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Abstract

A major sex difference in Alzheimer’s disease (AD) is that men with the disease die earlier 

than do women. In aging and preclinical AD, men also show more cognitive deficits. Here, we 

show that the X chromosome affects AD-related vulnerability in mice expressing the human 

amyloid precursor protein (hAPP), a model of AD. XY-hAPP mice genetically modified to 

develop testicles or ovaries showed worse mortality and deficits than did XX-hAPP mice with 

either gonad, indicating a sex chromosome effect. To dissect whether the absence of a second 

X chromosome or the presence of a Y chromosome conferred a disadvantage on male mice, 

we varied sex chromosome dosage. With or without a Y chromosome, hAPP mice with one 

X chromosome showed worse mortality and deficits than did those with two X chromosomes. 

Thus, adding a second X chromosome conferred resilience to XY males and XO females. In 

addition, the Y chromosome, its sex-determining region Y gene (Sry), or testicular development 

modified mortality in hAPP mice with one X chromosome such that XY males with testicles 

survived longer than did XY or XO females with ovaries. Furthermore, a second X chromosome 

conferred resilience potentially through the candidate gene Kdm6a, which does not undergo X

linked inactivation. In humans, genetic variation in KDM6A was linked to higher brain expression 

and associated with less cognitive decline in aging and preclinical AD, suggesting its relevance 

to human brain health. Our study suggests a potential role for sex chromosomes in modulating 

disease vulnerability related to AD.
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INTRODUCTION

The expansion of translational neuroscience to investigate sex differences and their 

mechanistic underpinnings is of major consequence to human health (1). Understanding 

what makes one sex more vulnerable (or resilient) to aging and disease unravels new 

pathways to target with treatments that could benefit both sexes.

Alzheimer’s disease (AD) is the most common neurodegenerative condition and a global 

health threat. In the absence of effective medical treatments, more than 50 million men and 

women worldwide will suffer from this devastating condition by 2050 (2). The burdens of 

the disease combined with failed clinical trials (3) warrant a deeper understanding of the 

heterogeneous nature of AD, with the goal of developing better therapies.

Being male or female, defined here as harboring a different sex chromosome complement 

(XY versus XX), is an understudied biologic variable that contributes heterogeneity to AD. 

Sex differences in AD reveal differing vulnerabilities in men and women (4, 5). Many 

more women have AD, largely due to their longevity (6) as they live to advanced ages, 

when AD risk and incidence is highest. In contrast, men with the disease die earlier in 

populations worldwide, indicating a male disadvantage with early-onset (7-9) and late-onset 

(10, 11) subtypes of AD. Furthermore, in aging and preclinical AD before the age of 

85 years, men show worse cognition (12), more cognitive decline (13-15), and increased 

measures of neurodegeneration (16), despite similar deposition of amyloid and tau (15, 17), 

the pathological hallmarks of AD. This could underlie higher prevalence (18) and earlier 

onset of mild cognitive impairment (MCI) in men compared to women in some populations 

(19, 20). Here, we assess sex-biased mortality in AD by meta-analysis, investigate whether 

sex chromosomes affect vulnerability in a mouse model of AD, and test whether an X 

chromosome gene influences cognition in this mouse model.

RESULTS

Male sex and increased mortality in AD and the hAPP mouse model

We conducted a meta-analysis of data collected on mortality in human populations 

worldwide. Only longitudinal studies that defined the time variable as age of disease onset 

or duration of disease after onset were included; cross-sectional studies were excluded. 

Our meta-analysis showed that male sex increased risk for death in AD by 62% compared 

to female sex [male hazard ratio (HR) 1.63, CI 1.45 to 1.84, P < 0.0001; Fig. 1]. We 

then examined mortality in transgenic mice that expressed mutated forms of the human 

amyloid precursor protein (hAPP) (line J20) (21) and exhibited premature death, cognitive 

impairments, and pathological markers of the disease. Male hAPP mice died significantly 

earlier than did female hAPP mice on two genetic backgrounds, C57BL6/J (P < 0.001; Fig. 

2A) and a mixed F1 generation of C57BL6/J crossed with FVB/N (P < 0.05; fig. S1).

Men and women undergo depletion of circulating gonadal hormones with aging (22-24), 

but mice do not (fig. S2) (25, 26). Because AD is a disease of aging, we simulated human 

reproductive aging in male and female nontransgenic and hAPP mice by gonadectomy 

to deplete circulating hormones (Fig. 2B) and assessed survival in gonadectomized male 
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and female hAPP mice. Male hAPP mice still died significantly faster than did female 

mice (P < 0.05; Fig. 2C). We explored whether hAPP mice showed a sex difference in 

cognitive functions independent of gonadal hormones. To reduce confounders, equalize 

hormones between sexes, and model reproductive aging of humans, we gonadectomized all 

nontransgenic and hAPP mice.

Male sex increases cognitive and molecular deficits in hAPP mice

We tested spatial learning and memory of gonadectomized mice in the Morris water maze 

and found that hAPP mice were impaired (P < 0.05; Fig. 2D). However, male hAPP 

mice traveled significantly longer distances to find the hidden platform than did females, 

indicating poorer learning capacity (P < 0.05; Fig. 2D). In a probe trial, male hAPP mice 

lacked memory retention, in contrast to all other groups (Fig. 2E). All mice located the target 

platform equally well when visible (Fig. 2D), and male and female mice within each group 

swam at equal speeds, although hAPP mice overall swam marginally slower (P < 0.001; fig. 

S3A).

In passive avoidance testing, which measures hippocampus- and amygdala-dependent fear 

memory, male hAPP mice, but not females, quickly reentered the dark chamber where they 

received a shock during training (P < 0.05; Fig. 2F). Male hAPP mice, but not females, lost 

the fear memory (P < 0.05; Fig. 2, G and H). Male vulnerability to deficits was significant 

with gonadectomy at young, middle, or old life stage (P < 0.05 to P < 0.001; fig. S4), 

across a range of cognitive and behavioral tasks (P < 0.05 to P < 0.001; fig. S4), and in 

an independent transgenic line of hAPP mice, hAPP-J9, which showed milder deficits (P < 

0.05; fig. S5) (21, 27, 28).

Male hAPP mice showed significantly decreased expression of the neuronal activity–related 

protein calbindin (P < 0.05; Fig. 2I) in the hippocampus. Male and female hAPP mice did 

not differ in soluble β-amyloid (Aβ) (Fig. 2J) or protein expression of hAPP, total tau, and 

phospho-tau in the hippocampus (figs. S6, A to D, and S7) when cognitive and behavioral 

deficits had emerged (3 to 4 months). They also did not differ in amyloid plaque deposition 

(Fig. 2, K and L, and fig. S8) during middle age (14.5 to 15 months); however, females 

tended to show more plaques at a very old age (24 to 27 months) (fig. S9) as previously 

observed (29), despite decreased behavioral deficits compared to males.

We examined hAPP mRNA expression in the presence and absence of gonads and found 

that hAPP mRNA expression was equivalent across the experimental groups (fig. S10). 

Therefore, any unintentional gonadal hormone influences at the promoter of hAPP-J20 mice 

were not observed, a critical measure when directly comparing sexes in transgenic disease 

models.

Sex chromosomes mediate increased male vulnerability in hAPP mice

To dissect the etiology of male disadvantage related to AD after gonadectomy, we examined 

Four Core Genotype (FCG) (30, 31) mice. In normal mice and humans, the Sry gene on the 

Y chromosome encodes a protein that initiates development of testes followed by perinatal 

masculinization of the body and brain (32). In the FCG mouse model, Sry is transposed 

onto an autosome from the Y chromosome. This genetic manipulation enables generation 
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of XX and XY mice, each with either female ovarian (F, −Sry) or male testicular (M, 

+Sry) development: XX(F) ovaries, XX(M) testes, XY(F) ovaries, and XY(M) testes. A sex 

difference that varies by gonads is gonadal sex–mediated; one that varies by chromosome 

complement is sex chromosome–mediated (Fig. 3A).

We crossed FCG mice with hAPP mice to produce eight genotypes that included the four 

sex genotypes with or without hAPP (Fig. 3B). After sexual differentiation and reproductive 

maturity, we gonadectomized mice and assessed survival, cognition, and biochemical 

markers (Fig. 3C). XY-hAPP mice sexually differentiated as either male (M, testicular 

phenotype, +Sry) or female (F, ovarian phenotype, −Sry) died faster than did XX-hAPP 

mice of either gonadal phenotype (Fig. 3, D to F). In addition to the main effect of sex 

chromosomes, sex chromosomes interacted with gonadal phenotype in XY-hAPP mice. That 

is, XY-hAPP males (+Sry) survived longer than XY-hAPP females (−Sry) (P < 0.05; Fig. 

3G), an effect not observed in XX-hAPP mice.

To determine whether sex chromosomes mediate male vulnerability to Aβ-related cognitive 

deficits, we tested mice in the Morris water maze. In finding the hidden platform, male 

or female XY-hAPP mice showed significantly worse learning than did male or female 

XX-hAPP mice (P < 0.01; Fig. 3, H and I, and fig. S11A). In contrast, all nontransgenic 

mice without hAPP learned similarly (Fig. 3, H and I, and fig. S11A). In a probe trial, 

XY-hAPP mice lacked memory retention (Fig. 3, J and K, and fig. S11B), whereas all 

XX (nontransgenic and hAPP) mice remembered, regardless of being male or female (P < 

0.05; Fig. 3J and fig. S11B). All mice swam at equal speeds and located a visible target 

platform equally (fig. S3, B and C). In passive avoidance testing, male or female XY-hAPP 

mice showed significantly worse fear memory than did male or female XX-hAPP and 

nontransgenic mice (P < 0.001 and P < 0.01, respectively; fig. S12). As in non-FCG hAPP 

mice, male or female XX and XY mice did not differ in the amount of soluble Aβ in the 

hippocampus (fig. S6E) at the age of cognitive and behavioral testing.

A second X chromosome confers resilience to AD-related vulnerability in XY (male) and 
XO (female) hAPP mice

To further dissect causes of the sex chromosomal effects, we determined whether the 

presence of a Y or the lack of a second X chromosome conferred male disadvantage 

in hAPP mice. We investigated the XY* model (33, 34) of sex chromosomal biology in 

mice with and without hAPP. The Y* chromosome in XY* males contains an altered 

pseudoautosomal region that recombines abnormally with the X chromosome during 

meiosis. Progeny of XY* males crossed with XX females include four sex genotypes 

roughly equivalent to the following: XX and XO mice with ovaries and XY and XXY 

mice with testes. A sexual dimorphism that varies by the presence or absence of a Y is 

Y chromosome–mediated; one that varies by the presence of one versus two X’s is X 

chromosome–mediated (Fig. 4A).

We crossed XY* males with hAPP females to produce eight genotypes of mice exhibiting 

varying dosages of X and Y chromosomes, with or without hAPP (Fig. 4B). We 

gonadectomized mice and then assessed survival, cognition, and biochemistry (Fig. 4C). 

Mice with one X chromosome (XY-hAPP and XO-hAPP) died significantly faster than 
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did those with two X chromosomes (XX-hAPP and XXY-hAPP) (P < 0.01; Fig. 4, D 

to F). Therefore, the addition of an X chromosome to XY-hAPP mice prevented male 

vulnerability, extending survival to that observed in XX-hAPP females. In addition to the 

main effect of X dose (P < 0.01; Fig. 4E), but not of Y (Fig. 4F), the Y interacted with the X; 

that is, XY-hAPP mice survived longer than XO-hAPP mice (P < 0.01; Fig. 4G).

We then tested whether the addition of an X to XY-hAPP mice reduced male vulnerability to 

cognitive deficits in the passive avoidance task (Fig. 4, H to J). Both male and female hAPP 

mice with one X chromosome (XY-hAPP and XO-hAPP) showed significant forgetting of 

fear memory (P < 0.05; Fig. 4, H to J), whereas those with two X chromosomes (XX-hAPP 

and XXY-hAPP) did not forget (Fig. 4, H to J). In contrast, all mice without hAPP had 

comparable and robust fear memory. As in FCG-hAPP mice, XY*-hAPP mice with 1X or 

2X chromosomes did not differ in the amount of soluble Aβ in the hippocampus (fig. S6F). 

Thus, although hAPP mice with 1X or 2X chromosomes had comparable amounts of Aβ, 

hAPP mice with 2X chromosomes were less impaired.

A second X chromosome elevates Kdm6a expression independent of gonadal phenotype 
or the Y chromosome

We sought to understand how a second X chromosome could confer resilience, because 

XY and XX mice express only one active X due to X-chromosome inactivation in females. 

Whereas X-chromosome inactivation silences one X chromosome in mammalian XX cells, 

a small subset of X-linked genes escape X-chromosome inactivation and show transcription 

from both alleles, leading to higher expression in females (35-38). Of those, we focused on 

the gene lysine-specific demethylase 6a (Kdm6a; also known as Utx) encoding an H3K27 

demethylase that consistently escapes X-chromosome inactivation in both mice and humans 

(39, 40). Loss-of-function mutations in KDM6A cause cognitive deficits in humans (41-46), 

and Kdm6a plays a post-developmental role in mouse synaptic plasticity and cognition (47).

We therefore examined Kdm6a expression in mouse brains. We first confirmed that Kdm6a 
escaped X-chromosome inactivation in the XX mouse brain through RNA fluorescence 

in situ hybridization (RNA FISH) (48) in mouse primary cortical neurons. Isolated 

XX neuronal nuclei with Xist RNA coating the inactive X chromosome, indicating X

chromosome inactivation, showed Kdm6a labeling at two sites, marking its transcription 

from both the active and inactive X chromosomes (Fig. 5A). In contrast, XY neurons 

showed only one site for transcription (Fig. 5A). Immunolabeling of Kdm6a protein in the 

adult hippocampus of XX and XY mice with a well-characterized antibody (49) showed a 

largely neuronal cytoplasmic staining pattern that was diffuse in both XX and XY mouse 

brains (Fig. 5B).

We assessed whether two X chromosomes increased expression of Kdm6a protein and 

mRNA in mouse hippocampus. Kdm6a protein expression was significantly higher in XX 

mice than in XY mice as measured by two antibodies (P < 0.05; Fig. 5, C and D). To 

determine whether the second X chromosome primarily governed higher expression, we 

assessed Kdm6a mRNA in FCG and XY* mice. As anticipated (50, 51), hippocampal 

Kdm6a was significantly elevated in XX mice with testes and ovaries (P < 0.001; Fig. 5E). 
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The presence of neither hAPP nor the Y chromosome altered this primary X-chromosome 

effect (Fig. 5F).

KDM6A expression is elevated in the brains of women, and KDM6A genetic variation in 
humans associates with cognitive resilience

We explored whether KDM6A mRNA expression was altered by sex in the brains of 

individuals with and without AD. We queried gene expression from a public dataset (GSE 

15222; tables S1 and S2) accounting for age, postmortem interval, and sex. KDM6A 
expression was significantly higher in pathologically confirmed AD cases relative to controls 

in the temporal cortex, an area affected in early AD (P = 3.64 × 10−4; Fig. 6A). This 

increase was independently confirmed in two other public datasets of human postmortem 

gene expression in the temporal cortex, parahippocampal gyrus, and superior temporal gyrus 

(tables S1 and S3). In contrast, regions typically affected later or spared in AD such as the 

cerebellum showed no changes (tables S1 to S3). We then assessed KDM6A expression 

in brains of individuals identified as male or female in the GSE 15222 dataset. KDM6A 
expression was higher in females with (P = 4.83 × 10−4; Fig. 6B) and without AD (P = 9.79 

× 10−4; Fig. 6B).

We then queried whether KDM6A expression, by proxy of a genetic variation, was 

associated with cognitive change over time. Using the Genotype-Tissue Expression project 

(GTEx) online portal of gene expression across tissues of nearly 1000 individuals (52), we 

searched for common variants associated with altered expression of KDM6A. The minor 

allele of one genetic variant, rs12845057, was associated with increased expression of 

KDM6A in the brain (P = 7.0 × 10−6). Frequency of the minor allele (A) is about 14% 

globally and 7% in Europeans (53). To test associations between the KDM6A variant and 

cognitive change, we queried the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

dataset derived from a multisite study of individuals with both whole-genome sequencing 

and serial neuropsychological examinations (n = 778) that is enriched for individuals with 

MCI, a transition phase to AD. The minor allele was distributed equally among categories of 

cognitively normal (n = 268), MCI (n = 465), and AD (n = 45) individuals, indicating that 

it did not associate with disease risk (cohort demographics; table S4). Next, we used linear 

mixed-effects regression models to test for an association between the minor allele A of 

the KDM6A variant and cognitive change, accounting for baseline age, sex, education, and 

APOEε4 dose. Increasing dose of the minor allele of the KDM6A variant was significantly 

associated with less cognitive decline over time using the Mini-Mental State Examination 

(MMSE) (β = 0.141, SE 0.035, P = 0.00005; Fig. 6C). This finding was consistent in another 

cognitive measure using the Alzheimer’s Disease Assessment Scale (ADAS-cog) in overall 

function using the clinical dementia rating sum of boxes score (CDR), when assessing 

women only in all measures (fig. S13), and when assessing cognition in cognitively normal 

and in MCI individuals as subgroups (table S5).

Kdm6a knockdown in XX mouse neurons worsens, whereas Kdm6a overexpression in XY 
neurons attenuates Aβ toxicity in vitro

We next turned to experiments with primary wild-type mouse neurons exposed to 

recombinant Aβ1-42. The Aβ preparation was enriched for oligomers during the 
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experimental time frame, based on our previous characterization (54). XY mouse neurons 

were more vulnerable to Aβ-induced toxicity, in a dose-dependent manner, compared to 

XX neurons, using both the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) assay (P < 0.001; Fig. 7A) and the lactate dehydrogenase (LDH) assay (P < 0.01; 

fig. S14). In parallel with in vivo findings, neurons derived from XY* mice with one X 

chromosome (XY and XO) were significantly more vulnerable to Aβ toxicity than those 

with two X chromosomes (XX and XXY) (P < 0.001; Fig. 7, B and C). The protective effect 

of two X chromosomes was decreased by the Y chromosome (P < 0.05; Fig. 7B), indicating 

an X:Y interaction.

Given that Kdm6a escapes X-chromosome inactivation in XX mouse neurons and is 

increased in XX compared to XY mouse brains, we tested directly whether Kdm6a 
modulates neuronal susceptibility to Aβ toxicity in vitro. In XX mouse neurons, we 

decreased Kdm6a expression (P < 0.01; Fig. 7, D and E) to that found in XY neurons via 

lentivirus-mediated knockdown. Knockdown of Kdm6a in XX mouse neurons significantly 

worsened dose-dependent Aβ toxicity (P < 0.01; Fig. 7F) to a range observed in XY 

neurons. In XY mouse neurons, we increased Kdm6a expression to that found in XX 

neurons or higher (P < 0.01; Fig. 7, D and G) via lentivirus-mediated overexpression. 

Overexpression of Kdm6a in XY mouse neurons significantly attenuated dose-dependent Aβ 
toxicity (P < 0.001; Fig. 7H) to a range observed in XX neurons.

Kdm6a attenuates male vulnerability to cognitive impairments in XY-hAPP mice

We next determined whether increasing expression of Kdm6a attenuated male vulnerability 

to cognitive deficits in XY-hAPP mice. We gonadectomized XY nontransgenic and hAPP 

mice, injected lentivirus with (Kdm6A-OE) or without (control) the Kdm6a transgene 

bilaterally into the dentate gyrus, a region that affects spatial learning and memory, and 

analyzed mice behaviorally 1 month later (Fig. 8A). Lentiviral-mediated overexpression of 

Kdm6a in XY males increased Kdm6a mRNA expression in the dentate gyrus (P < 0.05; 

Fig. 8B) to that expected in XX females. In finding the hidden platform of the Morris water 

maze, XY-hAPP-Kdm6a-OE mice showed significantly better performance than XY-hAPP 

control mice measured by latency (P < 0.001; Fig. 8C) and learning (P < 0.05; Fig. 8D), 

quantified by comparing the last day of training to the first. Similarly, XY-hAPP-Kdm6a-OE 

mice showed significantly better learning than did XY-hAPP control mice measured by 

distance (P < 0.001; Fig. 8, E and F), although distance curves did not statistically differ. In a 

probe trial, XY-hAPP-Kdm6A-OE mice showed robust spatial memory retention, compared 

to XY-hAPP control mice (P < 0.01; Fig. 8, G and H) performing similarly to unimpaired 

nontransgenic mice. With the visible platform, hAPP mice swam marginally faster with 

longer distance than did nontransgenic mice; however, overexpression of Kdm6a did not 

alter either measure in either genotype (fig. S3, D and E). Further, increasing Kdm6a 
expression in XY mice did not alter hAPP-induced hyperactivity in the open field task and 

increased time spent in open arms in the elevated plus maze in hAPP mice (fig. S15).
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DISCUSSION

Our data suggest a role for sex chromosomes in mice in countering deficits and toxicity 

related to AD in both sexes. A second X chromosome decreased mortality and brain 

dysfunction in gonadectomized male and female hAPP mice, without altering soluble 

Aβ or co-pathogenic proteins. A second X chromosome conferred resilience, in part, 

through the candidate gene Kdm6a, a histone demethylase gene that escapes X-chromosome 

inactivation, causing higher expression in cells with two X’s compared to one X. Genetic 

variation of KDM6A linked to its increased brain expression was associated with slower 

cognitive decline in an aging population of individuals, including those with MCI.

Dissection of sex differences and their mechanistic underpinnings with powerful genetic 

tools provides opportunities to understand disease and unravel new sex-based pathways 

(55). Male sex is a major, underappreciated risk factor for rapid progression to death in 

AD (7-11), as confirmed by our meta-analysis (Fig. 1), and in other neurodegenerative 

conditions (56-59). These findings do not contradict the fact that more women have AD due 

to their longevity (6) and their increased risk or incidence after age 85 (4, 5, 12, 60), which 

together contribute to a higher lifetime risk of AD in women compared to men (61). When 

men get AD, they die faster (7-11). The male brain may be biologically older and more 

vulnerable, an idea supported by epigenetic (62) and metabolic studies (63) of humans.

In aging and preclinical AD, male sex may increase the likelihood of abnormalities favoring 

transition to clinical dementia. Men show worse memory function (12) and cognitive decline 

than do women (13-15), implying less compensation for similar subclinical brain pathology 

measured by positron emission tomography imaging of amyloid (12, 15). In studies of AD 

biomarkers (64), men show increased neurodegeneration (16, 17), a precursor for dementia. 

These findings could underlie earlier onset and increased incidence or prevalence of MCI 

observed in men from many (19, 20, 65-67), although not all (68-70), populations.

Recent studies of aging and AD [reviewed in (4)] indicate similar amyloid amounts in the 

brain (12, 15, 17, 71, 72) and cerebrospinal fluid (CSF) (71) of men and women, similar 

overall tau burden (73), but increased CSF and regional tau in women with high amyloid 

(71, 73). Likewise, AD pathology is similar between the sexes, up until older ages (72), 

when both pathology and risk of AD increases in women. Each sex may respond differently 

to comparable amounts of pathogenic proteins, a possibility observed in mice (74), which 

may explain why with similar tau loads, men show less neuro-structural preservation (75) 

and more cognitive impairment (76).

Congruent with human observations, soluble Aβ and amyloid deposition were similar 

between the sexes in our mice until very old age and did not explain male vulnerability 

at the neuronal or cognitive level. Other AD mouse models show very high amounts of Aβ 
with increased mortality in female mice (77-80) and are thus incongruent with our mouse 

findings. Given that no single model of AD fully recapitulates human AD, a disease with 

a wide clinical spectrum, we conducted cellular viability, cognitive, behavioral, synaptic, 

and mortality studies that collectively showed worse outcomes in primary neurons and 

gonadectomized male mice, a sex bias that persisted in our hAPP mice regardless of age 
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at hormone depletion, mouse strain, or genetic background. Our mouse studies focused on 

hAPP/Aβ-dependent abnormalities, representing a specific component of AD, a complex 

disease comprising multiple pathogenic proteins and risk factors.

We used gonadectomy to equate gonadal hormones between the sexes and simulate human 

reproductive aging, an approach distinctly different from previous studies of sex in AD

related models [reviewed in (81)]. Gonadectomy enables direct comparison of the sexes 

without confounding due to activational (short-acting) effects of ovarian and testicular 

hormones. This is of value, because ovarian hormones modulate Aβ, network dysfunction, 

and cognitive deficits in female hAPP mice (82, 83). Our experiments did not test the 

activational effects of hormonal treatments [reviewed in (82, 83)].

Sex chromosomes largely governed sex differences in vulnerability to mortality, cognitive 

dysfunction, molecular impairments, and cellular dysfunction in the FCG-hAPP mouse 

model. The XY genotype in hAPP mice that developed with ovaries or testes worsened 

measures, compared to the XX genotype that developed with ovaries or testes. Similarly, 

we recently found that sex chromosomes influenced mortality in mice during normal aging 

(84), suggesting action on fundamental pathways converging in aging and disease. The lack 

of a second X chromosome, rather than the presence of a Y chromosome, caused male 

disadvantage in animal and cellular models of AD in the XY* model. The presence of only 

one X chromosome (in XO females and XY males) consistently worsened hAPP/Aβ-related 

mortality, cognitive deficits, and cellular viability in both males and females, compared 

to two X chromosomes (in XX females and XXY males). The Y chromosome, the Y 

chromosome gene Sry, testes, or some combination of these decreased mortality in hAPP 

mice with one but not two X chromosomes. XY-hAPP males (+Sry) survived longer than did 

XY-hAPP females (−Sry) or XO-hAPP females (−Sry), indicating a potential protective role 

of the Sry protein or of testicular development itself in the XY, but not XX, genotype. Given 

that the X and Y chromosomes share homologous genes in pseudoautosomal regions, select 

Y genes may partially compensate for the lack of a second X chromosome.

Many factors influencing neural function reside on the X chromosome (85). Two X 

chromosomes could confer neural advantage through increased X dose arising from baseline 

escape of the inactive X chromosome. Whereas XY and XX organisms express one active 

X due to X-chromosome inactivation in females, select factors like the Kdm6a gene 

escape inactivation. Kdm6a is a histone demethylase that robustly and consistently escapes 

X-chromosome inactivation in female mice and humans (39, 40) and is enriched in the 

brain (51, 86, 87). The second X chromosome increased Kdm6a expression, independent 

of gonads or the Y chromosome, in our mice. This is important, because the Y paralog 

of Kdm6a, UTY (88), has high homology to Kdm6a (89) but a nearly inactive histone 

demethylation domain (90, 91). The presence of UTY in XY neurons and mice did not 

modify Kdm6a-mediated attenuation of AD-related toxicity in vitro or in vivo.

KDM6A expression in human brain was higher in females compared to males and in 

those with AD compared to controls. Because KDM6A loss-of-function mutations cause 

intellectual disability in humans (42-46) and Kdm6a elevation caused neural and cognitive 
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resilience in our mouse studies, it is interesting to speculate that increased KDM6A in AD 

could be a protective, compensatory response.

A common genetic variant in an intergenic region near KDM6A, rs12845057, was 

associated with greater expression in human brain. The minor allele frequency varies across 

populations, and about 13% of females and 6.5% of males carry it globally (53). In the 

current study of the ADNI cohort, increasing the minor allele dose was associated with 

cognitive resilience in individuals undergoing longitudinal testing over a decade, a finding 

consistent across clinical measures and when we assessed females only. Our analysis in 

males, who carry half the frequency, was likely limited by statistical power. In our subgroup 

analyses by clinical diagnosis, individuals with MCI showed the most resilience associated 

with the KDM6A minor allele, suggesting that increased KDM6A could modify clinical 

trajectory during the transitional period from MCI to AD. Whereas the ADNI cohort 

includes longitudinal data and multisite investigations, its limitations include a study of 

predominantly non-Hispanic, Caucasian populations within the United States. How broadly 

our findings extend to other populations remains to be determined.

In the current study, modestly increasing Kdm6a expression in XY mouse primary neurons 

and hippocampus of XY-hAPP mice attenuated hAPP/Aβ neurotoxicity and cognitive 

impairment. These findings suggest that minor elevation in Kdm6a transcription was 

sufficient to functionally increase neural resilience and partially reverse deficits in the 

XY-hAPP mice. Whether this requires histone demethylase activity is currently unknown. 

Kdm6a may act differently across cell types and biological systems. Whereas Kdm6a 

deletion in hippocampus impairs synaptic plasticity and cognition in mice (47), its deletion 

in immune CD4+ T cells ameliorates the neuroimmune response in a mouse model of 

autoimmune encephalomyelitis (92). Thus, downstream actions of Kdm6a may be cell type 

specific.

Our study has several caveats and limitations. Our experiments do not exclude other 

potential contributions of X- or Y-based biological functions. A second X chromosome 

could contribute resilience through other baseline X escapee genes, epigenetic diversity 

derived from parent-of-X origin, or reactivation of the silent X chromosome. Furthermore, 

we did not study how the Y chromosome, its Sry gene, or testicular development contributed 

to a decreased mortality in hAPP mice with one X chromosome. Last, there are limitations 

to modeling AD in mice, including in each mouse model we used. Thus, we investigated 

several models and approaches, including mouse primary neurons, hAPP mice, human brain 

tissue expression data, and human cognitive data, and included several AD-related measures 

to increase the potential relevance of our findings. Collectively, these results imply that 

a second X chromosome, or genes that an X chromosome harbors, could contribute to 

counteracting AD vulnerability in both sexes.

MATERIALS AND METHODS

Study design

The objectives of our study were to probe the association of sex-based mortality risk in 

AD using meta-analysis; investigate whether sex chromosomes modify vulnerability related 
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to AD in mice using molecular, cellular, neurogenetic, and behavioral approaches; and test 

in mice whether an X chromosome factor decreased male vulnerability related to AD. We 

used experimental models of AD (mice and their primary neurons) and human databases 

of both brain tissue expression and of clinical cognitive performance. All animal studies 

were approved by the Institutional Animal Care and Use Committee of the University 

of California, San Francisco and conducted in compliance with the National Institutes 

of Health guidelines. For animal experiments, all studies were conducted in a blinded 

manner and included male and female mice across the lifespan in multiple cohorts at the 

ages and background strains indicated. Mouse studies used littermate controls along with 

randomization of mice, and experimentalists were blinded to the genotypes of the mice. In 

mouse studies, exclusion criteria (greater than 2 SDs above or below the mean) were defined 

a priori to ensure unbiased exclusion of outliers. We used transgenic mouse models of sex 

biology crossed with hAPP mice and also used mouse primary neurons exposed to varying 

doses of Aβ. We assessed several outcome measures including mortality, cognition, cell 

death, pathology, RNA and protein measures, and biochemistry. Cell culture treatments were 

carried out with vehicle or synthetic Aβ1-42 peptide previously characterized by atomic 

force microscopy, and relative neurotoxicity was assessed with MTT and LDH assays.

Our findings showing a statistical effect of the second X chromosome in contributing 

resilience across measures in mice and mouse primary neurons led us to study Kdm6a, an 

X-linked gene that escapes inactivation in mice and humans. We established that Kdm6a 
escapes X-chromosome inactivation in mouse primary neurons using RNA FISH. We 

then queried KDM6A expression in humans using established databases of brain tissues 

including the Mayo Clinic Brain Bank and Mount Sinai School of Medicine Brain Bank 

(RNA sequencing), Gene Expression Omnibus (RNA microarray), and GTEx. We examined 

clinical and cognitive trajectories using the ADNI database to assess the relevance of our 

findings to the human condition. Last, we tested whether elevating the expression of Kdm6a 
causally contributed resilience to AD-related deficits in mouse primary neurons and hAPP 

mice using lentiviral gene delivery methods.

Statistical analyses

Statistical analyses were carried out with GraphPad Prism (version 5.0) for t tests and 

log-rank tests for survival analyses. For FCG-hAPP mouse and XY*-hAPP mouse survival 

statistical analysis, Cox proportional hazards models were applied to determine main 

effects, and a multivariate Cox model was used to test interactions of main variables on 

survival. R (nmle package) was used for analyses of variance (ANOVAs), post hoc tests, 

and meta-analysis. Differences between two means were assessed by two-tailed t tests 

for all experiments unless indicated otherwise in a replication cohort. Differences among 

multiple means were assessed by two-way ANOVA. A mixed-model ANOVA was used 

for analyses of Morris water maze data and included effects of repeated measures. Only 

significant P values were stated for two-way ANOVA results. Unless indicated otherwise, 

multiple comparisons of post hoc t tests were corrected for with the Bonferroni-Holm 

(stepwise Bonferroni) procedure to control for a family-wise error rate of α = 0.05. Linear 

mixed-effects models were fit in R (93) using the standard lme4 (94) package. In mouse 

studies, exclusion criteria (greater than 2 SDs above or below the mean) were defined a 
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priori to ensure unbiased exclusion of outliers. Error bars represent ±SEM. Null hypotheses 

were rejected at or below a P value of 0.05. All analyses for KDM6A human studies 

were performed using R version 3.5.2 unless otherwise stated. We used linear mixed-effects 

modeling with random intercepts to test whether the genetic variant identified via GTEx as 

a modifier of KDM6A expression in brain also affected cognitive and clinical changes in the 

ADNI cohort. We covaried for baseline age, sex, education, and APOEε4 dose.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. A meta-analysis of hazard ratios for male and female mortality in AD populations 
worldwide.
Hazard ratios (HRs) and 95% CIs are shown in a forest plot for studies (8, 11, 95-107) 

reporting male risk, compared to female risk, for death in longitudinal (and not cross

sectional) analysis of individuals with AD. Overall HR with 95% CI shown in bold indicates 

increased risk of male mortality (male, HR 1.63, CI 1.45 to 1.84; P < 0.0001). WHICAP, 

Washington Heights-Inwood Columbia Aging Project; CSHA, Canadian Study of Health 

and Aging; EDAC, Evolution of Dementia of the Alzheimer-type and Caregiver burden; 

AgeCoDe, Aging, Cognition, and Dementia in Primary Care Patients.
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Fig. 2. Male sex increases mortality, cognitive deficits, and synaptic protein abnormalities in 
hAPP mice.
(A) Shown are Kaplan-Meier survival curves of male hAPP mice (n = 1572, blue) compared 

with female hAPP mice (n = 1589, red); all mice had intact gonads (log-rank test, P < 

0.001). (B) All mice except those in (A) underwent gonadectomy (Gnx) at about 2.5 months 

of age; this was followed by behavioral testing conducted from 4 to 7 months of age and 

survival analysis conducted until 3 years of age. (C) Shown are Kaplan-Meier survival 

curves of male (n = 116) compared to female (n = 123) hAPP mice after gonadectomy 

(log-rank test, P < 0.05). (D) Shown are spatial learning curves of mice (age 4 to 7 months; 

n = 10 to 15 per group) tested in the Morris water maze during hidden platform training 

and when the platform was visible. Data points are daily average of total distance traveled 

to reach the platform over four trials. Mixed-model ANOVA for hidden training: female 
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hAPP versus male hAPP mice, P < 0.05. (E) A probe trial was conducted after hidden 

platform learning and removal of the escape platform. Percentage of time mice spent in the 

target quadrant of the maze, indicating memory for platform location, versus the average 

time spent in the other three quadrants is shown; *P < 0.05; ***P < 0.001. The dashed 

line represents chance performance (25%). (F) Shown is passive avoidance, fear memory 

of mice (age 3 to 3.5 months; n = 7 to 10 per group) reflected by latency to enter the 

dark chamber during training and testing 1 day after an electric shock to the foot. Two-way 

ANOVA: hAPP effect, P < 0.01; hAPP by sex interaction, P < 0.05. (G) Forgetting of 

passive avoidance memory in a separate cohort of mice (age 5 to 6 months; n = 10 to 12 

per group), reflected by latency to enter a dark chamber 1, 5, and 8 days after a foot shock, 

was measured. The dashed line represents latency to enter the dark chamber during training, 

which did not differ among groups. (H) Percentage loss of fear memory from days 1 to 5 is 

shown. The dashed line represents the average for nontransgenic (NTG) animals. (I) Shown 

is quantitation of calbindin immunoreactivity in mouse dentate gyrus (age 5 to 7 months; 

n = 11 to 14 mice per group). Two-way ANOVA: hAPP effect, P < 0.05; hAPP by sex 

interaction, P < 0.05. Means are relative to NTG male control mice, arbitrarily defined as 

1. (J) Soluble Aβ1-42 amounts in the mouse hippocampus determined by enzyme-linked 

immunosorbent assay (ELISA) are shown (age 3 months; n = 8 to 11 mice per group). (K) 

Representative immunostaining of hippocampal Aβ deposits in coronal brain sections from a 

male (top, M) and female (bottom, F) hAPP mouse (age 14.5 to 15 months). Scale bar, 200 

μm; magnification, ×4. (L) Quantitation of percentage area covered by Aβ deposits in hAPP 

mice (age 14.5 to 15 months; n = 11 per group). Behavioral studies in male and female NTG 

and hAPP mice were performed across seven independent cohorts including in fig. S4. #P = 

0.06; *P < 0.05; **P < 0.01; ***P < 0.001 [Bonferroni-Holm for (F), (G), and (I)]. Data are 

presented as means ± SEM.

Davis et al. Page 25

Sci Transl Med. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Sex chromosomes mediate increased male vulnerability to mortality and cognitive 
impairments in hAPP mice.
(A) Strategy to identify the cause of sexual dimorphism using the FCG mouse model. (B) 

Diagram of the cross between hAPP and FCG transgenic mice is presented. FCG mice 

harbor a transposition of the Sry gene from the Y chromosome onto an autosome (A, 

autosome). Progeny include XX and XY mice, each with either ovarian (F) or testicular (M) 

development and with or without hAPP expression (hAPP, +). (C) Experimental strategy: 

All mice underwent gonadectomy at about 2.5 months of age, followed by behavioral testing 

and survival studies at 3 to 6 months of age. (D to G) In the Kaplan-Meier survival curves, 

(D) all groups of hAPP mice showed (E) a main effect of sex chromosomes on mortality 

(XY, HR 2.49, CI 1.21 to 5.14, P < 0.01) and (F) no main effect of gonadal sex on mortality 

(P = 0.45). (G) An interaction between sex chromosomes and gonadal sex indicated lower 

mortality in XY (male, M) compared to XY (female, F) mice (XY-M, HR 0.18, CI 0.03 

to 0.92, P < 0.05). Analyses were by Cox proportional hazards for all groups: (XY-M: n = 

101; XX-F: n = 122; XY-F: n = 18; XX-M: n = 31). (H and I) Spatial learning curves from 

the eight genotypes of mice tested altogether in the Morris water maze (age 3 to 5 months; 

n = 5 to 6 per group) show that (H) XY-hAPP mice (M or F) traveled longer distances to 

find the target platform, enabling escape from the water maze, than did XX-hAPP mice (M 

or F). This is highlighted in (I), where all XY-hAPP (M + F) mice were compared with 
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all XX-hAPP (M + F) mice. XX or XY mice without hAPP (M or F) learned similarly 

well. Data points are daily averages of total distance traveled to reach the platform over four 

trials. Mixed-model ANOVA: XX-hAPP versus XY-hAPP, P < 0.01. (J and K) A probe trial, 

during which the escape platform in the target quadrant was removed, tested for memory 

of the platform location in the eight genotypes of mice. Percentage of time spent in the 

target quadrant, indicating memory of the platform location, versus the average time spent 

in the other three quadrants showed that (J) XY-hAPP (M or F) mice did not favor the 

target quadrant, whereas XX-hAPP (M or F) mice did. The greater impairment of learning 

and memory in XY-hAPP mice is highlighted in (K) where all XY-hAPP (M + F) mice are 

compared with all XX-hAPP (M + F) mice. The dashed line represents chance performance. 

These findings were replicated in an independent cohort (fig. S11). *P < 0.05; **P < 0.01 

versus chance performance of 25% (one-sample t tests) or as indicated by bracket (t test). 

Data are presented as means ± SEM. n.s., not significant.
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Fig. 4. A second X chromosome confers resilience against AD-related cognitive impairments in 
XY (male) and XO (female) hAPP mice.
(A) Strategy to identify whether the sex chromosome effect depends on the X or Y 

chromosome. (B) Diagram of mouse cross used in this experiment. hAPP females (XX, 

hAPP) were crossed with XY* males that harbored an altered pseudoautosomal region on 

the Y chromosome, allowing abnormal crossover with the X chromosome during meiosis 

(33, 34). The cross resulted in offspring of eight genotypes, each of the sex chromosome 

genotypes, with or without hAPP. The equivalent number of X and Y chromosomes for 

each genotype is shown. (C) Experimental strategy: All mice underwent gonadectomy at 2.5 

months of age followed by behavioral testing and survival studies between 3 and 6 months 

of age. (D to G) In the Kaplan-Meier survival curves in (D), all hAPP mice show (E) a main 
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effect of X chromosome dose on mortality (2X, HR 0.2, P < 0.01, CI 0.12 to 0.75) and (F) 

no main effect of a Y chromosome on mortality (P = 0.53). (G) An interaction between X 

and Y chromosomes showed lower mortality in the presence of Y (or male gonadal type) 

when X dose = 1 (XY versus XO, HR 0.23, P < 0.01, CI 0.08 to 0.64). Analyses were 

by Cox proportional hazards for all groups (XY: n = 79, XX: n = 88; XO: n = 10; XXY: 

n = 15 mice). (H to J) Shown is testing of mice in the passive avoidance task, measured 

by latency to enter the dark chamber 1 and 7 days after a foot shock (age 3 to 5 months; 

n = 4 to 16 per group). (H) Abnormal loss of fear memory in hAPP mice of XY and XO 

genotypes is shown. Two-way repeated measures ANOVA: X dose effect, P < 0.05. The 

dashed line represents latency to enter the dark chamber during training, which did not differ 

among the groups. (I) Greater loss of fear memory in hAPP mice with 1X compared to 2X 

chromosomes is presented. (J) Percent loss of fear memory in hAPP mice with 1X compared 

to 2X chromosomes is shown. *P < 0.05 as indicated by bracket (Bonferroni-Holm). Data 

are presented as means ± SEM.
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Fig. 5. A second X chromosome elevates Kdm6a expression independent of gonads or the Y 
chromosome in mice.
(A) Representative fluorescence in situ hybridization images for Kdm6a and Xist (RNA 

FISH) expression in XX (top) and XY (bottom) primary mouse neuronal nuclei. Kdm6a is 

shown in red, Xist is shown in green, and 4’,6-diamidino-2-phenylindole (DAPI) nuclear 

stain is shown in blue. Nascent Kdm6a transcripts appear as red fluorescent puncta at the site 

of transcription (indicated by white arrows). Xist RNA remains associated with the inactive 

X chromosome and is detected only in XX cells. Inset numbers indicate the percentage of 

nuclei with two sites of nascent Kdm6a accumulation in XX cells and one site in XY cells (n 
= 100 cells). Scale bar, 2 μm. (B) Representative confocal images of Kdm6a staining (left), 

Kdm6a with DAPI staining (middle), and Kdm6a with Neuronal nuclei (NeuN) staining 

(right) in the hippocampal dentate gyrus region of a gonadectomized nontransgenic (NTG) 

female XX mouse (top row) and a gonadectomized NTG male XY mouse (bottom row). 

Kdm6a is shown in red, DAPI nuclear stain is shown in blue, and NeuN is shown in 

green. Scale bar, 50 μm; magnification, ×100. (C and D) Western blot representative image 

(C) and subsequent quantification (D) of Kdm6a protein expression in the hippocampus of 

gonadectomized NTG XX female and XY male mice. Bands represent individual mouse 

samples. (C) Representative images show samples bound by the GeneTex antibody, and (D) 

quantification is given for both GeneTex and Abcam rabbit anti-Kdm6a antibodies; Kdm6a 

was normalized using glyceraldehyde phosphate dehydrogenase (GAPDH) as a loading 

control. Means are relative to NTG XY male control mice, arbitrarily defined as 1 (age 3.4 

Davis et al. Page 30

Sci Transl Med. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to 3.6 months; n = 3 mice per group). Gonadectomized NTG XX female mice show higher 

Kdm6a protein expression. Two-tailed t test, *P < 0.05. (E and F) Hippocampal Kdm6a 
mRNA expression in (E) FCG mice (age 3.5 to 5.5 months; n = 6 to 26 mice per group) and 

(F) XY* mice (age 5.5 to 7.5 months; n = 4 to 17 mice per group) with and without hAPP, 

shown relative to XY male mice without hAPP. Two-way ANOVA: sex chromosome effect, 

***P < 0.001 and X dose effect, ***P < 0.001. Data are presented as means ± SEM in (D) to 

(F). *P < 0.05; ***P < 0.001 (Bonferroni-Holm).
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Fig. 6. KDM6A genetic variation associates with cognitive resilience in humans.
(A) Shown is human KDM6A RNA expression via RNA sequencing and microarray in the 

temporal and parahippocampal cortex of individuals without (control, n = 135) and with AD 

(n = 86) (***P = 3.64 × 10−4). (B) Shown is human KDM6A RNA expression via RNA 

sequencing and microarray in individuals identified as male (M) or female (F) without (M, 

n = 75; F, n = 60; ***P = 9.79 × 10−4) and with AD (M, n = 37; F, n = 49; ***P = 4.83 × 

10−4). Expression data were analyzed by linear models accounting for effects of postmortem 

interval and age at death. (C) Shown is cognitive change with 95% CIs in 778 individuals of 

the ADNI cohort (cognitively normal, 268; MCI, 465; AD, 45), who carried two alleles (AA, 

blue, n = 8 all female), one allele (A, yellow, n = 78), or no allele (noncarriers, reference, 

brown, n = 692) for the rs12845057 variant of the KDM6A gene associated with increased 

KDM6A RNA expression in brain (table S4). Cognition was measured by the MMSE score. 

Increasing dose of the minor allele was associated with slower rates of cognitive decline 

over time (β = 0.141, SE 0.035, P = 0.00005). Cognitive data were analyzed by linear 

models accounting for effects of baseline age, sex, education, and APOEε4 dose. Data are 

presented as means ± SEM in (A) and (B). ***P < 0.001 (Bonferroni-Holm).
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Fig. 7. Kdm6a knockdown in XX mouse neurons worsens, whereas Kdm6a overexpression in XY 
neurons attenuates Aβ toxicity in vitro.
(A to C) Vulnerability of mouse primary neurons was tested by the MTT assay. For each 

genotype, cell toxicity was calculated as a percentage of the corresponding vehicle-treated 

group, 24 hours after treatment with increasing doses of Aβ. (A) Mouse primary cortical 

XY neurons showed greater vulnerability than did XX neurons after exposure to vehicle or 

increasing doses of Aβ (n = 8 to 40 wells per experimental group from 8 to 10 pups per 

genotype, from four independent litters). Two-way ANOVA: sex chromosome effect, P < 

0.01; Aβ dose effect, P < 0.001; interaction, P < 0.05. (B) Toxicity of Aβ in neurons of 

varying X and Y chromosome dosage derived from littermate pups of XY* males crossed 

with nontransgenic (NTG) females, with genotypes roughly equivalent to XO, XX, XY, 
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and XX, exposed to vehicle or Aβ (2.5 μM) (n = 15 to 45 wells per experimental group 

from 7 to 10 pups per genotype, from four independent litters). Two-way ANOVA: X 

effect, P < 0.0001; Y effect, not significant; X by Y interaction, P < 0.05. (C) Main 

effect of X chromosome dose shows increased Aβ toxicity in neurons with 1X (XO and 

XY combined) compared to those with 2X chromosomes (XX and XXY combined). (D) 

Experimental strategy of lentivirus-mediated knockdown of Kdm6a in XX mouse primary 

cortical neurons (top) and Kdm6a overexpression in XY mouse primary cortical neurons 

(bottom). (E) Shown is Kdm6a mRNA expression in neurons transfected with lentivirus 

expressing scrambled (SCR) or short hairpin (sh) Kdm6a for knockdown expressed relative 

to XX SCR (n = 5 to 6 wells per experimental group from eight XX pups, from two 

litters). Two-tailed t test, **P < 0.01. (F) Shown is Aβ toxicity in XX neurons treated 

with SCR or shKdm6a and exposed to vehicle or Aβ (1 and 3 μM); knockdown of Kdm6a 
worsened Aβ toxicity (n = 24 to 25 wells per experimental group from 14 XX pups, 

from three independent litters). Two-way ANOVA: Kdm6a effect, P < 0.001; Aβ effect, P 
< 0.001; Kdm6a by Aβ interaction, P = 0.99. (G) Kdm6a mRNA expression in neurons 

transfected with lentivirus expressing control (CTL) or overexpressing Kdm6a (Kdm6a-OE), 

shown relative to control XY neurons (n = 3 to 8 wells per experimental group from 12 

XY pups, from two independent litters). One-way ANOVA, P < 0.001. (H) Shown is Aβ 
toxicity in XY neurons transfected with lentivirus expressing control or overexpressing 

Kdm6a (Kdm6a OE) and exposed to vehicle or Aβ (1 and 3 μM); overexpression of Kdm6a 
attenuated Aβ toxicity (n = 12 to 13 wells per experimental group from 26 XY pups, 

from three independent litters). Two-way ANOVA: Kdm6a effect, P < 0.001; Aβ effect, 

P = 0.01; Kdm6a by Aβ interaction, P = 0.99. *P < 0.05; **P < 0.01; ***P < 0.001 

(Bonferroni-Holm). Data are presented as means ± SEM.
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Fig. 8. Kdm6a overexpression in hippocampus attenuates male vulnerability to cognitive 
impairments in XY-hAPP mice.
(A) Experimental strategy: XY mice were gonadectomized and injected with lentivirus 

expressing control or overexpressing Kdm6a (Kdm6a OE) into the dentate gyrus of the 

hippocampus; animals were then tested on behavioral tasks. (B) Shown is Kdm6a mRNA 

expression measured in dentate gyrus of mice injected with lentivirus expressing control or 

overexpressing Kdm6a (Kdm6a OE) (n = 3 mice per experimental group), relative to XY 

control; t test, *P < 0.05. (C to F) Spatial learning task results for the four experimental 

groups of XY mice tested in the Morris water maze (age 5 to 5.5 months; n = 7 to 15 per 

group). XY-hAPP-Kdm6a-OE mice exhibited (C) decreased latency to find the target escape 

platform (mixed-model ANOVA: XY-hAPP-CTL versus XY-hAPP-Kdm6a-OE, P < 0.001) 

and (D) a better learning index of latency during hidden platform training, measured by the 

difference in performance of each mouse at day 4 from average group performance on day 1 

(D1 to D4). (E) XY-hAPP-Kdm6a-OE mice did not travel a statistically decreased distance 

to find the target platform but (F) showed better learning in the distance traveled during 

hidden platform training. (G and H) Probe trial results 24 hours after completion of hidden 

platform learning, indicating spatial memory of the escape platform location, showed that 

XY-hAPP-Kdm6a-OE mice had attenuated spatial deficits including decreased (G) latency 

to target platform and (H) increased number of entries into the target zone, compared to 
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XY-hAPP-CTL mice. *P < 0.05; **P < 0.01; ***P < 0.001 [Bonferroni-Holm for (G) and 

(H)]. Data are presented as means ± SEM.
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