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1  | INTRODUC TION

Lung adenocarcinoma (LADC) shows considerable heterogeneity in 
patients’ characteristics, clinical courses, histological appearances, 
and molecular alternations. It is needed to clearly describe their bio-
logical nature for precision medicine.

Recent efforts in the field of molecular genetics have uncovered 
essential driver oncogenes, including EGFR, KRAS, BRAF, ALK, ROS1, 
RET, and NRG1, that can be targets for newly developed therapeu-
tic agents.1-7 Subtyping of LADC based on the driver mutations is 
beneficial in a clinical setting and is becoming increasingly common. 
However, the driver mutations themselves do not seem to be direct 
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Abstract
There could be two carcinogenetic pathways for lung adenocarcinoma (LADC): the 
nonsmokers’ pathway and the smokers’ pathway. This review article describes the 
two pathways with special reference to potential relationships between histological 
subtypes, malignant grades, and driver mutations. The lung is composed of two dif-
ferent tissue units, the terminal respiratory unit (TRU) and the central airway com-
partment (CAC). In the nonsmokers’ pathway, LADCs develop from the TRU, and 
their histological appearances change from lepidic to micropapillary during the pro-
gression process. In the smokers’ pathway, LADCs develop from either the TRU or 
the CAC, and their histological appearances vary among cases in the middle of the 
progression process, but they are likely converged to acinar/solid at the end. On a 
molecular genetic level, the nonsmokers’ pathway is mostly driven by EGFR muta-
tions, whereas in the smokers’ pathway, approximately one-quarter of LADCs have 
KRAS mutations, but the other three-quarters have no known driver mutations. p53 
mutations are an important factor triggering the progression of both pathways, with 
unique molecular alterations associated with each, such as MUC21 expression and 
chromosome 12p13-21 amplification in the nonsmokers’ pathway, and HNF4α ex-
pression and TTF1 mutations in the smokers’ pathway. However, investigation into 
the relationship between histological progression and genetic alterations is in its in-
fancy. Tight cooperation between traditional histopathological examinations and re-
cent molecular genetics can provide valuable insight to better understand the nature 
of LADCs.
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determinants for malignant grades, 7,8 as subtyping solely based on 
the driver mutations may not be enough to support a prognosis. On 
the other hand, traditional histological subtyping is informative in 
terms of identifying histogenesis and malignant grades.7

It has been supposed there could be two carcinogenetic path-
ways for LADC: the nonsmokers’ pathway and the smokers’ path-
way. This review article describes the two pathways with special 
reference to potential relationships between histological subtypes, 
malignant grades, and driver mutations.

2  | THE T WO PUTATIVE 
C ARCINOGENETIC PATHWAYS

Current research suggests that there are two distinct pathways in-
volved in the development of LADC in smokers and nonsmokers.7 
Recently, Yatabe et al proposed a theory that the lung is composed 
of two different tissue units, the terminal respiratory unit (TRU) and 
the central airway compartment (CAC).7,9,10 The TRU includes the 
distal/terminal bronchiole to the alveoli and mainly participates in 
gas exchange, whereas non-TRU/CAC includes the trachea, bron-
chus, and the proximal/lobular bronchioles, which are responsible 
for directing gas into the alveoli. Most LADCs are developed from 
the TRU, which constantly expresses thyroid transcription factor 1 
(TTF1).7 TRU-type LADCs predominantly occur in nonsmokers. The 
predisposition to nonsmokers is particularly interesting, as it is quite 
different from the other histological types, such as squamous cell, 
small cell, and large cell carcinomas.7 In contrast, TTF1-negative, 
non-TRU/CAC–type LADCs preferentially occur in smokers.7 Thus, 
this TRU/non-TRU concept is a concise theory to better understand 
the histogenesis of the nonsmokers’ and smokers’ pathways.

3  | A PROPOSAL OF FIVE ESSENTIAL 
GROUPS FOR L ADC S

The TRU/non-TRU concept is a theory based on histogenesis. On the 
other hand, the nonsmokers’/smokers’ concept is a theory to describe 
the potential effects of carcinogenetic stimuli on the development/
progression of cancers. Actually, TRU-type LADCs can develop in 
both smokers and nonsmokers and can differentially progress each 
other. Thus, we have been considering that the TRU/non-TRU clas-
sification is not enough to better understand the tumor progression. 
To improve this, we here propose five groups based on histological 
appearances, which are modified from our previous publications,11,12 
and describe them while linking together the nonsmokers’/smokers’ 
pathways, the TRU/non-TRU concept, patients’ baseline character-
istics, clinical courses, and driver mutations (Table 1).

Briefly, group A is defined as lepidic or papillary dominant LADC 
without any mucin-producing element or micropapillary element 
(according to the WHO classification system,7 histological elements 
less than 5% were ignored [judged as none]); group B as LADC with 
acinar element of mucinous cribriform pattern; group C as LADC 

with micropapillary elements; group D as mucinous adenocarcinoma 
(both invasive and in situ) and/or enteric adenocarcinoma; and group 
E as conventional acinar (not mucinous cribriform pattern) and/or 
solid dominant LADC. Representative histological appearances are 
shown with references to the nonsmokers’/smokers’ pathways, 
essential molecular alterations, and the potential between-group 
crosstalk in Figure 1. Specific features in detail for each of the five 
groups are as follows:

3.1 | Group A

Group A includes TRU-type LADCs that typically affect female non-
smokers (Table 1), mostly show lepidic-dominant histology including 
adenocarcinoma in situ and minimally invasive adenocarcinomas, 
and occasionally show papillary-dominant histology. LADCs of 
this group are generally slow growing (Table 1) and not aggressive; 
hence, they are surgically operable in most cases. Thus, pathologists 
see this type of LADCs in surgical specimens frequently, where they 
comprise 42% (Table  1). Surgical removal is enough to completely 
control this group in most cases, and it ultimately results in favorable 
outcomes (Figure 2). Although majority of this group of LADCs have 
EGFR mutations (Table 2 and Figure 3), EGFR tyrosine kinase inhibi-
tors (TKIs) are usually not needed because of the favorable postop-
erative outcomes.13

3.2 | Group B

This group includes TRU-type LADCs that entirely or partially show 
cribriform and solid elements with mucin production. This group af-
fects relatively young nonsmokers (Table 1) and shows relatively fa-
vorable prognosis (Figure 2). Gender predisposition seems relatively 
weak (Table 1). This group is rare and comprises 2.5% of all surgically 
removed LADCs (Table 1). A particular feature is frequent fusion gene 
mutations, such as ALK and ROS1 (Table 2 and Figure 3). This type can 
be described as “solid LADC with mucin production,” “acinar LADC 
with cribriform structure with mucin production,” or sometimes as 
“signet ring cell carcinoma,” in pathological diagnosis reports.

3.3 | Group C

As group A, group C includes TRU-type LADCs that predominantly 
affect female nonsmokers. This type has a micropapillary element 
in lepidic or papillary backgrounds, where proportions of the mi-
cropapillary element vary among cases, but generally are not so 
large (typically 5 to 25%) in surgically removed LADCs.13,14 LADCs 
of this group are usually described as “lepidic or papillary-dominant 
LADC with micropapillary element” or simply as “lepidic or papillary-
dominant LADC” or “minimally invasive adenocarcinoma” in patho-
logical diagnosis reports, and they comprise 13.8% of surgically 
removed LADCs (Table 1). Proliferating activities are generally not 
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F I G U R E  1   A scheme of histological 
progression of lung adenocarcinomas 
(LADCs) in the nonsmokers’ (left panels, 
blue arrows) and smokers’ (right panels, 
red arrows) pathway is shown. In the 
smokers’ pathway, group A (lepidic 
histology) develops from the terminal 
respiratory unit (TRU) with EGFR 
mutations, and some of them can progress 
to group C (micropapillary) through 
accumulations of second molecular 
alterations. Group B (acinar/cribriform 
with mucin) may directly develop from 
the TRU with ALK mutations. In the 
smokers’ pathway, group D (mucinous 
subtype) develops from the non-TRU/
central airway compartment (CAC), where 
one major driver in the smoker's pathway 
is KRAS. Some can progress to group 
E (conventional acinar/solid) through 
second alterations. Alternatively, there are 
putative extra-bypassing pathways. Under 
exposing to smoking stimuli, group A can 
progress to group E (orange arrow). Also, 
through acquired thyroid transcription 
factor 1 (TTF1) inactivation, group A 
can progress to group D (dashed orange 
arrow). Scale bars, 50 µm

F I G U R E  2   Kaplan-Meier's disease-free survival curves from whole (A) and pathological stage 0/I (pStage 0/I) lung adenocarcinomas 
(LADCs) (B) are shown. A total of 706 cases who underwent surgical resection in Kanagawa Prefectural Cardiovascular and Respiratory 
Center Hospital from 1994 to 2013 were examined: 514 stage 0/I (279 group A, 11 group B, 59 group C, 49 group D, and 116 group E), 192 
stage II/III (17 group A, 7 group B, 38 group C, 16 group D, and 114 group E). Pathological stages were determined according to the AJCC 
Cancer Staging Manual 8th edition50
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as strong (Table 1), but they often show strong lymphatic canal and 
vascular involvements and aggressive clinical courses 13,15 (Figure 2). 
Most inoperable cases from nonsmokers belong to this group.13,16 
Fortunately, this group generally has EGFR mutations (Table 2 and 
Figure 3) and can respond well to EGFR-TKI treatments.13,15,17,18

3.4 | Group D

This group exclusively comprises specific histological subtypes of 
mucinous LADC (invasive or in situ) and enteric LADC. They consist 

of tall columnar neoplastic cells that are usually mucin producing. 
This group is negative for TTF1 and positive for hepatocyte nu-
clear factor 4α (HNF4α), an important transcription factor in the 
upper digestive tract epithelia, implying their gastric/intestinal 
differentiation; hence they are categorized as non-TRU–type.19 
This group is infrequent and comprises 9.3% of surgically removed 
LADCs (Table  1). LADCs of this group preferentially develop in 
male smokers, but gender difference and smoker predisposition 
seems to be not so significant. This group shows relatively poor 
clinical courses (Figure 2). LADCs of this group are frequently af-
fected by KRAS mutations but almost never by EGFR mutations 
(Table  2 and Figure  3).7,10,19,20 Interestingly, NRG1 mutations are 
specific to group D.21 Another particular feature is a strong rela-
tionship to pulmonary fibrosis.20 Most of pulmonary fibrosis pa-
tients are smokers.20 Smoking-related carcinogens, chronic cellular 
damage, and tissue remodeling might promote this group of LADC 
in cooperation. LADCs of this group can be described as “mucinous 
LADC,” “enteric LADC,” or maybe sometimes “acinar LADCs” in 
pathological diagnosis reports.

3.5 | Group E

The fifth group is typically observed in male heavy smokers. This 
group comprises 32.4% of all surgically removed LADCs (Table 1). 
LADCs of this group histologically show acinar or solid architecture, 
where neoplastic cells tend to be larger and show more remark-
able nuclear atypism and polymorphism than the other groups.12 
Noteworthily, 12.3% of LADCs in this group are negative for both 
TTF1 and HNF4α (our original data), suggesting their poor degree of 
differentiation. Proliferating activity is generally high, with a Ki-67 
labeling index of more than 0.3 (Table 1). This group shows signifi-
cantly worse clinical courses (Figure 2). Genetically, 18.1% of LADCs 
have KRAS mutations, and also small proportions have EGFR or ALK 
mutations (Table 2, Figure 3). However, more than 60% of LADCs in 
this group have no known driver mutations (Table 2, Figure 3). Thus, 
due to its heterogeneity, group E might be the terminal of the dif-
ferent pathways. LADCs of this group can be described as “acinar 
dominant LADC,” “solid dominant LADC,” or “poorly differentiated 
LADC” in pathological diagnosis reports.

4  | TUMOR PROGRESSION IN THE 
NONSMOKERS’  PATHWAY

A micropapillary element is an essential determinant for the ma-
lignant activity in TRU-type LADCs.16,17,22,23 As mentioned previ-
ously, group C has EGFR mutations as frequently as group A; both 
are TRU-type LADCs and commonly share a lepidic (or papillary) 
element. Thus, it is suggested that a micropapillary element could 
generate from lepidic (or papillary) elements. So far, pathologists 
have investigated morphological features of micropapillary ele-
ments and suggested that a micropapillary element is a structure 

TA B L E  2   Frequencies (%) of driver mutations in the five groups 
(A-E) proposed

A 
(184) B (15) C (79)

D 
(46)

E 
(166)

EGFR 72.3 0.0 74.7 0.0 11.5

ERBB2 4.9 0.0 1.3 0.0 1.8

MET 2.7 0.0 5.1 0.0 1.2

ALK 1.1 60.0 2.5 0.0 1.2

ROS1 1.1 20.0 0.0 0.0 0.0

RET 0.0 6.7 0.0 0.0 0.0

BRAF 0.5 0.0 1.3 0.0 3.6

KRAS 2.2 0.0 0.0 55.4 18.1

NRG1 0.0 0.0 0.0 10.9 0.0

NONE 13.6 13.3 16.5 34.8 63.3

Note: Lung adenocarcinomas surgically resected in Kanagawa 
prefectural cardiovascular center hospital were examined. Number in 
each of the groups is shown in parentheses after the alphabets.

F I G U R E  3   Frequencies of driver mutations are shown in each 
of the groups. A difference in the driver mutations is remarkable 
between the groups. EGFR mutations are mostly seen in groups 
A and C, ALK and ROS1 mutations are seen in group B, and KRAS 
mutations are more commonly seen in group D, followed by group 
E
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resulting from tumor cells’ focal stacking to form pseudopapil-
lary projections without fibrovascular stalks.17,24,25 To form such 
structures, neoplastic cells are inevitably anchorage independ-
ent, detach from basement membranes, can grow, and simul-
taneously have to retain epithelial polarity and an intercellular 
adhesion system partially.13,23-26 It is essential to question how 
lepidic (or papillary) elements acquire the micropapillary pheno-
type in terms of their molecular basis.14,23-25,27 p53 mutations can 
be an important factor to trigger this process,28-30 but there also 
seem to be additional unique events. Our recent study demon-
strated differentially expressed genes in micropapillary elements 
compared with lepidic elements.31 The results showed some al-
terations in adhesion molecules, basement membrane materials, 
and kinases.31 In particular, overexpression of oligo-glycosylated 
MUC21 protein 22 and amplification of chromosome 12q13-21 
locus covering CDK4, MDM2, and DYRK2 genes 31 were suggested 
to participate in producing micropapillary elements. Although 
there are no other studies that comprehensively compare mo-
lecular profiles between micropapillary and background lepidic 
(or papillary) elements in individual tumors, several studies have 
shown differences in molecular alterations (genetic mutations) 
between high-grade and low-grade components of LADCs (that 
were not specified as micropapillary).28 They also demonstrated 
molecular alterations likely to be involved in producing micro-
papillary morphology, such as gain of CXCL14, MET, AXIN1, and 
WNT family proteins 18,26,32-34 (Table 1). The mechanisms behind 
the molecular alterations and how these alterations produce mi-
cropapillary elements are still largely unclear. Uncovering these, 
as well as carcinogens which promote this process, could lead to 
the establishment of novel therapeutic and prevention strategies.

5  | TUMOR PROGRESSION IN THE 
SMOKERS’  PATHWAY

The smokers’ pathway appears to be more complex. Poorly differ-
entiated LADCs (group E) can arise from other groups mentioned, 
not only non-TRU/CAC–type LADCs (group D) but also TRU-type 
LADCs (group A), as group E includes both TTF1-negative (non-
TRU) and positive (TRU) LADCs (Table 1). Interestingly, in group 
E, even in TTF1-positive LADCs, EGFR mutations are rather rare 
(Table  2 and Figure  3). The frequency of KRAS mutations, that 
are the most common driver mutations in the smokers’ pathway, 
is also not high (Table 2 and Figure 3),12,35 suggesting that there 
could be another alternative tumor-driving system.7,28 We pro-
pose a hypothesis that there may be no single strong leading mu-
tation in LADCs in the smoker's pathway. Several tiny mutations 
each could participate in small quantities, the sum of which could 
be equivalent to one driver mutation to promote tumor develop-
ment. In fact, smokers’ LADCs have been shown to accumulate 
more genetic mutations than nonsmokers’.28,36 It is of great inter-
est to uncover how such small mutations collectively drive the 
driver mutation–negative smokers’ LADCs. Concentrating efforts 

in molecular genetics and bioinformatics will solve this molecular 
puzzle in the near future.

Apart from driver mutations, regarding tumor progression, p53 
mutations are an important trigger factor,29,30 and disruptions of 
oncogenic KRAS-induced negative feedback systems, such as down-
regulation of DUSP6, miR-31, and upregulation of S100A11, are 
common events in the smokers’ pathway.37-45 Moreover, TTF1 muta-
tions and surfactant protein gene mutations are also reported to be 
unique to the smokers’ pathway.46,47

6  | E X TR A-BYPA SSING PATHWAYS

Alternatively, there could be extra-bypassing pathways. Actually, 
LADCs having both TTF1-positive lepidic and HNF4α-positive mu-
cinous components are occasionally seen. Interestingly, Matsubara 
D et al demonstrated that mucinous LADCs with TTF1-positive le-
pidic component more often had TTF1 gene mutations and meth-
ylations than pure mucinous LADCs.47 The findings suggest that 
there could be a bypass from A to D (Figure 1). Also, as mentioned 
afore, group E might be the terminal of the different pathways. 
Under exposing to smoking stimuli, different groups might progress 
to group E (Figure 1).

7  | ISSUES IN RECENT LUNG C ANCER 
RESE ARCH

Large-scale genetic analyses have provided us with a large volume of 
information and are helping to uncover a fuller picture of the molecu-
lar basis of LADC. However, more care should be taken regarding the 
processing of analytical results. For example, it is important to take 
into consideration if the tumor is definitely negative for driver mu-
tations. Analytical results may be false negatives due to extremely 
small neoplastic cell contents. In general, LADCs, particularly, poorly 
differentiated ones, have many leukocytes and fibroblasts, and 
hence this “noise” can easily result in false negatives. Purification 
of neoplastic cells from tumor tissues is an important process to im-
prove accuracy of mutational analyses. At present, histological (or 
cytological) appearance is the most reliable biological marker that 
detects neoplastic cells. However, using artificial intelligence to de-
tect neoplastic cells and the automatic operation of microdissection 
systems can improve accuracy.

8  | FUTURE PERSPEC TIVE

Again, the recent advance in molecular genetics has uncovered a lot 
of molecular targets for therapeutic agents. However, this progress 
seems to have been slowing down in recent years. Going forward, 
we should focus on molecular alterations responsible for tumor 
progression, which would be targets for next-generation therapies. 
For such alterations, we here suggest a term “progressor.” We know 
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intratumor subclonal heterogeneity and passenger mutations (non-
functional noise) are critical obstacles against successful detection 
of essential molecular alterations to promote tumor progression.48,49 
Thus, simple large-scale analyses on bulky tumor samples are not 
sufficient for the success. As is shown in Figure 4, if we compara-
tively analyze high-grade components and background low-grade 
components from identical tumors, it alleviates the issue of noise. 
Microdissection systems can be the most dependable way to reach 
such targets.

9  | SUMMARY AND CONCLUSION

There are the two major pathways in LADC carcinogenesis. In the 
nonsmokers’ and smokers’ pathways, the terminals are micropapil-
lary and acinar/solid histology, respectively. LADCs are highly het-
erogenous even in an identical tumor. Different genetic alterations 
can participate in each pathway, and identifying essential molecular 
alterations promoting tumor progression is a critical task. To meet 
the next goal, focusing on high-grade elements based on careful his-
tological examinations is necessary.
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