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ABSTRACT
Background. Conventional in vivo methods for post-translational modification site
prediction such as spectrophotometry, Western blotting, and chromatin immune
precipitation can be very expensive and time-consuming. Neural networks (NN) are
one of the computational approaches that can predict effectively the post-translational
modification site. We developed a neural network model, namely the Sequential and
Spatial Methylation Fusion Network (SSMFN), to predict possible methylation sites on
protein sequences.
Method.We designed ourmodel to be able to extract spatial and sequential information
from amino acid sequences. Convolutional neural networks (CNN) is applied to
harness spatial information, while long short-term memory (LSTM) is applied for
sequential data. The latent representation of the CNN and LSTMbranch are then fused.
Afterwards, we compared the performance of our proposed model to the state-of-the-
art methylation site prediction models on the balanced and imbalanced dataset.
Results. Our model appeared to be better in almost all measurement when trained on
the balanced training dataset. On the imbalanced training dataset, all of the models
gave better performance since they are trained on more data. In several metrics, our
model also surpasses the PRMePredmodel, which requires a laborious effort for feature
extraction and selection.
Conclusion. Our models achieved the best performance across different environments
in almost all measurements. Also, our result suggests that the NN model trained on a
balanced training dataset and tested on an imbalanced dataset will offer high specificity
and low sensitivity. Thus, the NN model for methylation site prediction should be
trained on an imbalanced dataset. Since in the actual application, there are far more
negative samples than positive samples.
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INTRODUCTION
Methylation is a post-translationalmodification (PTM)process thatmodifies the functional
and conformational changes of a protein. The addition of a methyl group to the protein
structure plays a role in the epigenetic process, especially in histones (Lee et al., 2005).
Histone methylation in Arginine (R) and Lysine (K) residues substantially affects
the level of gene expression along with other PTM processes such as acetylation and
phosphorylation (Schubert, Blumenthal & Cheng, 2006). Moreover, methylation directly
alters the regulation, transcription, and structure of chromatin (Bedford & Richard,
2005). Genetic alterations through the methylation process induce oncogenes and tumor
suppressor genes that play a crucial role in carcinogenesis and metastasis cancer (Zhang et
al., 2019).

Currently, most of the methods for PTM sites prediction were conducted by
implementing in vivo methods, such as Mass Spectrophotometry, Western Blotting,
and Chromatin Immune Precipitation (ChIP). However, computational (in silico)
approaches are starting to bemore popular for PTM sites prediction, especiallymethylation.
Computational approaches for predicting protein methylation sites can be an inexpensive,
highly accurate, and fast alternative method through massive data sets. The commonly
used computational approaches are support vector machine (SVM) (Chen et al., 2006;
Shao et al., 2009; Shien et al., 2009; Shi et al., 2012; Lee et al., 2014; Qiu et al., 2014; Wen et
al., 2016), group-based prediction system (GPS) (Deng et al., 2017), Random Forest (Wei et
al., 2017), and neural network (NN) (Chen et al., 2018; Hasan & Khatun, 2018; Chaudhari
et al., 2020).

The application of the machine learning approach to predict possible methylation sites
on protein sequences has been studied in numerous previous research. The latest and the
most relevant studies to our studywere conducted byChen et al. (2018) andChaudhari et al.
(2020).Chen et al. (2018) developedMUscADEL (Multiple Scalable Accurate Deep Learner
for lysine PTMs), amethylation site predictionmodel that was trained and tested on human
and mice protein data sets. MUscADEL utilized bidirectional long short term memory
(LSTM) (Graves & Schmidhuber, 2005). Meanwhile, Chen et al. (2018) hypothesized that
the order of amino acids in the protein sequence has a significant influence on the location
where the methylation process can occur. The other model is DeepRMethylSite which was
developed by Chaudhari et al. (2020). The model was implemented with the combination
of convolutional neural network (CNN) and LSTM. The combination was expected to be
able to extract the spatial and sequential information of the amino acids sequences.

Before the practical application by Chaudhari et al. (2020) to predict methylation site,
a combination of LSTM and CNN approach has been implemented since 2015 by Xu, Li
& Deng (2015) to strengthen a face recognition model. This combination was also found
In the natural language processing (NLP) area. For instance, Wang et al. (2016) developed
a dimensional sentiment analysis model and suggested that a combination of LSTM and
CNN is capable of capturing long-distance dependency and local information patterns.
Related to NLP,Wu et al. (2018) developed an LSTM-CNNmodel with similar architecture
to other previous studies where the CNN layer and LSTM layer were implemented in a serial

Lumbanraja et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.683 2/14

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.683


structure. Recently, the combination of CNN and LSTM was also applied for educational
data (Prabowo et al., 2021).

In this study, we developed the Sequential and Spatial Methylation Fusion Network
(SSMFN) to predict possible methylation sites on the protein sequence. Similar to
DeepRMethylSite, SSMFN also utilized CNN and LSTM. However, instead of treating
them as an ensemble model, we fused the latent representation of the CNN and LSTM
modules. By allowing more relaxed interaction between the CNN and LSTM modules, we
hypothesized that the fusion approach can extract better features than the model with the
ensemble approach.

METHODS
Dataset
The dataset in this study was obtained from the previous methylation site prediction study
by Kumar et al. (2017). The data was collected from other studies as well as from Uniprot
protein database (Apweiler et al., 2004). The collected data was furthermore experimentally
verified in vivo.

The dataset comprises sequences of 19 amino acids with arginine in the middle of the
sequence because the possible location for methylation is on arginine (R). These sequences
are segments from the full amino acids sequence. Examples of the amino acids sequences
in this dataset are shown in Table 1. The dataset was split into three datasets: training,
validation, and independent dataset. Each dataset contains positive and negative samples,
where positive samples are the sequence where methylation occurs in the middle amino
acid. The distribution of each dataset can be seen in Table 2. Because the original dataset
was imbalanced, previous studies often constructed a new balanced dataset to improve
the performance of their model. This practice is needed because most machine learning
methods are not robust to imbalanced training data. Following the typical practice in
previous studies, we also created a balanced training dataset as well as a balanced validation
dataset for a fair comparison.

Experiment
First, to understand the contribution of each element in the proposed model, we carried
an ablation study on our proposed model. The elements tested and explored in this
ablation study were the CNN and LSTM branches of the model. Afterward, we compared
the performance of our proposed model to DeepRMethylSite (Chaudhari et al., 2020).
Additionally, we also provided a comparison to a standard multi-layer perceptron model.
To measure the effect of the data distribution (balanced or imbalanced), we conducted
separate experiments for the balanced and the original imbalanced dataset. Afterward,
the trained models from both experiments were validated and tested on the balanced
validation dataset, the imbalanced validation dataset, and the test dataset, respectively. The
workflow of this study is illustrated in Fig. 1. All models in the experiment were developed
using Python machine learning library, PyTorch (Paszke et al., 2019). To train the models,
we utilized a NVIDIA Tesla P100 Graphical Processing Unit (GPU) as well as a publicly
available GPU instance provided by Google Colab.
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Table 1 Protein sequence dataset example.

No Sequence

1st 2nd 3rd . . 8th 9th 10th 11th 12th . . 17th 18th 19th

1 V E S . . V T R L H . . H M N
2 K N H . . I S R H H . . D P Q
3 H P P . . R L R G I . . W D H
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
n R S I . . A C R I R . . K W Y

Table 2 Amino acids sequences dataset list.

Data class Label n sequences

Positive 1,038Training
Negative 5,190
Positive 1,038Balanced training
Negative 1,038
Positive 1,131

Validation
Negative 3,033
Positive 1,131

Balanced validation
Negative 1,131
Positive 260Independent (Test )
Negative 260

Spatial and sequential methylation fusion network (SSMFN)
Our proposed model, the Spatial and Sequential Methylation Fusion Network (SSMFN),
was designed with the motivation that a protein sequence can be perceived as both spatial
and sequential data. The view of a protein sequence as spatial data assumes that the amino
acids are arranged in a one-dimensional space. On the other hand, protein sequences
can also be thought of as sequential data by assuming that the next amino acid is the
next time step of particular amino acid. On modelling protein sequences with deep
learning, CNN is applied when adopting spatial data view, while LSTM is applied for the
sequential data. Using the information from both views has been shown to be beneficial by
Chaudhari et al. (2020). Their model was implemented by having an ensemble model of
CNN and LSTM that read the same sequence. However, Chaudhari et al. (2020) processed
the spatial and sequential view with separate sub-models. As a consequence, it cannot
extract joint spatial-sequential features, which might be beneficial in modelling protein
sequences. Having observed that, we constructed SSMFN as a deep learning model with an
architecture that can fuse the latent representation of CNN modules and LSTM modules.

To read the amino acid sequence, SSMFN applied an embedding layer with 21 neurons.
This embedding layer was used to enhance the expression of each amino acid. Thus, the
number of neurons in this layer matches the amounts of amino acids variants. Therefore,
each type of amino acid can have a different vector representation. The output of this layer
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Figure 1 Research workflow. The chart shows that the data we used in this research was retrieved from
Kumar et al. (2017). The data was afterward balanced accordingly. In the first experiment, we trained our
model using the balanced training dataset. Subsequently, we validated and tested the model on the bal-
anced and the imbalanced dataset. We did a similar workflow for the second experiment. However, in-
stead of the balanced dataset, we trained the model on the imbalanced training dataset.

Full-size DOI: 10.7717/peerjcs.683/fig-1

is then split into LSTM and CNN branches. In the LSTM branch, we created two LSTM
layers with 64 neurons each. Every LSTM layer is followed by a dropout layer with a 0.5
drop rate. It is subsequently followed by a fully connected layer at the end of the branch
with 32 neurons. This fully connected layer serves as a latent representation generator that
is fused with the latent representation from the CNN branch.

In contrast, the CNN branch comprised four CNN layers with 64 neurons in each layer.
Unlike the LSTM layers, residual connections were utilized in the CNN branch. Each
CNN layer is a 2D convolutional layer with rectified linear units (ReLU) as the activation
function. Every CNN layer also has a 2D batch normalization layer and a dropout layer
which is set at 0.5. At the end of the branch, a fully connected layer with 32 neurons is
installed to match the output with the LSTM branch.

In the next step, the latent representation of both branches was fused with a summation
operation. The fused representation was subsequently processed through a fully connected
layer with two neurons as the last layer. This layer predicts whether the methylation
occurred at the center of the amino acid or not. The architecture of the proposed model
and the hyperparameter settings is illustrated in Fig. 2 and listed in Table 3. The code of
this model can be accessed in the following link: https://github.com/bharuno/SSMFN-
Methylation-Analysis.
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Figure 2 Proposed neural network architecture.
Full-size DOI: 10.7717/peerjcs.683/fig-2

Table 3 Hyperparameter settings.

Parameter Settings

Learning rate 0.001
Epochs 500
Optimizer Adam
Embedding layer neurons 21
Embedding layer output dimension 21×19= 399
Output layer neurons 2

LSTMBranch
LSTM layers neurons 64
Dropout layers drop rate 0.5
Fully connected layer neurons 32

CNN Branch
CNN layers neurons 64
CNN layers activation function Rectified linear units
Dropout layers drop rate 0.5
Fully connected layer neurons 32

Comparison to a standard multi-layer perceptron
A standard multi-layer perceptron (SMLP) NN was developed to be compared to our
proposed model. This multi-layer perceptron model was included in this study to provide
an insight into the performance of a simple model to solve the methylation site prediction
problem. This model consists of an embedding layer followed by two fully connected layers.
The embedding layer has 21 neurons because there are 21 types of amino acids. The first
fully connected layer has 399 neurons which came from 21 (types of amino acid) multiplied
by 19 (protein sequence length). After the first layer, we put a second fully connected layer
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Figure 3 The standard multi-layer perceptron architecture.
Full-size DOI: 10.7717/peerjcs.683/fig-3

that has two neurons as the output for prediction. The structure of this model is shown in
Fig. 3.

Comparison to DeepRMethylSite
For a fair comparison of our proposed model to other state-of-the-art methylation site
prediction models, we re-conducted the experiment to train DeepRMethylSite (Chaudhari
et al., 2020) with the same dataset used by our proposed model. To obtain optimal
DeepRMethylSite performance on our dataset, we adjusted several hyperparameters. First,
we changed the LSTM branch optimizer, from Adadelta to Adam. Second, we removed
recurrent dropout layers in the LSTM branch. Finally, we set the maximum number of
epochs to 500.

Evaluation
To evaluate the performance of the proposed model and to compare it to the models
from previous studies, we utilized Accuracy (Eq. (1)), Sensitivity (Eq. (2)), Specificity (Eq.
(3)), F1 score (Eq. (4)), Matthews correlation coefficient (MCC) (Eq. (5)), and area under
curve (AUC) (Bradley, 1997). These metrics were commonly employed in the previous
research with a focus on prediction protein phosphorylation site (Lumbanraja et al., 2018;
Lumbanraja et al., 2019). The AUC was computed using the scikit-learn library from the
receiver operating characteristic (ROC) of the models’ performance.

Accuracy =
TP+TN

TP+TN +FP+FN
(1)

Sensitivity =
TP

TP+FN
(2)

Specificity =
TN

TN +FP
(3)
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F1score=
TP

TP+FP+FN
(4)

MCC =
(TP ∗TN )− (FP ∗FN )

√
(TP+FP)(TP+FN )(TN +FP)(TN +FN )

(5)

RESULTS
Tables 4 and 5 show the results obtained from our ablation study. Meanwhile, Tables 6
and 7 summarized the comparative results of our model to the previous models with
the balanced and imbalanced training dataset, respectively. In Table 6, we also added the
performance of several methylation site prediction models from previous studies including
MeMo (Chen et al., 2006), MASA (Shien et al., 2009), BPB-PPMS (Shao et al., 2009), PMeS
(Shi et al., 2012), iMethylPseAAC (Qiu et al., 2014), PSSMe (Wen et al., 2016), MePred-RF
(Wei et al., 2017) and PRmePRed (Kumar et al., 2017). The performances ofMeMo,MASA,
BPB-PPMS, PMeS, iMethylPseAAC, PSSMe and MePred-RF were reported by Chaudhari
et al. (2020). Meanwhile, the performance of PRmePRed was reported by Kumar et al.
(2017).

DISCUSSION
The results of the ablation study in Tables 4 and 5 show that the LSTM branch and
CNN branch achieved better performance compared to the merged model at least on
one dataset. However, the merged models achieved better performance in most of the
datasets, specifically in the test dataset. This fact indicates that the merged model has a
better generalization capability than the model with only CNN or LSTM branches.

In the experiment on the balanced training dataset, our proposed model emerged as the
best NN model with the best performance in all metrics except sensitivity among all other
NN models. Interestingly, the DeepRMethylSite final result (merged) was not better in all
metrics compared to its CNN branch and its LSTM branch. On the imbalanced validation
dataset, our proposed model, SSMFN, has more than 4% higher accuracy and 6% higher
MCC which is the best parameter for assessing model performance on imbalanced data,
compared to the DeepRMethylSite model. On the balanced validation dataset and test
dataset, SSMFN has 2–4% higher accuracy compared to DeepRMethylSite.

In Table 6, we also present the performance of other methylation site prediction
models from previous studies as reported by Chen et al. (2018) and Chaudhari et al.
(2020). The models from previous studies provided an overview of the performance of
non-neural-network models. The best non-neural-network model, PRmePRed, has more
than 5% higher accuracy than SSMFN. However, it should be noticed that non-neural-
network models require heavy feature engineering, which is also found in PRmePRed.
This introduced unnecessary manual labor that can be avoided by the utilization of
modern NN models, which are also known as deep learning. Interestingly, the SMLP
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Table 4 The first ablation study, trained on the balanced training dataset.

Model Acc F1 Sens Spec MCC AUC

Validated on the imbalanced validation dataset
SSMFN CNN 0.7891 0.7649 0.5745 0.9368 0.5649 0.8120
SSMFN LSTM 0.8252 0.7985 0.6328 0.9354 0.6148 0.8326
SSMFNMerged 0.8187 0.7943 0.6175 0.9442 0.6143 0.8359

Validated on the balanced validation dataset
SSMFN CNN 0.8431 0.8427 0.8767 0.8149 0.6889 0.8120
SSMFN LSTM 0.8302 0.3020 0.8195 0.8417 0.6609 0.8326
SSMFNMerged 0.8360 0.8358 0.8130 0.8626 0.6738 0.8359

Tested on the test dataset
SSMFN CNN 0.7962 0.7960 0.8105 0.7831 0.5929 0.7962
SSMFN LSTM 0.7981 0.7980 0.8063 0.7903 0.5964 0.7981
SSMFNMerged 0.8115 0.8115 0.8000 0.8240 0.6235 0.8115

Note.
The highest value of each parameter from each measurement experiment is shown in bold.

Table 5 The second ablation study, trained on the imbalanced training dataset.

Model Acc F1 Sens Spec MCC AUC

Validated on the imbalanced validation dataset
SSMFN CNN 0.8939 0.8502 0.9389 0.8834 0.7230 0.8179
SSMFN LSTM 0.9167 0.8891 0.9100 0.9186 0.7836 0.8704
SSMFNMerged 0.9078 0.8774 0.8895 0.9133 0.7598 0.8596

Validated on the balanced validation dataset
SSMFN CNN 0.7529 0.7372 0.9948 0.6698 0.5798 0.8179
SSMFN LSTM 0.8638 0.8624 0.9567 0.8024 0.7560 0.8704
SSMFNMerged 0.8656 0.8640 0.9672 0.8003 0.7491 0.8596

Tested on the test dataset
SSMFN CNN 0.7404 0.7228 0.9845 0.6598 0.5566 0.7404
SSMFN LSTM 0.8442 0.8418 0.9590 0.7754 0.7110 0.8442
SSMFNMerged 0.8462 0.8435 0.9688 0.7744 0.7173 0.8462

Note.
The highest value of each parameter from each measurement experiment is shown in bold.

model provided slightly better performance than DeepRMethylSite on the test dataset.
This does not implicate that the SMLP model has a better performance compared to
the DeepRMethylSite it has relatively poor performance in the validation dataset, both
balanced and imbalanced.

When trained on the balanced training dataset and tested on the imbalanced validation
dataset, most of the models have high specificity and low sensitivity. This phenomenon
is normal since the training and test dataset have different distributions. Because the
distribution of methylation is naturally imbalanced, this result suggested that we need to
train methylation site prediction models on a dataset with its natural distribution for a
practical purpose, not a balanced dataset.
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Table 6 The first experiment, trained on the balanced training dataset.

Model Acc F1 Sens Spec MCC AUC

Validated on the imbalanced validation dataset
DeepRMethylSite CNN 0.7819 0.7557 0.5668 0.9259 0.5428 0.7990
DeepRMethylSite LSTM 0.7699 0.7479 0.5480 0.9394 0.5430 0.8024
DeepRMethylSite Merged 0.7743 0.7518 0.5474 0.9394 0.5481 0.8021
SMLP 0.7209 0.7018 0.4922 0.9281 0.4719 0.7649
SSMFNMerged 0.8187 0.7943 0.6175 0.9442 0.6143 0.8359

Validated on the balanced validation dataset
DeepRMethylSite CNN 0.8090 0.8089 0.7944 0.8251 0.6188 0.7990
DeepRMethylSite LSTM 0.7993 0.7993 0.7618 0.8493 0.6048 0.8024
DeepRMethylSite Merged 0.8059 0.8051 0.7659 0.8504 0.6169 0.8021
SMLP 0.7073 0.7073 0.7041 0.7107 0.4147 0.7649
SSMFNMerged 0.8360 0.8358 0.8130 0.8626 0.6738 0.8359

Tested on the test dataset
MeMo* 0.68 na 0.38 0.99 0.46 na
MASA* 0.65 na 0.31 0.99 0.41 na
BPB-PPMS* 0.56 na 0.12 1.00 0.25 na
PMeS* 0.58 na 0.43 0.73 0.16 na
iMethyl-PseAAC* 0.59 na 0.18 1.00 0.3 na
PSSMe* 0.72 na 0.6 0.83 0.44 na
MePred-RF* 0.69 na 0.41 0.97 0.46 na
PRmePRed** 0.8683 na 0.8709 0.8660 0.7370 0.9000
DeepRMethylSite CNN 0.7846 0.7846 0.7803 0.7891 0.5693 0.7846
DeepRMethylSite LSTM 0.8000 0.7989 0.7617 0.8514 0.6065 0.8000
DeepRMethylSite Merged 0.7942 0.7929 0.7508 0.8447 0.5959 0.7904
SMLP 0.8077 0.8076 0.8175 0.7985 0.6157 0.8077
SSMFNMerged 0.8115 0.8115 0.8000 0.8240 0.6235 0.8115

Note.
The highest value of each parameter from each measurement experiment is shown in bold.

In the second experiment, we trained the models using the imbalanced dataset with a 5
to 1 ratio for negative to positive size samples, respectively. Overall, our model achieved
better performance when trained on the imbalanced dataset compared to the balanced
dataset. Trained on the imbalanced dataset, SSMFN can even outperform PRmePRed in
several metrics. SSMFN accuracy is 0.36% lower than the DeepRMethylSite accuracy on
the imbalanced validation dataset. However, it has better performance on the balanced
validation dataset and the test dataset compared to DeepRMethylSite.

CONCLUSIONS
In general, our proposed model, SSMFN, provided better performance compared to
DeepRMethylSite. Our model also performed better when trained on the imbalanced
training dataset that it even has better performance than the model that uses feature
extraction in several metrics. Additionally, we observed that all the NN models, including
ours, achieved a high specificity and a low sensitivity when theywere trained on the balanced
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Table 7 Second experiment, trained on the imbalanced training dataset.

Model Acc F1 Sens Spec MCC AUC

Validated on the imbalanced validation dataset
DeepRMethylSite CNN 0.8948 0.8550 0.9072 0.8916 0.7242 0.8283
DeepRMethylSite LSTM 0.9092 0.8782 0.9044 0.9106 0.7634 0.8576
DeepRMethylSite Merged 0.9114 0.8808 0.9047 0.9115 0.7693 0.8589
SMLP 0.9071 0.8670 0.9973 0.8873 0.7635 0.8295
SSMFNMerged 0.9078 0.8774 0.8895 0.9133 0.7598 0.8596

Validated on the balanced validation dataset
DeepRMethylSite CNN 0.8289 0.8249 0.9709 0.7527 0.6899 0.8283
DeepRMethylSite LSTM 0.8576 0.8557 0.9644 0.7908 0.7350 0.8576
DeepRMethylSite Merged 0.8585 0.8567 0.9645 0.7919 0.7365 0.8589
SMLP 0.7582 0.7432 1.0000 0.6740 0.5899 0.8295
SSMFNMerged 0.8656 0.8640 0.9672 0.8003 0.7491 0.8596

Tested on the test dataset
DeepRMethylSite CNN 0.7808 0.7727 0.9506 0.7039 0.6063 0.7808
DeepRMethylSite LSTM 0.8115 0.8070 0.9500 0.7382 0.6548 0.8115
DeepRMethylSite Merged 0.8135 0.8088 0.9553 0.7390 0.6598 0.8135
SMLP 0.7250 0.7025 1.0000 0.6452 0.5388 0.7250
SSMFNMerged 0.8462 0.8435 0.9688 0.7744 0.7173 0.8462

Note.
The highest value of each parameter from each measurement experiment is shown in bold.

dataset and tested on the imbalanced dataset. This suggested that, in future works, we need
to consider using a dataset with the original distribution for training. This will train the
models to recognize the real distribution of the methylation site prediction task, which has
far more negative than positive samples, leading to better performance in practice.
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