Lower somatic  
limiting of L3

0.97 (for internal and  
external datasets)

0.97 (for internal and  
external datasets)

Dabiri et al. 
(2020) (57)

Deep learning  
(supervised)

U-Net 2,529 L3 Dataset-2 (test set),  
Dataset-2 (training set): 
98.6±4.31

Dataset-2 (test set),  
Dataset-2 (training set): 
98.94±3.96 

Dataset-2 (test set), 
Dataset-3 (training set): 
98.03±4.85 

Dataset-2 (test set), 
Dataset-3 (training set): 
98.16±4.25 

Dataset-3 (test set), 
Dataset-2 (training set) 
97.46±4.27 

Dataset-3 (test set), 
Dataset-2 (training set): 
98.85±1.04 

Dataset-3 (test set), 
Dataset-3 (training set): 
97.92±3.90 

Dataset-3 (test set), 
Dataset-3 (training set): 
99.16±0.91 

Hemke et al. 
(2020) (58)

Deep learning  
(supervised)

U-Net 200 Immediately 
cranial to the 
acetabular roof 

– 500 (augmentation) 0.95

1,000 (augmentation) 0.97

2,000 (augmentation) 0.96

3,000a (augmentation) 0.97 

4,000 (augmentation) 0.97

Makrogiannis  
et al. (2013) (59)

Machine learning 
(supervised)

Fuzzy C-Means; 
GVF

168 L3/L4 85.6±5.7 93.1±2.9 

Wang et al. 
(2019) (60)

Deep learning- 
machine learning 
fusion (supervised)

SVM; DilaLab; 
DilaLabPlus

20 Whole  
abdomen

DilaLab  
0.9278±0.0158

DilaLabPlus  
0.9808±0.0063 

Wang et al. 
(2017) (61)

Deep learning  
(supervised)

Selection-CNN; 
Segmenta-
tion-CNN

40 Whole  
abdomen

0.9150±0.0624 0.9797±0.0145 

a, model with highest Dice scores for soft tissue classes used for final experiments. CT, computed tomography; CNN, convolutional neural 
network; FCN, fully convolutional network; GVF, gradient vector flow; SAT, subcutaneous adipose tissue; SVM, support vector machine; 
VAT, visceral adipose tissue.
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in performance were found (3). VAT had a larger standard 
deviation than the other compartments (3). The VAT 
error was greater, indicating that this algorithm works well 
and demonstrating that this model is at least as accurate 
as manual segmentation, regardless patient weight (3). 
Moreover, model performance exceeded inter-observer 
agreement on the SAT (3).

Blanc-Durand et al. extracted measurements of VAT, 
SAT and muscular body mass from CT scan using a deep 
learning approach, in order to evaluate progression-free 
survival and overall survival in non-small cell lung cancer 
patients (62). A five-fold cross-validation was performed in 
a subset of 35 patients, subsequently the anthropometric 
data were normalized to the body surface area, to control 
the different morphologies of the patients (62).

Interestingly, VAT/SAT ratio normalized to the body 
surface area was shown to be an independent predictor of 
progression-free survival and overall survival in non-small 
cell lung cancer patients (62).

Nowak et al. evaluated the accuracy of the body 
segmentation of VAT, SAT and skeletal muscles using 
DeepMedic Open-Source CNN, obtaining extremely 
accurate results in all three body compartments. The 
analysis was performed on single slice images at the L3/L4 
level. Of note, DeepMedic (i.e., deep learning) offers open-
source free access to their code or their trained models 
ready for use in clinical research studies (54).

Koitka et al. developed a deep-learning solution using 
multi-resolutions U-Net 3D neural networks, a completely 
automatic and reproducible method for quantifying the 
volume of body tissue composition. They quantified 
abdominal cavity, bones, muscle, SAT, and thoracic cavity. 
Subsequently, the authors subclassified adipose tissue and 
muscle using Hounsfield unit (HU) thresholds. 

One limitation of the study was the differentiation 
between VAT and adipose tissue within organs. Adipose 
tissue in the abdominal cavity, having all the same range 
of HU, was considered entirely as VAT including adipose 
tissue within organs which should be excluded from the 
statistics as, by definition, is not part of VAT (55). 

Orlov et al. used supervised machine learning and low-
level generic image descriptors to evaluate age-related 
change in adipose tissue, soft tissues (neither bone nor fat) 
and bone using CT in single slice image at L4 level, in order 
to assess effects of biological aging and to correlate these 
changes with metabolic and functional activity. Adipose 
tissue was shown to be a good aging indicator in both 
genders. The strongest aging indicator in males was the 

greater abdominal adipose tissue distribution, while adipose 
tissue in females was a close second to the fat distribution of 
the entire torso, presenting a more widespread distribution. 
Therefore, adipose tissue was found to be a stronger 
aging indicator in males, despite in this study the adipose 
tissue compartments, VAT and SAT, were not segmented 
separately (63).

Park et al. aimed to develop and validate a method of 
automatic segmentation of adipose and abdominal muscle 
tissues using a deep learning system, with segmentations at 
the level of the lower aspect of L3.

The ground truth data consisted of manually segmented 
maps of abdominal VAT, abdominal SAT, and abdominal 
muscle tissue. This system, based on fully convolutional 
network (FCN)-based segmentation, showed good 
performance and high accuracy in recognizing and 
quantitatively analyze these tissues (56). 

Another deep learning method for the automatic 
segmentation of VAT, SAT, abdominal muscle and 
intermuscular adipose tissue was proposed by Dabiri et al. 
Segmentations were performed on a single slice at L3 level. 
Three datasets of patients with different types of cancer 
were used for networks training and validation. 

The middle L3 slice was detected by CT scan volume 
and subsequently sent to the five-class segmentation 
network (skeletal muscle, SAT, VAT, intermuscular adipose 
tissue and background). This multi-label segmentation 
network was created to refine U-Net and FCN to take 
advantage of both networks and limit the disadvantages. 
The inputs to this network consist of the L3 axial images, 
while the targets consist of the corresponding masks of the 
skeletal muscle, VAT, SAT and intermuscular adipose tissue 
regions.

The authors suggested that localization and segmentation 
network showed potential for fully automated VAT, SAT, 
abdominal muscle and analysis with high accuracy (57).

Hemke et al. developed a deep CNN for the automatic 
segmentation of body composition (i.e., VAT, SAT, 
intermuscular adipose tissue, bone and mixed intra-pelvic 
content) in the pelvic area, precisely at the supra-acetabular 
level. This model was trained for 50 epochs using the U-Net 
architecture. The results showed, once again, accurate 
automated segmentation for pelvic body composition (58).

Makrogiannis et al. used a machine learning method 
integrating spatial information, intensity and texture for 
VAT and SAT quantification, allowing for identification and 
removal of food residues, showing very good accuracy and 
generalization capacity (59).
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Wang et al. provided a novel three-level machine learning 
technique for the automatic quantification of VAT and SAT. 
In particular, a Support Vector Machine classifier configured 
to group abdominal CT images was applied. Consequently, a 
CNN-based pyramidal dilation network (DilaLab) was used to 
address the complex internal distribution problems of the non-
abdominal internal adipose tissue of the VAT segmentation. 
Finally, DilaLabPlus network (i.e., the first dilated convolution 
layer from DilaLab and plus a decoder module) was used for 
the quantification of the SAT. This method demonstrated 
improvement in the feasibility and reliability of the automatic 
quantification of VAT and SAT (60).

Moreover, Wang et al. used a deep learning CNN based 
computer-aided detection scheme for abdominal VAT and 
SAT quantification. This scheme was based on a two-step 
process: abdominal CT slices selection and VAT and SAT 
areas segmentation. This methodology allowed to process 
CT volumetric data with high concordance and accuracy as 
compared to manual segmentation (61).

Finally, Pickhardt et al. used a deep learning approach 
for quantification of VAT and SAT at L1 level in patients 
with metabolic syndrome. Fully automated quantitative 
tissue measures of VAT and SAT, combined with other 
data (i.e., muscle and liver) obtained from abdominal CT 
scans, allowed to identify patients at risk for metabolic 
syndrome (64).

Taken together, available data about abdominal fat 
segmentation on CT images suggest that AI is a powerful 
and reliable tool to quickly quantify VAT and SAT.  

Magnetic resonance imaging 

The impact of AI to improve the process of abdominal fat 
quantitative analysis has been recently assessed on research 
studies based on MR images (Table 2).

Konigorski et al. used a fully automated approach for 
the segmentation of the VAT, SAT and for adipose tissue 
located in the coronary compartment. This system mirrored 
results of manual segmentation and was reproducible. 
The quantity of adipose tissue compartments was then 
correlated with gene expression in SAT and concentration 
of adipokines. The major result was a correlation between 
plasma levels of leptin and the amount of adipose tissue, in 
particular of SAT (69).

Langner et al. used two different neural networks 
architectures (i.e., U-Net and V-Net) for automatic 
segmentation of VAT and SAT, in multicenter water-fat 
scans of the abdomen. U-Net showed a higher performance 

than V-Net, enabling reliable automatic segmentation of 
VAT and SAT. Furthermore, with a standardized imaging 
protocol, this method could be proposed for multi-centric 
studies including a large number of subjects from different 
geographic places (65).

Küstner et al. quantified the different compartments of 
adipose tissue from whole-body MRI, using a 3D densely 
connected CNN (DCNet) that was compared to a similar 
3D U-Net segmentation effectively testing for parameters 
including precision, sensitivity, specificity and accuracy. 
The proposed DCNet allowed to perform segmentation 
of adipose tissue in 3D whole body MRI data sets and was 
proposed as generalizable for different epidemiological 
cohort studies (66).

Estrada et al. introduced a new deep learning method 
that allows for fast and accurate automatic segmentation 
of VAT and SAT on Dixon MRI scans (FatSegNet). 
Three phases make up FatSegNet: localization of the 
abdominal region through two 2D Competitive Dense 
Fully Convolutional Networks (CDFNet), segmentation 
of adipose tissue on three views by independent CDFNets, 
and view aggregation. CDFNet showed greater accuracy 
and robustness than traditional deep learning networks. 
FatSegNet was reported as a reliable tool to perform 
volumetric segmentation of VAT and SAT on 3D Dixon 
MRI scan (67). 

Shen et al. proposed a machine learning-deep learning 
fusion method for the segmentation of VAT and SAT, 
based on iterative decomposition of water and fat with echo 
asymmetry and least square estimation-iron quantification 
(IDEAL-IQ) technology. This method, which showed high 
reliability, comprised two main phases: first, a deep network 
segmented the boundaries of SAT and the contour of the 
peritoneal cavity; second, the assumption-free method 
K-means ++ with a Markov chain Monte Carlo (AFK-MC2) 
clustering was used for VAT quantification (68). 

Masoudi et al. developed an innovative algorithm for the 
automatic quantification of adipose tissue on MR images, 
based on deep learning techniques, through cross modality 
adaptation. Specifically, a cycle generative adversarial 
network (C-GAN) was used to transform the MR scans 
into their equivalent synthetic CT (s-CT) images. On these 
images, the segmentation of adipose tissue is easier due to 
the descriptive nature of HU for CT images (1).

Finally, Rawshani et al. used a machine learning approach 
to quantify VAT and SAT, on T1 weighted axial images, as 
potential predictors of cardio-metabolic risk in non-obese 
male subjects. VAT was found to be a strong predictor of 
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Table 2 Summary of MR comparative studies with proposed networks and results of abdominal VAT and SAT quantification

Authors AI category Method
Number of 
patients

Sequences Segmentation level
VAT Dice scores 
(mean ± standard 
deviation)

SAT Dice scores 
(mean ± standard 
deviation)

Langner  
et al. (2019) 
(65)

Deep learning 
(supervised)

U-Net; 
V-Net 

Study Tellus: 
10; Study 
BetaJudo: 
10

Study Tellus: 
mDixon Quant; 
Study BetaJudo: 
mDixon Quant

L3–L4 U-Net: Study  
Tellus, 
0.988±0.007; 
Study BetaJudo, 
0.970±0.010 

U-Net: Study  
Tellus, 
0.992±0.003; 
Study BetaJudo, 
0.987±0.004

V-Net: Study  
Tellus, 
0.982±0.009; 
Study BetaJudo, 
0.916±0.059 

V-Net: Study  
Tellus, 
0.987±0.004; 
Study BetaJudo, 
0.978±0.012 

Küstner  
et al. (2020) 
(66)

Deep learning 
(semisupervised)

DCNet 300 Dixon Whole body TUEF/DZD (1.5T): 
0.92±0.02 

TUEF/DZD (1.5T): 
0.98±0.02 

TUEF/DZD (3.0T): 
0.86±0.06 

TUEF/DZD (3.0T): 
0.94±0.03 

NAKO (3.0T): 
0.89±0.05 

NAKO (3.0T): 
0.95±0.05 

Estrada  
et al. (2019) 
(67)

Deep learning 
(supervised)

FatSegNet 587 Dixon Abdominal region:  
from inferior somatic  
margin of twelfth  
thoracic vertebra (Th12) 
to the inferior somatic 
margin of L5

Axial: 0.826 Axial: 0.970 

Thoracic region: all  
above the inferior  
somatic margin of Th12

Coronal: 0.826 Coronal: 0.966

Pelvic region: everything 
below the lower somatic 
margin of L5

Sagittal: 0.824 Sagittal: 0.966

View aggregation: 
0.850

View aggregation: 
0.975

Shen et al. 
(2019) (68)

Deep learning 
(supervised and 
unsupervised)

U-Net 75 IDEAL-IQ Not specified 0.96; 0.97 based 
on AFK-MC2

0.96

Masoudi et al. 
(2020) (1)

Deep learning 
(supervised and 
unsupervised)

C-GAN; 
U-Net

165 Fat saturated 
T1-weighted 

Whole abdomen 0.9433 0.9746

MR, magnetic resonance imaging; DZD, German Center for Diabetes Research database; NAKO, German National Cohort database;  
AFK-MC2, Markov chain Monte Carlo; SAT, subcutaneous adipose tissue; TUEF, Tuebingen Family Study database; VAT, visceral adipose 
tissue.
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ectopic fat accumulation in the liver and heart (70).
Research studies aimed to quantitatively analyze 

abdominal fat on MR images, suggest that AI is a promising, 
robust and reliable innovation, although less explored than 
applications on CT images up to date.

Impact of AI for body composition analysis in 
obesity

Several CT and MRI studies of the abdomen are acquired 
on a daily basis worldwide. These studies, that are mainly 
carried out for different purposes, contain important 
“hidden” information that are overlooked and not taken 
into account in most of the cases. 

Work overload is one of the major constraints that hinder 
a systematic quantitative analysis of body composition. 
AI holds the potential to solve this issue and possibly 
enables body composition analysis, including abdominal 
fat compartments, with quantitative data to be included 
in all radiological reports. This solution is potentially able 
to improve the current standard of care with minimal 
additional cost to the healthcare system and almost no 
additional workload to physicians.

Various approaches with different AI algorithms have 
been proposed for the segmentation of abdominal fat 
compartments. The proposed algorithms, for both CT 
and MR, allow fast segmentation with accuracy similar or 
even higher with respect to manual segmentation, making 
the solutions applicable to clinical practice with a possible 
positive impact on patient’s health. Moreover, AI is able to 
provide a rapid whole abdomen assessment which can be 
more accurate and less variable with respect to single-slice 
approach for segmentation of VAT and SAT, especially in 
order to follow-up patients undergoing weight changes (71). 

Since individual body components are related to 
cardio-metabolic risks, the value of assessing VAT and 
SAT is not the only factor to be taken into account in risk 
assessment. Indeed, ectopic fat also can have a great impact 
on metabolism and inflammation. On this respect, AI-
derived algorithms to assess ectopic fat in the liver and the 
pancreas can also be of importance for cardio-metabolic risk 
assessment. 

A meta-analysis evaluating AI-assisted models for analysis 
of liver fibrosis and steatosis, reported only two studies on 
AI-assisted diagnosis of non-alcoholic fatty liver disease 
(NAFLD), with liver biopsy as gold standard (72-74). These 
two studies used ANN and CNN as AI models, on mixed 
and obese populations for calculating the amount of fat in 

the liver through the use of ultrasound, respectively (73,74). 
Although these two studies have shown high sensitivity 

and specificity, the method used for data acquisition does 
not allow for a correct quantification of VAT and SAT. 

To the best of our knowledge, AI-derived algorithms 
for quantification of ectopic fat in the pancreas through 
imaging were never explored up to date. 

“Functional body composition” is a new concept of 
body composition, integrating body components with 
regulatory systems. Adipose tissue and skeletal muscle 
mass are both determinants of energy consumption at rest. 
Imbalance between body components and function is linked 
to metabolic imbalance occurring in response to weight 
changes and variable diseases (75). Furthermore, the ratio 
between trunk SAT and VAT and the ratio of VAT (or SAT) 
and skeletal muscle mass (i.e., the so-called load-capacity 
model) it should be considered due to cardio-metabolic 
impact (76). 

Future developments

There is no doubt that the use of AI solutions geared 
to the quantification of body composition will increase 
progressively over the next few years. In terms of cardio-
metabolic risk assessment, it would be important to develop 
AI-derived algorithms that allow for quantification of 
fat in the liver and the pancreas together with analysis of 
functional body composition. In the context of precision 
medicine, future studied will validate AI algorithms geared 
to quantitative assessment of body tissues composition on 
CT and MR images, to obtain impactful information in 
terms of risk assessment, patient-tailored pre- and post-
treatment evaluation, and longitudinal follow-up, for 
multiple diseases including cardio-vascular and oncological. 

Conclusions

AI is quickly emerging as breakthrough innovation for 
abdominal fat quantitative analysis on CT and MR images, 
which in most of the cases are acquired for other purposes. 
Progressively improving algorithms hold the potential to 
extract quantitative data from existing images, allowing 
physicians to obtain important information with minimal 
additional cost to the healthcare system and almost no 
additional workload to physicians. 

This information can have an impact on several diseases, 
including cardiovascular and oncologic, in terms of risk, 
pathogenesis, clinical outcomes, response to treatments, and 
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complications, possibly improving the current standard of 
care.
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