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Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute res-
piratory syndrome coronavirus 2, poses a significant threat to public health 
worldwide, and diabetes is considered a risk factor for the rapid progression and 
poor prognosis of COVID-19. Limited immune function is a clinical feature of 
COVID-19 patients, and diabetes patients have defects in innate and adaptive 
immune functions, which may be an important reason for the rapid progression 
and poor prognosis of COVID-19 in patients with diabetes. We review the 
possible multiple effects of immune impairment in diabetic patients on the 
immune responses to COVID-19 to provide guidance for the diagnosis and 
treatment of diabetic patients with COVID-19.

Key Words: COVID-19; Diabetes; Immune function; SARS-CoV-2

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Diabetes is an important predictor of coronavirus disease 2019 (COVID-19) 
morbidity and mortality. The immune response impairment presented by diabetes 
mellitus (DM) may be among the underlying mechanisms of the association between 
diabetes and COVID-19. DM patients with uncontrolled hyperglycemia are more prone 
to develop severe COVID-19 due to T cell dysfunction. Therefore, DM is often 
associated with impaired innate and adaptive immune function, thus greatly increasing 
the risk of severe acute respiratory syndrome coronavirus 2 infection in DM patients.
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INTRODUCTION
The outbreak of coronavirus disease 2019 (COVID-19), which is caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has been declared a 
global pandemic. As of January 18, 2021, there were 93805612 COVID-19 cases and 
2026093 COVID-19-related deaths worldwide. Diabetes mellitus (DM) is an important 
risk factor for the occurrence and development of COVID-19 and has caused a heavy 
economic burden on global health[1,2]. Diabetic patients often have impaired immune 
function, which significantly increases the susceptibility of patients to respiratory tract, 
urinary tract, and soft tissue infections[3-5] and increases the risk of death caused by 
infection. Some studies have found that 10% to 18.3% of COVID-19 patients have 
diabetes[6,7], and the mortality rate among these patients is as high as 26.4%[6,7]. To 
further understand the role of the abnormal immune function of patients with diabetes 
in the development of COVID-19, we review the literature as follows (Table 1).

IMPAIRED INNATE IMMUNITY AGAINST COVID-19 IN PATIENTS WITH 
DIABETES
Impact of dendritic cells on COVID-19 in patients with diabetes
Dendritic cells (DCs) play unique roles as antigen-presenting cells in response to both 
bacterial and viral infections in diabetic patients, and poor control of diabetes and 
glucose metabolism leads to reduced numbers and abnormal function of DCs. Studies 
have shown that the percentage of mononuclear plasmacytogenic DCs (pDCs) in 
peripheral blood is significantly reduced in patients with recent-onset and long-term 
type 1 DM (T1DM)[8]. The relative numbers and absolute ratios of peripheral blood 
myeloid DC1s and pDCs were significantly lower in type 2 DM (T2DM) patients with 
poor metabolic control than in healthy subjects[9]. Women with T2DM with poor 
glycaemic control had fewer circulating pDCs than women with T2DM with good 
glycaemic control and healthy women. The study also found that tumour necrosis 
factor (TNF)-α production by healthy pDCs was significantly increased, suggesting 
that poor glycaemic control in patients with T2DM could lead to a decrease in the 
number of pDCs and their production of TNF-α[10]. It has been suggested that 
patients with obesity and COVID-19 have higher serum TNF-α concentrations and are 
more likely to develop acute respiratory distress syndrome (ARDS) and, even worsen, 
are more likely to die from COVID-19[11]. The number and function of circulating DCs 
are reduced in patients with T2DM and the complication of atherosclerosis, and the 
spontaneous secretion of interleukin (IL)-6 and TNF-α by monocytes and CD16+ DCs is 
also significantly reduced in these patients[12]. In addition to TNF-α, patients with 
T2DM have increased serum levels of TNF superfamily 14 (TNFSF14). TNFSF14 may 
exacerbate T2DM by reducing insulin secretion by pancreatic islet cells and promoting 
vascular inflammation. In a study of NK cell-DC interactions, activated NK cells 
induced DC maturation in a TNFSF14-dependent manner[13]. The study found that 
the serum TNFSF14 levels of hospitalized patients with COVID-19 were significantly 
higher than those in age- and sex-matched healthy controls. Among hospitalized 
patients over 60 years of age, the mortality rate was 82%, and the TNFSF14 levels were 
significantly higher in the patients who died than in those who survived[14], 
suggesting that increased TNFSF14 levels may in turn promote the maturation of DCs.

High glucose-induced DC maturation and apoptosis may be an important factor in 
the immunosuppression observed in COVID-19 patients. Studies have shown that 
high glucose can induce the secretion of the proinflammatory cytokines IL-6 and IL-12 
by human DCs, lead to the increased expression of CD86 and CD83 by DCs, promote 
the maturation of DCs, and increase the expression of the DC scavenging receptors SR-
A, CD36, and LOX-1, thus increasing the ability of DCs to absorb oxLDL[15]. 
Lipopolysaccharide (LPS) can induce DC maturation[16], while high glucose concen-
trations may promote the LPS-induced apoptosis of DCs by upregulating the 
expression of Bax and downregulating the expression of Akt, ERK, and Bcl-2[17]. 
Activation of the PI3K/Akt and ERK signalling pathways induced immunosup-
pression during infection with SARS-CoV-2, while further activation of this pathway 
induced DC apoptosis in patients with DM[17], which may be an important factor in 
the reduction in DCs in patients with DM with COVID-19.

The release of a large amount of interferon alpha subtype (IFN-α), which is an 
important proinflammatory factor, in patients with DM promotes COVID-19 
pneumonia-mediated injury. Infection induces DCs and other cells to produce large 
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Table 1 Impaired immunity against coronavirus disease 2019 in patients with diabetes

Type of immune 
response

Immune cell 
type Immune cell abnormalities that cause COVID-19 exacerbation in diabetes

Dendritic cells (1) Hyperglycemia promotes DC maturation and apoptosis[15-17]; (2) Reduction in quantity[17]; and (3) 
Abnormal function: IFN-α[18]

Macrophages (1) Macrophages accumulate in the lungs[26,29]; (2) Increased numbers of M1-type macrophages[29]; and (3) 
Macrophages may promote inflammatory storms and DIC of COVID-19[30]

Neutrophils (1) Neutrophils are more prone to NETosis in diabetes[34]; and (2) Diabetes may increase ACE2 expression, 
which mediates enhanced neutrophil infiltration[36,37]

NK cells NK cell levels increase but activity decreases and function abnormally in diabetes[41,42]

Innate immunity

NKT cells NKT cells were inversely associated with diabetes progression or COVID-19 severity[46]

B cells Changes in the number, phenotype, and function of B cells in diabetic patients may exacerbate the abnormal 
response to COVID-19[51]

Adaptive immunity

T cell The higher correlation between CD4 T cells and antibodies targeting the S1 domain of the spike protein leads to 
the worsening of COVID-19 in diabetes[53]

COVID-19: Coronavirus disease 2019; IFN-α: Interferon-alpha; ACE2: Angiotensin converting enzyme 2.

amounts of type I interferons, especially IFN-α, which can regulate the progression of 
autoimmune diabetes[18]. By sequencing on bronchoalveolar lavage (BAL) fluid from 
COVID-19 patients, the expression of proinflammatory genes (especially chemokine 
genes) was shown to be significantly increased in COVID-19 patients. SARS-CoV-2 
strongly induces the expression of a number of interferon-stimulating genes (ISGs), 
which lead to immunopathogenicity and are representative of the expression of genes 
involved in the hyperinflammatory response. Transcriptome data were also used to 
estimate the number of immune cells, and the results showed an increase in the 
numbers of activated DCs and neutrophils[19], suggesting that in patients with 
COVID-19 at this stage, the increased activation of DCs and the release of large 
amounts of IFN-α and other inflammatory mediators cause an excessive inflammatory 
response, which may be an important mechanism underlying COVID-19-induced lung 
injury.

Decreased DC counts and impaired IFN-1 secretion may be important mechanisms 
of immune escape by SARS-CoV-2. Human infectious pathogens activate the 
autoimmune regulation system and stimulate the release a series of cytokines to resist 
virus invasion and replication; among these cytokines, the most effective is IFN. pDCs 
are an important source of IFN-1 production[20], but pDC numbers are significantly 
reduced in patients with COVID-19. Therefore, although SARS-CoV-2 replicates more 
effectively in human lung tissue, it induces even less IFN-1 production than SARS-
CoV[21]. Therefore, the coronavirus may evade immune attack by decreasing the 
production of IFN-1 by pDCs, leading to the exacerbation of COVID-19. IFN inhibited 
viral replication by promoting the expression of some downstream ISGs (IFN-
stimulated genes). These genes include Mx1, PKR, OAS, IFITM, APOBEC1, TRIM, etc. 
Compared with other respiratory RNA viruses, SARS-CoV-2 is a poor inducer of the 
IFN-1 response in vitro and in animal models[22,23], and the serum levels of IFN-1 in 
patients with COVID-19 are significantly lower[24,25]. These results suggest that 
SARS-CoV-2 may escape the immune response caused by IFN-1.

Impact of macrophages on COVID-19 in DM patients
Increased numbers of M1-type macrophages in patients with diabetes may exacerbate 
lung injury in patients with COVID-19. The increase in the number of adipose tissue 
macrophages (ATMs) and the release of a large number of inflammatory cytokines are 
important mechanisms that mediate the development of obesity-related insulin 
resistance (IR) in T2DM patients[26]. ATMs exhibit two highly heterogeneous 
phenotypes, M1 or M2[27]. M1 macrophages are mainly induced by the Th1 signalling 
pathway, which involves LPS, IFN-γ, and other factors, and express high levels of 
inflammatory cytokines. M2 macrophages are induced by Th2 signalling, which 
involves factors such as IL-4 and IL-13, and are associated with anti-inflammatory 
responses. In addition to regulating the microenvironment in adipose tissue and 
controlling insulin sensitivity, M1/M2 ATMs also function in immune regulation[28].
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Macrophages and neutrophils are the main immune cell subsets involved in severe 
COVID-19. Cumulative data have shown a correlation between cytokine storms and 
the severity of COVID-19. The presence of immune cell subsets in BAL fluid was 
found to be correlated with COVID-19 disease severity. The presence of neutrophils 
and macrophage cluster-1 is a feature of severe COVID-19. Through genetic testing, 
IFITM2, IFITM1, H3F3B, SAT1, and S100A8 were found to be highly correlated with 
neutrophils, while in patients with severe COVID-19, CCL8, CCL3, CCL2, KLF6, and 
SPP1 were highly correlated with macrophage group-1. These data reveal the existence 
of neutrophils and macrophage cluster-1 as major immune cell subsets associated with 
severe COVID-19[29].

The severe form of COVID-19 is characterized by cytokine storm syndrome and 
disseminated intravascular coagulation (DIC). The hyperactivation of M1 macro-
phages with proinflammatory characteristics is related to aerobic glycolysis and causes 
monocytes, neutrophils, and platelets to be recruited from the blood to the lesion; 
these cells may play an important role in the excessive inflammatory response to 
COVID-19 and the process of DIC[30]. Activation of the prostaglandin E2 (PGE2) 
receptor EP4 alters the polarization of ATMs to the anti-inflammatory M2 phenotype, 
thereby inhibiting chronic inflammation. Studies have shown that activation of surface 
EP4 alters the inflammatory macrophages in the pancreas of patients with diabetes to 
inhibit islet inflammation and protect β-cell function[31]. SARS-CoV-2 causes an 
inflammatory storm, and multiple organs are affected, and this phenomenon may be 
related to the secretion of PGE2, which is involved in a variety of inflammatory and 
immune pathways. In addition, the association between PGE2 and thrombosis is very 
important. PGE2 can make platelets more sensitive to aggregation by reducing the 
activation threshold of platelets, which may be related to microthrombosis in patients 
with COVID-19[32]. Therefore, it is possible for the chronic inflammation in DM 
patients to be inhibited by activating EP4, but this condition may lead to an inflam-
matory storm and DIC in COVID-19 patients.

Impact of neutrophils on COVID-19 in patients with diabetes 
Neutrophils are the primary immune cells in mammals that fight pathogens, recognize 
and phagocytose microorganisms, and then kill pathogens through a combination of 
cytotoxic mechanisms. These mechanisms include the production of reactive oxygen 
species, the release of antimicrobial peptides, and the recently discovered release of 
their nuclear contents to form neutrophilic extracellular traps (NETs)[33], which are 
also involved in tissue injury healing. It has been reported that neutrophils isolated 
from humans and mice with T1 and T2DM produce NETs when activated (a process 
known as NETosis). The expression of peptide arginine deiminase 4 (PAD4, encoded 
by the Padi4 gene in mice), an enzyme that is important in chromatin densification, is 
increased in the neutrophils of diabetic patients. A large number of NETs were 
produced in the wounds of the skin excised from wild-type (WT) mice but not in the 
wounds of the skin excised from PADI4 (-/-) mice. Compared with WT mice, PADI4 (-
/-) mice healed faster, and diabetes did not impair wound healing. NETs impair 
wound healing, especially in diabetes, in which neutrophils are more prone to NETosis
[34]. It is speculated that the hyperglycaemic conditions in diabetes promote 
neutrophils to release NETs release though PAD4, which affects the repair of injured 
lungs and may be the mechanism by which DM promotes the COVID-19-induced 
inflammatory response and lung injury. In addition, neutrophil-derived S100 calcium-
binding protein A8/A9 (S100A8/A9) interacts with advanced glycosylation end 
product receptor (RAGE) on liver Kupffer cells during the hyperglycaemia response, 
resulting in increased IL-6 production and increased inflammatory platelet 
production, which may be associated with increased microthrombosis in COVID-19 
patients. During hyperglycaemia, neutrophil-derived S100 calcium-binding protein 
A8/A9 (S100A8/A9) interacts with advanced glycosylation end product receptor 
(RAGE) on liver Kupffer cells, resulting in increased IL-6 production and increased 
inflammatory platelets, which may be associated with increased microthrombosis in 
COVID-19[35]. Angiotensin converting enzyme 2 (ACE2) is a receptor that SARS-CoV-
2 binds to in order to gain cellular access, and high expression of ACE2 may increase 
susceptibility to infection. Loss of ACE2 may contribute to the severity of ARDS 
during COVID-19 by increasing angiotensin II-mediated vascular permeability, 
pulmonary oedema, and neutrophilic infiltration[36,37]. Some studies have found that 
DM and its related characteristics may increase the expression of ACE2[38], so patients 
with both COVID-19 and DM may have a worse prognosis.



Lu ZH et al. Immune impairment caused by diabetes in COVID-19

WJCC https://www.wjgnet.com 6973 August 26, 2021 Volume 9 Issue 24

Impact of NK cells on COVID-19 in patients with diabetes 
T1DM is characterized by the immune-mediated progressive destruction of pancreatic 
cells. NK cells have the ability to kill target cells and interact with antigen-presenting 
cells and T cells. It has been suggested that NK cells may be involved in one or more of 
the immune-mediated attacks that lead to T1DM[39]. NOD mice with autoimmune 
diabetes show a high frequency of iNKT17 cells, which are involved in the develo-
pment of the disease[40]. Chronic immune activation and hyperglycaemia are 
hallmarks of T2DM, and a dysregulated NK cell response is associated with an 
increased risk of cardiovascular disease in patients with T2DM. A meta-analysis 
showed that NK cell levels were significantly elevated in adult patients with T2DM
[41]. Kim et al[42] measured NK cell activity by detecting the level of interferon-γ 
secreted by circulating NK cells in T2DM patients and found that the NK cell activity 
in T2DM patients was lower than that in patients with prediabetes and those with 
normal glucose tolerance. In patients with T2DM, NK cell activity was significantly 
negatively linear with fasting blood glucose, glycated haemoglobin, and post-2-h 
blood glucose levels[42]. Berrou et al[43] showed that the NK cell-activating receptors 
NKG2D and NKP46 were lacking in patients with T2DM, and the expression level of 
NKG2D was negatively correlated with the level of HbA1c, suggesting that chronic 
hyperglycaemia may lead to NK cell dysfunction[43]. The NK cell count and 
percentage were significantly decreased in patients with severe COVID-19. The 
number of cytotoxic CD3-CD56dim CD16+ cells was significantly decreased in patients 
with severe COVID-19, while the number of some CD3-CD56dim CD16- cell types was 
significantly increased. More importantly, the expression of CD244, programmed 
death-1, and other regulatory molecules on NK cells and T cells in the peripheral blood 
of COVID-19 patients was increased, while the expression of cytotoxic effector 
molecules, such as perforin and granulosin A, in the serum was decreased. The serum 
levels of IL-6, IL-10, and TNF-α were increased significantly in severe patients. By 
Lasso logistic regression analysis, CD3-CD56dim CD16- cells were identified as the 
influencing factor leading to severe disease[44]. Therefore, the functional failure of NK 
cells and T cells and the changes in other subsets may be related to the progression 
and prognosis of COVID-19.

Impact of NKT cells on COVID-19 in patients with diabetes 
T1DM is an autoimmune disease caused by the T cell-mediated destruction of insulin-
producing beta cells. iNKT cells induced pDCs to produce TGF-β in pancreatic lymph 
nodes in both virus-induced and spontaneous mouse T1DM models. These tolerant 
pDCs transform naive anti-islet T cells into Foxp3(+) CD4(+) regulatory T cells (Treg 
cells). These cells are then recruited to the islets to secrete TGF-β, which inhibits the 
activity of the virus- and islet-specific CD8(+) T cells, thus preventing T1DM 
development[45]. These findings suggest an important collaboration between NKT 
cells, PDCs, and Treg cells in the prevention of T1DM through viral infection. 
Zingaropoli et al[46] analyzed the characteristics of the T, NK, and NKT cells in the 
peripheral blood of patients with COVID-19, and the study showed that the 
proportion of CD57+ and CD56dim NK cells was higher in patients with COVID-19, 
while the proportion of NKT and CD56Bright cells was lower. In the severe group, the 
percentage of NKT cells was significantly lower. NKT cells were independently 
correlated with the severity of COVID-19[46].

IMPAIRMENT OF ADAPTIVE IMMUNITY AGAINST COVID-19 IN DM
Impact of B cells on COVID-19 in patients with DM 
Patients with COVID-19 have had different clinical outcomes, and studies of 
neutralizing antibodies have shown rapid antigen-specific responses in severely ill 
patients and strong virus-specific responses capable of neutralizing the virus in vitro in 
patients recovering from COVID-19[47,48]. The rapid attenuation of anti-SARS-CoV-2-
specific antibodies is characteristic of mild COVID-19[49]. These findings strongly 
suggest that there are important differences in the nature and regulation of effector B 
cell responses associated with mild and severe COVID-19. Patients with T2DM have 
disease-associated changes in B cell function, and B cells are associated with 
promoting systemic inflammation, inflammatory B cell and T cell cytokines, adipose 
tissue inflammation, and IR in diabetic mice[50]. The loss of islet autoantibodies and 
the significant changes in B cell phenotype and function in T1DM islet cells compared 
to healthy donor islet cells were correlated with higher CD95 expression in T1DM B 
cells[51]. Changes in the number, phenotype, and function of B cells in DM patients 



Lu ZH et al. Immune impairment caused by diabetes in COVID-19

WJCC https://www.wjgnet.com 6974 August 26, 2021 Volume 9 Issue 24

may exacerbate the abnormal response to COVID-19 and the difference in the 
production of anti-SARS-CoV-2-specific antibodies, which may be responsible for the 
same clinical outcome in clinical patients. This phenomenon also suggests that 
COVID-19 immunotherapy targeting B cells may offer hope for a successful cure. In a 
study of convalescent plasma therapy in B cell-depleted patients with protracted 
COVID-19, it was found that convalescent plasma may contain large amounts of anti-
SARS-CoV-2 antibodies produced by B cells, 90% of patients showed improvement in 
clinical symptoms after blood transfusion, inflammation syndrome was relieved 
within 48 h, and SARS-CoV-2 RNAemia decreased to levels below the sensitivity 
threshold within 1 wk[52].

T cell immune response in patients with diabetes exacerbates COVID-19
Studies have shown that comorbidities such as DM and obesity alter the CD4+ T 
immune response to SARS-CoV-2. The magnitude and functional breadth of virus-
specific CD4 T cells and antibody responses continued to be higher in hospitalized 
subjects, especially in those with diabetes. However, there was a higher correlation 
between polyfunctional CD4 T cells and antibodies targeting the S1 domain of the 
spike protein among subjects who were not hospitalized, and this inflammatory 
response was reduced in patients with conditions, such as diabetes, with known risk 
factors for severe COVID-19[53]. This suggests that DM may play a greater role in 
severe COVID-19 by altering the immune function of CD4+ T cells. In a study of the 
phenotype of SARS-CoV-2-specific T cells in patients with COVID-19 acute respiratory 
distress syndrome, the strongest T cell responses targeted the spike (S) surface 
glycoprotein, and SARS-CoV-2-specific T cells predominantly produced effector and 
Th1 cytokines[54]. A study showed spike-reactive CD4+ T cells in 83% of COVID-19 
patients[55]. Cell binding and entry of β-coronavirus occur via its surface spiking 
glycoprotein; SARS-CoV binds to metalloproteinase ACE2, and Middle East 
respiratory syndrome coronavirus uses dipeptidyl peptidase 4 (DPP4)[56]. Recent 
modelling of the structure of the spike glycoprotein of SARS-CoV-2 predicted that it 
could interact with human DPP4 in addition to ACE2. DPP4 is a surface T cell-
activated antigen that plays an important role in glucose metabolism through the 
truncation and inactivation of the N-terminus of enterotropin glucagon-like peptide-1 
and gastric suppressor protein[57], and its inhibitors have been used in the treatment 
of T2DM. However, the upregulation of DPP4 in COVID-19 comorbidity may be a 
determinant of the severity of COVID-19 disease, and it is speculated that DPP4 
treatment may block the invasion of SARS-CoV-2 virus. Patients with diabetes with 
uncontrolled glucose levels are more prone to develop severe COVID-19 due to T cell 
dysfunction[58]. SARS-CoV-2 infection triggers mitochondrial ROS production, which 
induces the translocation of hypoxia-inducible factor-1alpha (HIF-1α) and 
consequently promotes glycolysis. HIF-1α-induced changes in monocyte metabolism 
during SARS-CoV-2 infection directly inhibit the T cell response and reduce epithelial 
cell survival[58]. Therefore, DM may be the key to the establishment of an adaptive 
immune response and impaired immune memory during SARS-CoV-2 infection due 
to the effects of T cell function impairment.

CONCLUSION
DM is often associated with impaired innate and adaptive immune function, thus 
greatly increasing the risk of COVID-19 infection in DM patients. The information 
reviewed in this paper aims to provide guidance for the diagnosis and treatment of 
COVID-19 and DM comorbidity as well as underscores the need for further research 
on the mechanisms underlying the disordered immune cell function. Moreover, we 
hope it might further contribute to the development of appropriate immunotherapies.
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