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Introduction
The syndrome of  spontaneous preterm birth (sPTB) is a major cause of  neonatal death and morbidity globally 
(1). Considerable effort has been directed toward defining the causal mechanisms responsible for the different 
manifestations of  this complex syndrome (2, 3), with inflammation and/or infection consistently emerging 
as important factors for midtrimester miscarriage, early sPTB (<34 weeks), and preterm prelabor rupture of  
membranes (PPROM; refs. 4–7). The contribution of  the vaginal microbiota/microbiome to sPTB, although 
the focus of  many studies (8–17), has yet to result in a clear understanding of  the pathophysiology — or in the 
identification of  effective biomarkers and clinical interventions to improve pregnancy outcomes (18).

Associations between vaginal bacterial communities, bacterial vaginosis (BV), and preterm birth are 
widely reported (12, 15, 16). Distinct vaginal bacterial communities have been identified in nonpregnant and 
pregnant women by means of  16S rRNA gene amplicon sequencing and community state type (CST) clas-
sifications (17, 19). Typically, a healthy vaginal ecosystem and term birth has been described as a Lactoba-
cillus-dominated microbiome, with microbiota metabolites playing important roles in inhibition of bacterial 
and viral infections (14, 20) — e.g., Lactobacillus crispatus contributes to low pH by secreting the metabolite 
D-lactate (21). In contrast, vaginal dysbiosis (with or without symptoms of BV), by disrupting the ecological 
equilibrium, has been proposed to induce local inflammation and risk of  invasion by infectious agents poten-
tially increasing sPTB risk (22, 23). Low relative abundance of  L. crispatus, with raised L. iners and acetate — 
together with low levels of  succinate and lactate — have been implicated in this (15). However, BV does not 

The syndrome of spontaneous preterm birth (sPTB) presents a challenge to mechanistic 
understanding, effective risk stratification, and clinical management. Individual associations 
between sPTB, self-reported ethnic ancestry, vaginal microbiota, metabolome, and innate immune 
response are known but not fully understood, and knowledge has yet to impact clinical practice. 
Here, we used multi–data type integration and composite statistical models to gain insight into sPTB 
risk by exploring the cervicovaginal environment of an ethnically heterogenous pregnant population 
(n = 346 women; n = 60 sPTB < 37 weeks’ gestation, including n = 27 sPTB < 34 weeks). Analysis of 
cervicovaginal samples (10–15+6 weeks) identified potentially novel interactions between risk of sPTB 
and microbiota, metabolite, and maternal host defense molecules. Statistical modeling identified a 
composite of metabolites (leucine, tyrosine, aspartate, lactate, betaine, acetate, and Ca2+) associated 
with risk of sPTB < 37 weeks (AUC 0.752). A combination of glucose, aspartate, Ca2+, Lactobacillus 
crispatus, and L. acidophilus relative abundance identified risk of early sPTB < 34 weeks (AUC 0.758), 
improved by stratification by ethnicity (AUC 0.835). Increased relative abundance of L. acidophilus 
appeared protective against sPTB < 34 weeks. By using cervicovaginal fluid samples, we demonstrate 
the potential of multi–data type integration for developing composite models toward understanding 
the contribution of the vaginal environment to risk of sPTB.
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explain all sPTB, conferring only a 2-fold increase in risk (24), and not all sPTB deliveries present a microbial 
profile dominated by L. iners (11). This is particularly apparent among Black women, where mixed bacterial 
vaginal communities are common even before pregnancy (9, 12, 25, 26), but a relative lack of  lactobacilli does 
not appear to explain the higher rate of  sPTB in a US study of Black women (10). Knowledge of  the vaginal 
microbiota alone seems insufficient to develop sPTB prediction tools, and a much greater understanding of the 
vaginal microbiota and the environment within which it lives (i.e., maternal host response) is clearly needed.

Previously, in pregnant women with a history of  sPTB or late miscarriage, we explored the contribution 
of  the maternal host response to risk of  preterm birth (27–30). Host defense peptides (HDPs), including trap-
pin2/elafin (referred to here as elafin, a protein regulated by tryptases and inhibitor of  human neutrophil elas-
tase [HNE]) and cathelicidin (a peptide synthesized by epithelial cells and coreleased with HNE from neutro-
phils) were raised in cervicovaginal fluid (CVF; refs. 27, 28, 30). The stimuli for these innate host responses 
were not directly investigated, but we proposed a role for vaginal dysbiosis and suggested that inflammation 
could contribute to sPTB risk through cervical collagen remodeling. Bacterial metabolites could also compro-
mise cervicovaginal defenses via modulation of  host response and epithelial function (20).

In this study, we have explored interactions between the cervicovaginal metabolic environment and 
microbiota in tandem with the host innate immune response in a prospective United Kingdom (UK) longitu-
dinal cohort of  pregnant women (INSIGHT). A combination of  single data type and integrative analyses was 
performed to understand the relation between specific components of  the vaginal environment and risk of  
sPTB (<34 weeks [sPTB34]; <37 weeks [sPTB37]) both in the whole community and stratified by self-report-
ed ethnic ancestry (based on UK national census groups; ref. 31), with the goal of  supporting development of  
sPTB prediction tools and treatments that could be applied in clinical settings.

Results
Study participant demographics. Demographic details of  the pregnant participants and corresponding CVF sam-
ples are presented in Supplemental Table 1 (supplemental material available online with this article; https://
doi.org/10.1172/jci.insight.149257DS1). CVF analysis provided matched bacterial (16S rRNA gene), metab-
olome (1H-NMR), and biochemical (pH, HDPs, and HNE) data sets at study entry (10–15+6 weeks gesta-
tion) and later in pregnancy (16–23+6 weeks). A total of  346 women provided at least 1 sample during early 
(10–15+6 weeks) and/or later (16-23+6 weeks) gestation for analysis (Supplemental Figure 1). The self-report-
ed ethnicities for this UK-based cohort were: White (68.2%), Black (British, African, or Caribbean, 21.7%), 
and Other (Indian, Pakistani, Bangladeshi, Arab, Chinese, South East Asian, other unreported/unclassified, 
10.1%). Most sPTB cases (<37 weeks, which included midtrimester miscarriage, n = 60) originated in the 
high-risk group (women recruited from preterm birth surveillance clinics) (Supplemental Table 1). Differences 
in BMI could be observed between different self-reported ethnicities with an increase in Black women, but this 
was irrespective of  pregnancy outcome (Supplemental Figure 2).

Relationship between CVF microbiota communities and metabolites. Grouping of  samples by principal coor-
dinates analysis (PCoA) (Supplemental Figure 3) differed slightly from the CST identified and reported by 
Ravel et al. (17) as follows: PCoA group A (dominated by L. crispatus), group B (L. gasseri), group C (L. iners), 
group D (a range of  diverse bacteria), and group E (predominance of  both L. crispatus and L. gasseri) (Supple-
mental Figure 4). L. jensenii was found in high abundance in some of  the samples belonging to PCoA groups 
C and D; it was present in 91% of  the samples but reached 10% of  the community in 13.6% of  samples, 
while it dominated the community in only 0.57%.

Integration of  metabolites with PCoA groups demonstrated strong relationships between individual 
metabolites and bacterial composition (significant comparisons shown in Supplemental Table 2). Women 
with a high prevalence of  L. crispatus (PCoA A), as expected, presented significantly higher levels of  lactate 
in comparison with women assigned to PCoA groups B or C; lactate levels were also increased in PCoA C 
compared with PCoA D (Figure 1A). The pH profile reflected the association with lactate (Figure 1, A and 
G). In contrast, metabolites such as acetate, Ca2+ (identified through its binding to EDTA), betaine, glucose, 
and succinate showed an opposing pattern with lower concentrations in women presenting dominance of  L. 
crispatus (Figure 1, B–F). When stratified by ethnicity (Black and White women), Orthogonal Projections to 
Latent Structures — Discriminant Analysis (OPLS-DA) of  the 28 metabolites from the CVF nuclear mag-
netic resonance (NMR) showed differences at both time points (Supplemental Table 3 and Supplemental 
Figure 5). Specifically, White women exhibited significantly lower Ca2+ (P < 0.05; Supplemental Figure 5, A 
and B) and higher lactate in later pregnancy (P < 0.05; Supplemental Figure 5C).
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Relationship between CVF microbiota communities, metabolites, and pregnancy outcome. sPTB37 was associated 
with a lower abundance of  PCoA group A and an increase in group C at both sampling gestations (Figure 
2, A and B, and Supplemental Figure 6). For high-risk women who later developed a short cervix during 
pregnancy (a known risk factor for sPTB), their baseline PCOA was compared with other high-risk women 
who did not develop a short cervix (Supplemental Figure 7). In early pregnancy, operational taxonomic unit 
(OTU) composition was significantly different for pregnancy outcome (term versus sPTB37) (Permutational 
multivariate analyses [PERMANOVA] early and late P < 0.005).

White women delivering < 37 weeks exhibited a shift from PCoA A to PCoA B (Figure 2C and Supple-
mental Figure 7). However, regardless of  outcome, the CVF of Black women was mainly characterized by 
PCoA groups C or D during early and late gestations (Supplemental Figure 8). Both Black and White women 
delivering sPTB37 presented more stable PCoA groups (Figure 2, C and D), with reduced changes in bacterial 
community between early and late pregnancy. Differences in OTU composition detected in term and sPTB37 
for White and Black cohorts are illustrated in Supplemental Figures 9 and 10.

Differences in OTU profiles were analyzed using the linear discriminant analysis (LDA) effect size 
(LEfSe). LEfSe analyses based on term outcome for the whole community allowed the identification of  
OTU_1 (consensus identification L. crispatus) as an indicator of  term outcome in both early and late samples 
and OTU_6 (L. acidophilus) in earlier samples, while OTU_18 (Prevotella bivia) and OTU_27 (L. delbrueckii) 
were identified as associated with sPTB37 (Supplemental Table 4). When separating the data set based on 
racial or ethnic groups, OTU_1 (L. crispatus) alone was associated with term birth both in early and late sam-
ples in White women. However, for Black women, it was only possible to determine OTUs associated with 
term pregnancy in late samples, with several OTUs associated with preterm outcome in both visits (Supple-
mental Table 4). Low relative abundance of  OTU_6 (L. acidophilus) was associated with sPTB37 (mean 0.004 
± 0.007). OTUs associated with sPTB34 weeks are shown in Supplemental Table 5.

OPLS-DA analyses did not show differences in the metabolic profile of  women who delivered sPTB37 
compared with term women. However, using the univariate Cox model, we identified features related to preg-
nancy outcome (Table 1). Analyses showed that acetate and Ca2+ are features able to identify and distinguish 
between term and sPTB37 with other metabolites, including with aspartate associated with sPTB34. Lactate 
was also identified — but only in late samples within the whole cohort; this most likely reflects the previously 
report gestational shift toward Lactobacillus spp. (8) and more specifically L. crispatus dominance (11).

Relationship between CVF host response (HDPs), microbiota, and metabolome. CVF measurements of  the host 
response (elafin and HNE) at study entry (early pregnancy), originating from a subset of  the data published 
for the INSIGHT cohort (30), were utilized to assess relationships with microbial community and metabolic 
composition. Elafin concentrations were significantly increased in women with PCoA group A compared 
with groups B and E (Figure 1H), suggesting elafin plus the presence of  L. crispatus is protective and is poten-
tially modulated by bacteria or metabolites present within other PCoA communities. Inverse patterns are 
observed for cathelicidin (measured in high-risk women only) where PCoA A presented lower concentrations 
in relation to groups C and D (Figure 1I). No significant relationship was observed for HNE with bacterial 
PCoA groups. CVF inflammation was higher in Black women compared with White women. Elafin concen-
trations in Black women were raised during both visits (PKruskal-Wallis < 0.05). Cathelicidin concentrations (only 
measured in high-risk women) were also significantly increased in late pregnancy in Black women compared 
with White women (PKruskal-Wallis < 0.01).

CVF metabolites provide a summary readout of the functional impact of complex bacterial communities 
on the vaginal environment, and we interrogated this relationship through Spearman’s correlation analyses of  
vaginal OTUs (most abundant OTUs and some identified through LEfSe in comparison with sPTB37) and 
metabolites (Figure 3A and Supplemental Figure 11A). This was repeated using data from high-risk women 
only so that cathelicidin interactions could be assessed (Figure 3B and Supplemental Figure 11B). Subsequent-
ly, a similar analysis was run to include CVF pH data (Supplemental Figure 12, A and B). Several OTUs 
significantly correlated with individual metabolites after adjusting P values. Notably, OTU_6 (L. acidophilus) 

Figure 1. Whole cohort cervicovaginal fluid (CVF) components relationships. CVF metabolites, pH, and host defense peptides explored in relation with 
bacterial composition based on Principal Coordinates Analysis (PCoA) groups in early pregnancy (10–15+6 weeks). Wilcoxon comparison shown if P < 0.05. 
(A–I) lactate, acetate, Ca2+, betaine glucose, succinate, pH, elafin, and cathelicidin (high-risk women only). Number of samples (n) per PCoA group compari-
sons as follows: (A–F) PCoA A = 89, PCoA B = 31, PCoA C = 115, PCoA D = 64, and PCoA E = 6. (G) PCoA A = 55, PCoA B = 19, PCoA C = 62, PCoA D = 39, and 
PCoA E = 4. (H) PCoA A = 85, PCoA B = 29, PCoA C = 111, PCoA D = 61, and PCoA E = 6. (I) PCoA A = 41, PCoA B = 16, PCoA C = 76, PCoA D = 37, and PCoA E = 4. 
Y axis represents the normalized NMR peaks (arbitrary units, au) (A–F), pg/μL (H), and ng/mL (I). Horizontal line and boxes represent median and IQR.
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and OTU_27 (L. delbrueckii) were each positively associated with the aspartate signal (Figure 3A); OTU_6 (L. 
acidophilus), in turn, was negatively correlated with OTU_2 (L. iners). OTU_1 presented positive correlation 
with lactate and negative correlation with acetate, glucose, and OTU_2. OTU_2 and OTU_20 (L. iners) showed 
relatively few significant correlations with other OTUs and metabolites. Conversely, OTU_5 and OTU_10 
(Gardnerella vaginalis group), OTU_7 (Megasphaera “OTU70”), OTU_9 (Atopobium vaginae), OTU_11 (Sneath-
ia amnii), OTU_15 (Aerococcus christensenii), OTU_16 (Prevotella amnii), OTU_17 (Sneathia sanguinegens) and 
OTU_24 (Dialister unclassified; Figure 3A) were negatively correlated with lactate and aspartate, while positive-
ly correlated with acetate, Ca2+ (Figure 3A), and pH (Supplemental Figure 12A). There were other, but differ-
ing, correlations for members of this OTU cluster with other metabolites (e.g., succinate and serine). OTU_18 
(Prevotella bivia) showed some overlapping positive correlations with this above the OTU cluster — alongside 
choline, formate (Figure 3A), and pH (Supplemental Figure 12A) — and a significant positive correlation with 
acetate at both time points (Figure 3A and Supplemental Figure 11A).

Ca2+, which emerged as significant in a variety of  our analyses (e.g., feature selection and univariate), cor-
related positively with acetate, succinate, betaine, choline, carnitine, formate and uracil and OTU_7 (Megas-
phaera “OTU70”), OTU_9 (Atopobium vaginae), OTU_11 (Sneathia amnii), OTU_15 (Aerococcus christensenii), 
OTU_16 (P. amnii), OTU_17 (S. sanguinegens), and OTU_24 (Dialister unclassified). Elafin correlated negative-
ly with acetate, succinate, and pH but positively correlated with lactate and aspartate (Supplemental Figure 
12A). In high-risk women (Figure 3B), cathelicidin correlated positively with HNE, corresponding with the 
biological corelease of  cathelicidin and HNE from neutrophils. Cathelicidin was positively correlated with 
acetate, betaine, choline, glucose, and phenylalanine and negatively with OTU_1 (L. crispatus) (Figure 3B). 
Neither cathelicidin nor HNE were clearly associated with other individual OTUs in early pregnancy, but the 
metabolites with which they correlate are associated with PCoA group D. In high-risk women at late gesta-
tion, OTU_2 (L. iners) showed a negative correlation with cathelicidin while OTU_1 (L. crispatus) presented a 
positive correlation (Supplemental Figure 12B).

Developing sPTB models using species-level phylotypes, metabolites, and HDPs. Exploratory statistical modeling, to 
gain insight into which metabolites and bacteria influence risk of sPTB37 and sPTB34 prediction, was undertak-
en using all available data. Individual sequence reads were assigned to species-level phylotypes for this analysis.

Considering phylotypes individually for sPTB37, only L. crispatus (low relative abundance) and L. gasseri 
emerged as significant. However, when combined into a model, only L. crispatus remained significant and the 
ROC curve area for this microbiota model was poor (0.647; 95% CI, 0.590–0.704) and reduced further when 
stratified for Black ethnicity (0.455; 95% CI, 0.342–0.568).

Considering metabolites, stepwise regression analysis identified a composite of 7 metabolites that could 
predict sPTB37 (ROC curve area, 0.752; Supplemental Table 6); this included leucine, tyrosine, aspartate, lac-
tate, betaine, acetate, and Ca2+. This model had reasonable ROC curve areas in relation to sampling times: 
10–15+6 weeks (0.748); 16–23+6 (0.751), and also ethnicity (Black women, 0.716; White women, 0.750; Other, 
0.751). The model only exhibited modest performance for sPTB34, particularly when stratifying for ethnicity 
(ROC curve area, 0.728 all women; white women, 0.762; black women, 0.632; other, 0.722). Addition of phy-
lotypes or elafin to the metabolite model did not improve its performance. For sPTB34, separate unadjusted 
analyses identified 7 individual metabolites as statistically significant (acetate, methionine, aspartate, betaine, 
glucose, free EDTA, Ca2+). Following stepwise regression, however, only glucose, aspartate, and Ca2+ were 
retained in the model (Supplemental Table 7).

Using phylotypes alone for prediction estimates and stepwise logistic regression, low L. crispatus (odds ratio 
[OR], 0.196; 95% CI, 0.054– 0.714, P < 0.01) and L. acidophilus (OR, 0.010; 95% CI, 0.001–0.099, P < 0.001) 
were retained in the prediction model for sPTB34 weeks. However, when ethnicity were included in the model, 
L. crispatus became less important (Supplemental Table 8). An interesting relationship between phylotypes iden-
tified as L. crispatus and L. acidophilus also emerged (Figure 4). For women where their CVF had low relative 
abundance of L. crispatus but a relatively high proportion of L. acidophilus (20%), there was no sPTB34 reported.

Figure 2. Bacterial composition of the cervicovaginal fluid based on Principal Coordinates Analysis (PCoA) groups and stratified by pregnancy outcome. 
(A) Distribution of PCoA groups in the whole community based on delivery outcome for term birth and spontaneous preterm birth before 37 weeks’ 
gestation (sPTB37) in early samples (10–15+6 weeks). (B–D) Dynamics of PCoA groups during pregnancy as identified in the early and late (16–23+6 weeks) 
sampling times in relation to delivery outcome for the whole community (B), for White women (C), and Black women (D). Circles represents early samples, 
and crosses represent late samples. (A and B) Early samples term, n = 255, and sPTB37, n = 50; late samples term, n = 263, and sPTB37, n = 50. (C) White 
women early samples term, n = 184, and sPTB37, n = 23; late samples term, n = 190, and sPTB37, n = 28. (D) Black women early samples term, n = 51, and 
sPTB37, n = 16; late samples term, n = 52, and sPTB37, n = 13.
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We further assessed the 3-metabolite composite model by combining it with L. crispatus and L. acidophilus 
proportions (± elafin) to assess risk prediction for sPTB34. Both L. crispatus and L. acidophilus improved the 
model (Supplemental Table 9), but elafin did not. This gave a final model (adjusted for 37 potential predictors) 
that included L. crispatus, Ca2+, aspartate, L. acidophilus, and glucose. Ethnicity further modified the model 
(Supplemental Table 9). ROC curves are shown in Figure 5. We did not assess cathelicidin, as it was measured 
only in high-risk women and has been reported previously (30).

Discussion
sPTB is a complex syndrome, and although disturbances of the cervicovaginal microbiota are increasingly 
implicated, any clinical benefit from these observations has yet to be realized. Consideration of how vaginal 
microbiota profiles may contribute to pathophysiological pathways that lead to sPTB has also been limited. To 
address these knowledge gaps, we explored whether increased risk of sPTB was directly associated with the cer-
vicovaginal metabolic profile, alterations to the host response, and the presence of specific bacteria with a holistic 
strategy. We demonstrated that the cervicovaginal environment differs based on a woman’s obstetric history and 
ethnicity. We have found that a more diverse bacterial CVF profile in pregnancy is associated with raised pH, 
host response markers, and atypical metabolite profiles. We have also identified several OTUs and phylotypes 
related to term pregnancy and sPTB, with L. acidophilus (as a phylotype and specific OTU) emerging as being 
protective against early sPTB — a finding that presents a possible tool in the prevention of sPTB. These obser-
vations strengthen our working hypothesis that an inflammatory environment evoked by the vaginal bacteria 
increases the risk of inadequate cervicovaginal defense and reduced cervical integrity. Furthermore, interroga-
tion of individual and integrated data sets has given insight into functional correlations between bacterial groups 
and both metabolic and immune response activity (microbial/host interactions), and it has enabled exploratory 
statistical modeling of CVF risk factors for sPTB. Our approach has highlighted the potential for measures of  
biological variables in CVF to improve sPTB risk stratification and subsequent intervention.

Taking into account that racial and ethnic differences could also reflect differences in environmental and 
social exposures, our study is in agreement with reports that Black ethnicity is a risk factor for sPTB (31–33), 
and it complements and adds knowledge to findings from previous studies (9, 10, 12, 16, 17, 19, 25, 26, 34, 
35) by demonstrating differences between the cervicovaginal environments based on women self-reporting 
White and Black racial backgrounds and providing data on the whole cervicovaginal environment (9, 10, 12, 
16, 17, 19, 25, 26). A healthy vaginal environment in pregnancy is considered to be one with low microbial 
diversity (14, 25). Correspondingly, we also identified OTU_1 (L. crispatus) to be associated with low risk of  

Table 1. Feature selection based on univariate Cox model for pregnancy outcome, gestation days, and ethnicity

Event Early samples Event Late samples 

All women

sPTB37 
(n = 54) Acetate; Ca2+ sPTB37 

(n = 52) 
Lactate; acetate; betaine; serine; 

glucose; Ca2+

sPTB34 
(n = 25) 

Leucine; isoleucine; valine; methionine; 
glutamate; aspartate; asparagine; threonine; 

tryptophan

sPTB 34 
(n = 21) Acetate; betaine; taurine; glucose; Ca2+

Black and White women

sPTB37 
(n = 43) Acetate; methionine; Ca2+ sPTB37 

(n = 43) Lactate; acetate; glutamate; Ca2+; Mg2+

sPTB34 
(n = 19) 

Leucine; isoleucine; valine; methionine; 
glutamate; aspartate; asparagine; carnitine; 

threonine

sPTB34 
(n = 17) Acetate; Ca2+

White women

sPTB37 
(n = 27) Acetate; carnitine; taurine; Ca2+ sPTB37 

(n = 29) Acetate; betaine; Ca2+; carnitine

sPTB34 
(n = 10) Methionine; betaine; carnitine sPTB34 

(n = 10) 

Black women

sPTB37 
(n = 16) Fail to identify feature sPTB37 

(n = 14) Acetate; glutamate; Ca2+; Mg2+

sPTB34 
(n = 9) 

Leucine; isoleucine; lactate; methionine; 
aspartate; asparagine; sPTB34 (n = 7) Fail to identify feature

Metabolites measured in both early (10–15+6 weeks) and late (16–23+6 weeks) cervicovaginal fluid samples for event as spontaneous preterm birth < 37 or < 
34 weeks (sPTB37, sPTB34), P < 0.05. 
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sPTB (15–17, 21, 36). Notably, when stratified for ethnicity, this relationship was stronger for White than 
Black women. OTU_6 (L. acidophilus) provided protection against sPTB34 in all women, even when aggregat-
ing data as phylotypes. Therefore, early pregnancy screening for both species has promise as a much-needed 
screening tool for risk stratification for women in their first pregnancy when their risk is unknown. For women 
already identified as high-risk, based on obstetric history, such testing could provide reassurance of  vaginal 
health, insight into their specific pathophysiology, and indicators for treatment. We are currently validating 
the clinical utility of  this approach in our cohort.

The PCoA groups, which were identified in our heterogenous UK cohort, were consistent with, but had 
some differences to, those previously published (13, 17, 37). For example, our data do not fully support the 
previous inference that a L. iners–dominated CST confers the greatest risk of  sPTB (11, 36). This may be due 
to acknowledged differences in methodology (14, 38) or limited scope to stratify by ethnicity. In contrast, L. 
jensenii, which in other studies clearly defines CST V (14, 17), was found in high abundance in some of  the 
samples belonging to PCoA groups C and D, but the abundance of  L. jensenii was not a major discriminant 
between groups. Similarly, L. gasseri was the major species found in PCoA group B. In our study, 10% of  
samples fell into group B, while Ravel et al. and MacIntyre et al., respectively, reported that 6.3% and 9% of  
samples fell into the corresponding CST II (14, 17). The relative abundance of  L. gasseri was, therefore, not 
different to that previously described.

Differences with previous studies could be also be influenced by the use of  modified PCR primers to 
amplify the 16S rRNA gene and improve detection of  Bifidobacteriaceae, including G. vaginalis group, often 
missed with unmodified V1–V2 primers (14, 39). Limited detection of G. vaginalis group in other data sets 
could shift CST classifications and overestimate the importance of  L. iners (40). The majority of  Black women 
in our cohort exhibited high levels of  L. iners (OTU_2), but only 24% of pregnancies resulted in sPTB, similar 
to a study of  predominantly Black American women (10). Indeed, our statistical model (whole cohort and 
ethnicity stratification) rejected L. iners as a good predictor of  sPTB risk.

Classification of  women by PCoA groups in early pregnancy, even when stratified by ethnicity, also did 
not accurately identify those who delivered prematurely. Discovery of  a number of  OTUs that correlate with 
sPTB suggest that developing a “perfect” CVF prediction test based on a single bacterial species will be chal-
lenging, but the identification of  a panel of  candidate bacteria from women at risk could be of  some value; 
this is a concept currently being pursued by many researchers and commercial organizations (41).

The need for a panel of  specific bacteria to identify sPTB risk could be bypassed by evaluating the meta-
bolic profile defined by the vaginal bacterial community (42–44). The microbiota products D- and L-lactate, 
acetate, and succinate have been proposed as useful predictors of  sPTB (14, 15, 21, 42). However, few studies 
have considered the spectrum of CVF metabolites in relation to sPTB.

By integrating data sets, we identified distinct associations between PCoA groups and metabolites. For 
example, the positive correlation of glucose with PCoA groups C and D reflected the low relative abundance of  
L. crispatus, a major consumer of this sugar. Betaine, choline, and carnitine, involved in the trimethylamine syn-
thesis pathway (45), were also higher in PCoA groups C and D compared with L. crispatus–dominated PCoA.

Raised acetate and Ca2+ levels in early-pregnancy CVF were associated with sPTB delivery. Acetate, a 
marker of  anaerobic fermentation, has previously been related to sPTB and inflammation (15, 44, 46, 47) 
via cervicovaginal epithelial cell cytokine release (47). The relationship with Ca2+ is potentially novel and 
unexplained, although increased Ca2+ extrusion from host cells or bacteria could play a role. In other tissues, 
raised extracellular Ca2+ concentration can influence Ca2+ sensing receptor signaling pathways associated 
with inflammation and epithelial barrier integrity (48).

Metabolite-OTU correlations also revealed information about the coexistence of  communities, since not 
all OTUs assumed to be functionally associated showed similar correlations with metabolites. Many BV-asso-
ciated bacterial OTUs, for example, were positively associated with Ca2+ and acetate, but diverged with regard 
to betaine, formate, and succinate.

Aspartate, a carbon source for a number of  anaerobic bacteria, was included in our statistical models 
for identification of  women at higher risk of  preterm birth. The involvement of  aspartate appears complex, 
since — while being positively correlated with OTU_6 (L. acidophilus), which our data suggest is protective 

Figure 3. Spearman’s correlation analyses of early gestation cervicovaginal fluid. (A and B) OTUs and metabolites (n = 305) and OTUs, metabolites, elafin, 
cathelicidin, and HNE (n = 161). OTUs selected as follows: showing more than 1% average abundance; identified via LEfSe analyses as associated with sponta-
neous preterm birth (sPTB < 37 weeks). Only correlations with adjusted P < 0.05 are shown; scale represents correlations values: blue (negative) and red (positive).
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against sPTB34 — it is also positively correlated with 2 other OTUs, OTU_21 (B. breve) and OTU_27 (L. 
delbrueckii), which were frequently associated with sPTB in our analysis. Given neither of  these 2 OTUs 
correlated with OTU_6 (L. acidophilus), we hypothesize that any role they may play in relation to sPTB only 
emerges in the absence of  OTU_6 (L. acidophilus); this will require further validation.

Host response markers, elafin, cathelicidin, and HNE, provided insight into the cervicovaginal inflam-
matory milieu. We recently published detailed profiles of  these proteins in relation to sPTB (30) and in the 
present subanalysis report that both elafin and cathelicidin were higher in high-risk Black women compared 
with White women. Independent of  ethnicity, cathelicidin concentrations were clearly affected by the res-
ident bacterial community (PCoA groups and OTUs). While elafin showed some association with PCoA 
groups and 2 OTUs, there were striking correlations with metabolites (positively with lactate, aspartate, 
and leucine; negatively with Ca2+, acetate, and pH). This suggests that elafin is a marker of  vaginal health 
regulated by metabolic/inflammatory moieties rather than specific bacteria. Similarly, neither HNE or 
cathelicidin were strongly associated with specific OTUs, but rather with metabolites (e.g., cathelicidin was 
associated with Ca2+, formate, betaine, methionine, and acetate), suggesting that their neutrophil/epithelial 
release or expression (29) is regulated by metabolites or indirectly by pH and/or inflammatory mediators 
(e.g., epithelial cytokines; ref. 47). These data reinforce the suggested importance of  HDPs in maintenance 
of  a healthy vaginal environment (49, 50).

The relationship of  the vaginal environment with sPTB was further investigated by building statistical 
models, aiming to inform biological understanding and to signpost avenues for future biomarker development.

For sPTB37, a composite model of  metabolites alone was the best predictor. Since this model performed 
equally well for women of  different ethnicities and at both gestational sampling points, this mix of  metabo-
lites associated with vaginal health and dysbiosis appears to provide a robust functional readout of  complex 
cervicovaginal bacterial communities.

For sPTB34, a simpler model comprising glucose, aspartate and Ca2+ plus inclusion of  L. crispatus and 
L. acidophilus proportions was most useful. Although metabolites were similar in both models, the sPTB34 
model performed less well when stratified by ethnicity, presumably influenced by the inclusion of  L. crispatus 

Figure 4. CVF L. acidophilus proportion above 20% is associated with term birth. Relationship between the percent-
age of L. crispatus and L. acidophilus in cervicovaginal fluid (CVF) of women stratified by preterm delivery < 34 weeks 
(sPTB34, red) or delivery > 34 weeks (gray). Data from n = 618 samples (10–15+6 and 16-23+6 weeks) from n = 341 women.
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(related to term outcome in White women). The relative abundance of  L. acidophilus phylotype also showed 
predictive potential when considered alone; we suggest that L. acidophilus was sufficient to protect against 
sPTB34, perhaps filling a niche created when L. crispatus was less abundant. This finding, which emerged 
consistently in different analyses, suggests that women with a more diverse vaginal microbiome community 
benefit from the coexistence of  L. acidophilus. It follows that L. acidophilus as a probiotic supplement, if  appro-
priately targeted, could improve pregnancy outcome.

The strength of  repeat testing using both in the first and second trimester samples was explored, but it 
did not significantly improve prediction. Indeed, in clinical practice, there is greater benefit in focusing on 
developing predictive tests that can be used early in pregnancy to identify women as high risk in order to 
inform prophylactic intervention. Third-trimester measurements, which were not performed here, might 
have potential to inform understanding of  preterm labor, but measuring at this time point would not allow 
time for interventions aimed at reducing risk.

A greater proportion of  women who developed a short cervix by < 24 weeks of  pregnancy were also 
classified in the PCoA group C (L. iners), similar to the findings of  Kindinger et al. (11). In contrast, Gerson et 
al. (51) have suggested that cervical shortening with subsequent sPTB is associated with a more mixed anaer-
obic bacterial community. Nevertheless, this does not rule out the possibility that restructuring of  the cervical 
tissue may occur through pathways unrelated to the influences of  the microbiota.

This study had several strengths and limitations — in particular, our multi–data type interrogation of  the 
vaginal environment (combining vaginal microbiota, metabolome, and host defense peptides) and the use of  
statistical modeling to identity potential tests for prediction of  preterm birth. Limitations include 16S rRNA 
gene sequencing for identification of  bacteria species; this could be supplemented with functional analyses 
to identify and understand aspartate-consuming and succinate-producing anaerobes. Similarly, the contribu-
tions of  other microorganisms such as viruses, archaea, protozoa, and fungi were not included. Our study 
was also limited by a relatively low number of  Black women and Asian women (who fall into our “Other” 
category) compared with White women, although the percentage of  Black women in our study was greater 
(21.7%) that then the UK population national average (3.3%; ref. 31). This did not allow us to refine our 
analysis based on ancestry; indeed, the use of  self-reported ethnicity in the absence of  genotyping may just 
be a surrogate for other influencing factors. These data would be strengthened by the inclusion of  data relat-
ing to diet, environment, and social stressors. We did not distinguish between L- and D-lactate due to use of  
the NMR platform. Expanding the range of  metabolites using mass spectrometry would be desirable (52), 
although through CVF NMR analysis, we identified 29 metabolites that are comparable with the numbers 
identified in previous NMR studies — i.e., 6 (42), 11 (46), and 28 (44).

To further explore the relationship between cervical shortening and the vaginal environment, larger stud-
ies are required that can fully address the issue of  ethnicity and the use of  different interventions (53).

In summary, integration of  metabolite and bacterial community composition has significant potential 
for enhancing our understanding of  the contribution of  the vaginal environment to sPTB. We have devel-
oped statistical models that suggest that L. acidophilus may be a potential probiotic to reduce risk of  sPTB. 
It is vital to consider the influence of  ethnic origin in tandem with women’s environmental and social expo-
sures on the relationship between vaginal environment and sPTB and to consider replicating studies in low- 
and middle-income countries where the burden of  sPTB is highest. Finally, this study shows the importance 
of  precision medicine and the need to implement novel tools for data integration to better understand the 
complexity of  diseases such as sPTB.

Methods
Participant and sample collection. Participants (n = 353) for this study are a subgroup selected from an ongoing 
pregnancy cohort study (INSIGHT; ref. 30), a prospective longitudinal observational study of  women at 
high and low risk of  sPTB. High-risk women (1 or more of  prior sPTB or late miscarriage between 16 and 
37 weeks’ gestation, previous destructive cervical surgery, uterine anomaly, or incidental finding of  a cervical 

Figure 5. Receiver operating characteristic (ROC) curves areas and AUC for composite models for spontaneous preterm birth predictions. (A–F) sPTB37 
(A–C) and sPTB34 prediction (D–F) (total number of samples, n = 618; n = 425 samples from White women, n = 132 from Black women, and n = 61 from 
women reporting other ethnicities; n = 306 from 10–15+6 weeks or n = 312 from 16–23+4 weeks). (A–C) a model using a composite of 7 cervicovaginal fluid 
(CVF) metabolites performs equally for prediction of sPTB37 when stratified by ethnicity and gestation of CVF sampling (10–15+6 weeks or 16–23+4 weeks). 
(D and E) For sPTB34, a model of 3 CVF metabolites and CVF L. crispatus and L. acidophilus proportions shows differences in performance when stratified 
by ethnicity. (F) sPTB34 model performs similarly when testing samples taken between 10–15+6 or 16–23+6 weeks.



1 3

R E S O U R C E  A N D  T E C H N I C A L  A D V A N C E

JCI Insight 2021;6(16):e149257  https://doi.org/10.1172/jci.insight.149257

length < 25 mm on transvaginal ultrasound scan) were recruited from high-risk antenatal clinics in 4 UK 
tertiary hospitals. Low-risk women were recruited from the general antenatal population at their dating 
ultrasound appointment (10–13+6 weeks).

During speculum examination, CVF was obtained from the posterior fornix, using a Dacron swab (for 
metabolite and host defense peptide analysis) and then inserted into 750 μL of standard phosphate-buffered 
saline solution containing protease inhibitors and EDTA (Complete, Roche Diagnostics GmbH; ref. 30). Cell-
free supernatants were divided into aliquots (~110 μL) and stored at –80°C until analysis. A second nylon 
flocked swab (Copan eSwab, VWR International Ltd.) was obtained for 16S analysis, placed into 1 mL of TE 
buffer (Promega), and transported immediately on ice to the laboratory and stored at –80°C until analysis.

Pregnancy outcome data were collected and monitored from case note review. sPTB was identified if  
women had a spontaneous onset of  labor or have experienced premature rupture of  membranes and deliv-
ered prior to 37 weeks of  gestation (this included spontaneous late miscarriages > 16 weeks). IUD pregnan-
cies and iatrogenic deliveries were not included in the analyses.

Cervical length measurement. Cervical length measurement by transvaginal ultrasound scan was per-
formed by trained operators in accordance with standardized protocols (at least once between 14 and 24 
weeks, usually at every clinical visit). The total closed length was measured 3 times (mm) with the shortest 
measurement recorded. For analysis purpose, the cervix was classified as “short” if  it measured below 25 
mm prior to 24+0 weeks of  gestation.

NMR. CVF samples (described above) were immersed in liquid nitrogen, lyophilized at −58°C overnight, 
and resuspended in 550 μL D2O. CVF metabolite profiles were generated using 1H-NMR spectra acquisition, 
processing, and OPLS-DA, done as reported previously (54). For this study, spectral regions above 8.5 ppm 
and below 0.5 ppm were excluded for noise content. The water peak and trimethylsilylpropanoic acid refer-
ence signals were also excluded. A total of  29 metabolites were identified using the Chenomx NMR suite 
software (Chenomx Inc.). The signal from propylene glycol was removed from analyses, as it is a known 
contaminant from the gel used in transvaginal scanning.

Bacterial community analysis. DNA was extracted from thawed samples using the GenElute Bacterial 
Genomic DNA kit (Sigma-Aldrich), modified to optimize lysis of  Gram-positive bacteria. From each DNA 
extract, variable regions V1–V2 of  the 16S rRNA gene were amplified by PCR using fusion primers incor-
porating template specific primers, MiSeq adapters, and barcodes to achieve a double indexing system. The 
forward primer 27F included the YM modification (55) to improve recovery of  the family Bifidobacteriaceae, 
including G. vaginalis group. The specific primer sequences were: 27F-YM (AGAGTTTGATYMTGGCT-
CAG) and 338R-R (TGCTGCCTCCCGTAGRAGT). Amplicons were purified and normalized using the 
SequalPrep Normalization Plate Kit (Thermo Fisher Scientific). Sequencing was performed at the Barts and 
The London Genome Centre using Illumina MiSeq 2 × 250 flow cell paired-end sequencing. Sequence reac-
tions were spiked with 10% 12.5 pM PhiX DNA. Reads were filtered by quality score using the fastqPaired-
Filter command of  DADA2 R package (56) to remove sequences with an expected error over 2 bp. Forward 
and reverse sequences were truncated at 250 and 200 bp, respectively.

Filtered sequences were analyzed using mothur (version 1.36.1) SOP (57). Sequences were clustered into 
OTUs at a sequence dissimilarity distance of  0.015 using the opticlust algorithm. Consensus identification of  
OTUs was performed with reference to the Vaginal 16S rDNA Reference Database (58).

Inspection of  the sequences from the negative control samples revealed Pseudomonas gessardii as a reagent 
contaminant, and all related OTUs were removed prior to analysis.

For the comparisons between microbiome and metabolome, a normalized version of  the OTU table 
was used where reads for each sample were rescaled to a depth of  3570. A thetaYC dissimilarity matrix was 
generated using mothur, by iterating 1000 times the subsampling at a depth of  3570 sequences. This matrix 
was used to generate PCoA coordinates that were plotted using the ggplot2 package. The PCoA groups A, 
B, C, D, and E were identified on the plot, and the samples were classified by group based on the values of  
their 2 principal coordinates. To compare the relative proportions of  bacterial species of  interest, a phylotype 
analysis was performed, identifying individual sequences to species level by means of  the mothur classify.
seqs command. Sample composition at species level is provided in Supplemental Table 10.

Measurement of  antimicrobial peptides/proteins. As previously published (30), samples were thawed at room 
temperature, briefly vortexed, and analyzed by ELISA (Trappin2/elafin, HK318; cathelicidin [LL37], HK321; 
HNE, HK319-02; Hycult Biotech) in duplicate, according to manufacturer’s instructions. Samples for elafin 
measurement were diluted in sample buffer (1:20 and 1:100 for each sample) to ensure positioning within the 
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standard curve, based on results obtained from a pilot study (27). Samples for HNE measurement were diluted 
in sample buffer 1:200 for each sample. CVF samples for cathelicidin measurement were undiluted. Intraassay 
variability was < 15%, based on a pooled CVF sample (random set of 10 CVF samples included on each plate). 
Final concentrations were calculated from the standard curves using logistic regression. Accepted coefficient of  
variability (CV) between sample duplicates was < 20%. The elafin concentration used in the statistical analysis 
of host-defense peptides was a derived value based on the 2 dilutions, to allow for dilutional effect (59).

Data and materials availability. The 16S rRNA gene sequence data from this study have been deposited with 
the NCBI SRA as accession PRJNA660627.

Statistics. Statistical analyses on processed metabolites and normalized OTUs were performed in R v3.6.1. 
The α diversity was estimated based on Shannon (60) and Inverse Simpson (61) index with pairwise compar-
ison by Wilcoxon signed-rank based on these indexes, indicated as PShannon and PInverseSimpson (packages Phyloseq 
and Vegan). PERMANOVA was estimated using the Bray Curtis distance matrix. Spearman’s correlation 
analyses were performed using the function rcorr.adjust from the RcmdrMisc package with method “spear-
man” and “complete.obs”; P values were calculated using FDR correction (62). LEfSe (63) on the normal-
ized, rescaled OTU table was performed; P < 0.05 and a score > 3.0 were considered significant. Wilcoxon 
rank-sum and Kruskal-Wallis test were performed for sample comparisons, P values identified via these tests 
are annotated as PWilcoxon and PKruskal-Wallis, respectively. The ropls package was used for OPLS-DA analyses of  
metabolites whilst Rvolcano was selected to generate fold changes and volcano plots. Feature selection analysis 
was performed using the univariate Cox proportional hazards model (ref. 64; within the CancerSubtypes pack-
age) with metabolome data normalized by Z score, gestation delivery in days, and delivery outcome as event 
(0 for term and 1 for sPTB37 or sPTB34).

Prediction analyses were conducted in Stata versions 15 and 16 (StataCorp.). Cervicovaginal phylotypes 
(L. crispatus, L. acidophilus, S. amnii, A. vaginae, G. vaginalis group, L. gasseri, L. jensenii, L. iners, Megasphaera 
“OTU 70”) plus all other classifications, which made up < 0.1, obtained in either early or late samples were 
used for prediction modelling.

Logistic regression was used to determine subsets of  the microbiome and metabolome significantly asso-
ciated with the outcome. For NMR metabolites, both logged and unlogged values of  the metabolome were 
tested. However, the only significant relationships were found using unlogged values. For each of  microbio-
ta, metabolites, and HDP, stepwise logistic regression with probability of  entry set at P < 0.05 was used to 
develop a prediction model for sPTB34 and sPTB37. The performance of  the resulting models was compared 
with its components using ROC curves areas. Differences in performance by gestation of  test and ethnicity (3 
groups) were likewise investigated (65).

Study approval. The INSIGHT study was approved through by the NHS Human Research Authority 
(HRA), London – City and East Research Ethics Committee (13/LO/1393). Informed written consent was 
obtained from all participants.
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