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Introduction
SARS-CoV-2 has infected more than 150 million people worldwide since it was first identified in humans in 
2019. The ensuing COVID-19 pandemic has put diagnostic testing at the forefront in the battle to stop the 
spread of the virus. Nucleic acid testing (NAT), which detects the virus RNA by reverse-transcription poly-
merase chain reaction (RT-PCR), is the current gold standard for diagnosing acute infections (1). NAT has 
played a critical role in containing the pandemic by allowing expedient identification of infected individuals for 
treatment, isolation, and contact tracing. However, NAT alone cannot reveal the true prevalence of the SARS-
CoV-2 infection because 20% to 80% of all infections are likely asymptomatic (2–4). Therefore, a significant 

BACKGROUND. The role of humoral immunity in COVID-19 is not fully understood, owing, in large part, 
to the complexity of antibodies produced in response to the SARS-CoV-2 infection. There is a pressing 
need for serology tests to assess patient-specific antibody response and predict clinical outcome.

METHODS. Using SARS-CoV-2 proteome and peptide microarrays, we screened 146 COVID-19 
patients’ plasma samples to identify antigens and epitopes. This enabled us to develop a 
master epitope array and an epitope-specific agglutination assay to gauge antibody responses 
systematically and with high resolution.

RESULTS. We identified linear epitopes from the spike (S) and nucleocapsid (N) proteins and showed 
that the epitopes enabled higher resolution antibody profiling than the S or N protein antigen. 
Specifically, we found that antibody responses to the S-811–825, S-881–895, and N-156–170 epitopes 
negatively or positively correlated with clinical severity or patient survival. Moreover, we found that 
the P681H and S235F mutations associated with the coronavirus variant of concern B.1.1.7 altered the 
specificity of the corresponding epitopes.

CONCLUSION. Epitope-resolved antibody testing not only affords a high-resolution alternative 
to conventional immunoassays to delineate the complex humoral immunity to SARS-CoV-2 and 
differentiate between neutralizing and non-neutralizing antibodies, but it also may potentially be 
used to predict clinical outcome. The epitope peptides can be readily modified to detect antibodies 
against variants of concern in both the peptide array and latex agglutination formats.
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proportion of the population would be missed by NAT-based screening because the virus is typically cleared 
by the immune system in 3 to 4 weeks after infection or symptom onset. To complement NAT, serological 
assays for virus-specific antibodies have been developed (5–7). In contrast to NAT that can only detect acute 
infections, serology tests can identify past infections because antibodies may persist in the blood long after the 
virus has been cleared. The wide window of time within which antibodies may be detected, ranging from 1 to 
2 weeks of infection when seroconversion occurs to several months after the infection has been resolved, offers 
a unique advantage for antibody testing over NAT. Because of the high incidence of asymptomatic cases, anti-
body testing, when carried out in large scale, can provide valuable and accurate information about the spread 
of the infection at the population level and the true infection fatality rate (8, 9). Importantly, with the advent of  
several effective vaccines against the virus and the rapid rollout of the vaccination program around the world, 
priorities are being shifted from containment to monitoring the immediate and longitudinal effects of the vac-
cines on the immune system. This paradigm shift will undoubtedly increase the demand for antibody testing.

Numerous serological assays for SARS-CoV-2 antibodies have been developed to date, which include 
enzyme-linked immunosorbent assays (ELISAs), chemiluminescence immunoassays, and lateral flow assays 
(LFAs; refs. 1, 8). The sensitivity and specificity of  different ELISA kits may vary (10), but they are general-
ly considered sufficient for large-scale SARS-CoV-2 antibody testing. Nevertheless, the need for specialized 
equipment and trained personnel to perform the test and the long turnaround time make it a challenge to use 
ELISA in point-of-care (POC) settings. In contrast, LFAs, which can be carried out in less than 30 minutes 
with no equipment required, can potentially be used for POC testing. However, LFA-based tests have been 
shown to be less sensitive and specific than ELISAs (6, 9, 11, 12). Besides concerns over sensitivity, specificity, 
and POC potential, both ELISA- and LFA-based antibody testing have the following limitations. First, cur-
rent tests rely on the interaction of  the spike (S) or nucleocapsid (N) protein or a fragment/domain of  either 
protein to capture the corresponding antibody. These assays, which provide a single measure of  antibody 
reactivity, are not ideal for gauging the diverse antibody responses observed in the clinic. Second, protein 
antigen-based immunoassays such as ELISA and LFA generate a composite signal across many epitopes, 
including both conformational and linear epitopes, thereby lacking the necessary specificity or resolution 
to differentiate between neutralizing and non-neutralizing antibodies or predict clinical outcome. Indeed, 
patients who are older or with severe symptoms have been shown to produce more antibodies than those 
who are younger or with milder symptoms (13, 14), suggesting that robust antibody responses measured by 
conventional means do not correlate with effective humoral immunity. Third, current serological assays are 
ill-suited to assess the immunological effect of  coronavirus variants because numerous recombinant proteins 
would have to be produced. Several mutated strains have emerged recently that are believed to be more con-
tagious than the original SARS-CoV-2 strain (15, 16). These and other variants of  concern (VOCs) harbor 
numerous missense or deletion mutations in the S or N protein-encoding gene that may alter their antigenic 
characteristics. To effectively curb the spread of  these highly contagious VOCs, it is of  paramount importance 
that we develop an antibody test that can readily incorporate the emerging mutations to determine the effect 
of  these mutations and the corresponding VOCs on the immune system. Fourth, current immunoassays are 
generally focused on testing a specific antibody isotype. Given the distinct dynamics of  IgM, IgA, and IgG in 
response to the SARS-CoV-2 infection (17, 18), it is necessary to develop a multiplex immunoassay to gauge 
humoral immunity. Last, with the vaccine rollout across the globe, a rapid and accurate POC test is urgently 
needed to gauge the effectiveness of  a vaccine and monitor the duration of  antibody responses in large popu-
lations to provide reliable information on herd immunity.

We addressed these unmet needs in SARS-CoV-2 antibody testing using protein and peptide arrays, 
which led to the identification of  linear epitopes that mediate the complex antibody responses observed in 
a group of  89 patients with COVID-19. This, in turn, allowed us to develop a “master epitope array” con-
taining the major epitopes and use it to gauge antibody responses with greater resolution than is attainable 
by protein antigen-based immunoassays. We found that the antibody profiles determined by linear epitopes, 
but not by S or N protein, could distinguish patients with moderate or severe diseases or with favorable 
or fatal outcomes. Using a peptide array recapitulating the mutations found in SARS-CoV-2 variants, we 
showed that certain mutations abolished binding of  the corresponding epitopes to antibodies against the 
original strain. Furthermore, the identified epitopes enabled us to develop an epitope-dependent agglutina-
tion assay for SARS-CoV-2 antibodies. This rapid agglutination assay is not only highly accurate, but it can 
also be readily modified to incorporate specific epitopes, including VOC epitopes, to profile the complex 
antibody responses in individuals.
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Results
Antibody responses to the S and N proteins are not correlated with clinical outcome. To develop a comprehensive 
antibody test, we first employed a protein array to identify the SARS-CoV-2 antigens mediating antibody 
responses. Previous studies have implicated the S, N, and nonstructural proteins encoded by the ORF1ab 
gene as the major antigens eliciting humoral immune responses in the host (19, 20). We therefore expressed 
these proteins, including fragments or domains of  S and N, in bacterial or mammalian cells. Upon puri-
fication, the recombinant virus proteins were printed on nitrocellulose-coated glass slides. The resulting 
proteome array, featuring 16 SARS-CoV-2 proteins and human IgG as the positive control (Figure 1A, 
Supplemental Table 1; supplemental material available online with this article; https://doi.org/10.1172/
jci.insight.148855DS1), was probed with plasma samples from patients that tested positive or negative for 
SARS-CoV-2 by RT-PCR (10). The bound IgG was detected using goat anti–human IgG conjugated to 
horseradish peroxidase (HRP; Supplemental Figure 1).

We screened the proteome array and subsequent peptide arrays (vide infra) with 146 plasma samples 
from 89 hospitalized patients, including serial samples collected for some patients on different days after 
diagnosis. The patients were divided into 2 groups with severe (i.e., admitted to the intensive care unit, ICU) 
or moderate (i.e., no intensive care required) disease. The same patient cohort was also classified according 
to clinical outcome into the “alive” or “fatal” group, with the former comprising those who survived the 
infection (consisting of  both moderate and severe cases) and the latter who ultimately succumbed to the 
disease (consisting only of  severe cases) (Supplemental Table 2). As shown in Figure 1B, both the moderate 
and severe groups showed IgG responses to the spike (including the ectodomain, S-ecto, and receptor-bind-
ing domain, S-RBD) and the nucleocapsid protein (including the RNA-binding domain, N-RBD, and the 
dimerization domain, N-dimer). In contrast, no significant IgG-binding signal was detected for the NSP 
proteins (Figure 1, A–C, and Supplemental Figure 2). These results are consistent with previous findings 
by others that the spike and nucleocapsid are the main antigenic proteins in SARS-CoV-2 (19–23). For the 
ICU patients with serial plasma samples, we found that the S/N-specific IgG signals increased from day 1 
(of  ICU admission) to days 7 and 10 for both the alive and the fatal groups (Figure 1C). This indicates that 
humoral immune responses became more robust with time in these patients regardless of  outcome.

Overall, we found that all seroconverted patients showed IgG responses to either the S or N protein 
or both. A greater percentage of  the severe patient group had antibodies specific for S-RBD or S-ecto than 
those with moderate conditions. In contrast, the difference in N-specific IgG signal was small between 
the 2 groups (Figure 1D). Compared with the group that survived the infection, the fatality group more 
frequently exhibited S- or N-specific antibodies (Figure 1E), suggesting once again that a robust antibody 
response does not necessarily translate into a favorable outcome. In support of  this assertion, we found no 
correlation between the strength of  S- or N-specific IgG signal and disease severity or outcome (Figure 1, F 
and G). Taken together, the proteome array screen data indicate that the S or N antibody response is not a 
sensitive barometer of  COVID-19 clinical severity or outcome.

Systematic identification of  linear epitopes by peptide microarrays. Antibody specificity is determined by 
epitopes on the protein antigen, including both linear and conformational epitopes (23). Because linear 
epitopes are small peptides (5–20 residues), they may be identified by screening peptides generated by 
chemical or genetic means (19, 20, 22). To identify the linear epitopes mediating the SARS-CoV-2 anti-
body responses, we synthesized peptides representing the candidate epitopes reported in the literature 
(up to October 2020; refs. 24, 25) and printed the peptides on a nitrocellulose-coated glass slide. The 
resulting peptide array, containing 89 reported epitopes for the S, N, and membrane proteins (Figure 
2A), was probed with patient plasma samples. Intriguingly, we were only able to detect less than 50% of  
the reported epitopes in our peptide array screens (Supplemental Figure 3 and Supplemental Table 3). 
While the large discrepancy might be attributed, in part, to the different techniques used for assaying the 
epitope-antibody interaction, it prompted us to redefine the epitopes using the peptide array approach. 
To this end, we created a peptide microarray to represent the complete S and N protein sequences. The 
resulting “peptide-walking” array contained 333 tiled 15-mer peptides with 5-residue overlap between 2 
consecutive peptides (Figure 2A).

We screened the peptide microarray with 15 patient plasma samples, including 14 COVID-19 patient 
samples and 1 SARS-CoV-2– control (Supplemental Figure 4). This led to the identification of  54 potential 
epitopes from the S and N proteins (Tables 1 and 2). While many of  the identified epitopes are likely minor 
ones based on the corresponding weak IgG-binding signals, some produced strong signals (Supplemental 
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Figure 1. Lack of correlation between the spike or nucleocapsid antibody response and disease severity or outcome. (A) Layout of the SARS-CoV-2 
proteome array. The array included immunoglobulin G (IgG), phosphate-buffered saline (PBS), spike receptor-binding domain (S-RBD), spike ectodomain 
(S-ecto), nonstructural protein (NSP), ADP-ribose-1′′-monophosphatase (ADRP), papain-like protease (PLPro), nucleic acid binding (NAB), nucleocapsid 
full length (N-FL), nucleocapsid dimerization domain (N-dimer), and nucleocapsid RNA-binding domain (N-RBD). (B) Representative images (from n = 65 
unique patient samples) of antibody responses for COVID-19 patients with moderate or severe disease determined by the proteome array. (C) Dynamic IgG 
antibody profiles for 2 patients with severe (but alive) or fatal disease on days 1, 7, and 10 of intensive care unit (ICU) admission. (D and E) Prevalence of 
antibody responses to the S or N protein/domain for the indicated patient groups determined by the proteome array (based on high-exposure images). 
(F and G) The intensity of antibody response to the S or N protein antigen was not correlated with disease severity (F) or outcome (G). IgG-binding signals 
were based on low-exposure array images. Intensity cutoff value was set at 2 SDs of the mean background signal at low exposure. Moderate, n = 31; 
severe, n = 34; alive, n = 51; fatal n = 14. NS, not significant from unpaired Student’s t test with Welch’s correction.
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Figure 4 and Tables 1 and 2), suggesting that they might be major epitopes mediating the S or N antibody 
response. To profile for antibody responses in a systematic manner, we generated a “master array” contain-
ing 16 major epitopes selected based on the corresponding IgG signal strength from the peptide-walking 
array screen. The master array also contained the S and N protein antigens as controls (Figure 2A, Tables 
1 and 2, and Supplemental Figure 5).

Epitope-resolved antibody profiling distinguishes COVID-19 cases based on severity or outcome. Using the master 
array, we screened plasma samples from the 89 COVID-19 patients and 9 SARS-CoV-2– control subjects 

Figure 2. Identification of SARS-CoV-2 epitopes and epitope-resolved antibody profiling. (A) Workflow for identifying antigenic epitopes by peptide 
arrays and the layout of a master array for SARS-CoV-2 antibody profiling. (B and C) Representative images of epitope-resolved antibody profiles for the 
different groups of COVID-19 patients (n = 65 unique patient samples).



6

C L I N I C A L  M E D I C I N E

JCI Insight 2021;6(1):e148855  https://doi.org/10.1172/jci.insight.148855

(Figure 2, B and C, and Supplemental Figure 6). Samples with no detectable antibody response (24/89) 
were subsequently removed from the cohort, resulting in a final cohort of  65 unique patient samples. We 
found that the plasma from the ICU (severe) group recognized significantly more epitopes than the non-
ICU (moderate) group (Figure 3A). Certain epitopes, including S-811, S-881, N-6, and N-361, were detect-
ed more frequently in the severe than the moderate cases whereas other epitopes, including S-451 and 
N-156, showed the opposite trend (Figure 3B). By comparison, the number of  IgG-binding epitopes was 
not significantly different between patients who survived or succumbed to the infection even though the 
latter group, in general, tended to have antibodies reactive to more epitopes (Figure 3C). Nevertheless, anti-
bodies specific for the S-811, S-881, and N-361 epitopes were found enriched in the fatality group whereas 
antibodies against N-6, S-451, S-551, and S-671 were detected only in the survivor group (Figure 3D).

In addition to epitope frequency, the intensity of  IgG-binding signals to certain epitopes correlated pos-
itively or negatively with clinical severity or outcome. In general, we found that moderate cases tended to 
have stronger antibody responses to N-156 whereas more robust antibody responses against the S-811 and 
S-881 epitopes were observed for the severe cases (Figure 3E). Indeed, COV+14 was the only case in the 
moderate group with strong S-811 and S-881 antibodies, which, intriguingly, also featured a robust S-671 
antibody response. Overall, the patients with fatal disease were characterized with significantly stronger 
S-811– or S-881–specific antibodies than those who survived the infection (Figure 3F). This indicates that 
antibody responses to these epitopes are detrimental to COVID-19 disease progression. The S-811 and S-881 
epitopes are located in a region of  the S protein buried in the prefusion conformation, which, nevertheless, 
becomes disordered and exposed following virus fusion with the host cell membrane (Figure 3G). Therefore, 
it is likely that the production of  antibodies specific for the S-811 or S-881 epitopes coincides with the state 

Table 1. Spike epitopes identified and characterized in this study

Residues Epitope Epitope sequence Epitope intensity
21–35 S-21A RTQLPPAYTNSFTRG Medium
31–45 S-31 SFTRGVYYPDKVFRS Medium
36–50 S-36 VYYPDKVFRSSVLHS Medium

176–190 S-176A LMDLEGKQGNFKNLR Medium
451–465 S-451A YLYRLFRKSNLKPFE Weak
456–470 S-456 FRKSNLKPFERDIST Weak
471–485 S-471 EIYQAGSTPCNGVEG Weak
545–565 S-545 GLTGTGVLTESNKKFLPFQQF Weak
551–565 S-551A VLTESNKKFLPFQQF Weak
556–570 S-556 NKKFLPFQQFGRDIA Weak
566–587 S-566 GRDIADTTDAVRDPQTLEILDI Weak
571–585 S-571 DTTDAVRDPQTLEIL Weak
576–590 S-576 VRDPQTLEILDITPC Weak
621–635 S-621 PVAIHADQLTPTWRV Weak
624–640 S-646 IHADQLTPTWRVYSTGS Weak
626–640 S-626 ADQLTPTWRVYSTGS Weak
661–675 S-661 ECDIPIGAGICASYQ Strong
671–685 S-671A CASYQTQTNSPRRAR Strong
676–690 S-676 TQTNSPRRARSVASQ Strong
691–705 S-691 SIIAYTMSLGAENSV Medium
696–710 S-696 TMSLGAENSVAYSNN Medium
796–810 S-796 DFGGFNFSQILPDPS Strong
811–825 S-811A KPSKRSFIEDLLFNK Strong
816–830 S-816 SFIEDLLFNKVTLAD Strong
881–895 S-881A TITSGWTFGAGAALQ Strong

1146–1160 S-1146A DSFKEELDKYFKNHT Strong
1166–1180 S-1166A LGDISGINASVVNIQ Weak
1216–1230 S-1216A IWLGFIAGLIAIVMV Weak

AMaster array peptide. Strong, average epitope intensity > 20,000; Medium, average epitope intensity 10,000–20,000; 
Weak, average epitope intensity < 10,000.
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of  the coronavirus undergoing active host cell infection. In contrast, the S-671 epitope, mutated in the UK 
variant B.1.1.7 (26), is located at the S1/S2 cleavage site critical for virus infection (ref. 27 and Figure 3G).

Mutations found in SARS-CoV-2 variants alter epitope specificity. Numerous mutations have been identified 
in SARS-CoV-2 VOCs, the vast majority of  which occur on the S protein (28), which plays a critical role in 
host cell infection and immune response. The recent emergence of  the variants B.1.1.7, P.1, and B.1.351, 
which have been shown to be more contagious than the original strain, has raised concerns over the effi-
cacy of  mRNA vaccines that are used to produce the WT S protein in the recipient (29). We investigated 
this possibility using peptides representing 28 major S or N missense mutations or deletions identified to 
date, including those found in the UK variant B.1.1.7 and the South African variant B.1.351, and muta-
tions shown to alter antibody binding in a previous study (ref. 30 and Table 3). A peptide array containing 
the mutated epitopes and the matching WT epitopes were probed with plasma samples collected prior 
to October 2020 from patients presumably infected with the original strain of  SARS-CoV-2 (Figure 4). 
Because only a few mutations resided within the identified epitopes (Table 3), the mutated epitope screen 
was focused on plasma samples that showed robust antibody responses to the corresponding WT epitopes 
on the master array (Figure 2B). Intriguingly, we found that the mutations either reduced or completely 
abolished IgG binding for the corresponding epitopes. Of  note, substitution of  the S235 residue with a Phe 
in the N-221 epitope, a mutation found in the B.1.1.7 variant, eliminated IgG binding. Similarly, S-671 was 
identified as a major epitope in the COV+14 patient by the master array. The introduction of  the P681H 
mutation, which has been found in multiple VOCs (31–33), into the S-671 peptide, completely abolished 
antibody binding. To confirm this finding, we synthesized another version of  the S-671 epitope in which the 
P681 residue and the P681H mutation were placed in the center of  the corresponding peptides and printed 
both versions of  the original and mutant peptides in incremental concentrations in an array. This peptide 
gradient array was then probed with the COV+14 plasma collected on days 1, 2, and 3 of  hospitalization. 

Table 2. Nucleocapsid epitopes identified and characterized in this study

Residues Epitope Epitope sequence Epitope intensity
1–15 N-1 MSDNGPQNQRNAPRI Weak
6–20 N-6A PQNQRNAPRITFGGP Weak
31–45 N-31 ERSGARSKQRRPQGL Weak
36–50 N-36 RSKQRRPQGLPNNTA Weak
41–55 N-41 RPQGLPNNTASWFTA Weak

146–160 N-146 IGTRNPANNAAIVLQ Strong
153–171 N-153B NNNAATVLQLPQGTTLPKG Weak
156–170 N-156A AIVLQLPQGTTLPKG Weak
161–175 N-161 LPQGTTLPKGFYAEG Weak
191–205 N-191 RNSSRNSTPGSSRGT Weak
196–210 N-196 NSTPGSSRGTSPARM Medium
201–215 N-201 SSRGTSPARMAGNGG Medium
221–235 N-221A LLLLDRLNQLESKMS Medium
231–245 N-231 ESKMSGKGQQQQGQT Medium
236–250 N-236 GKGQQQQGQTVTKKS Medium
241–255 N-241 QQGQTVTKKSAAEAS Medium
246–260 N-246A VTKKSAAEASKKPRQ Medium
251–265 N-251 AAEASKKPRQKRTAT Medium
355–375 N-355 KHIDAYKTFPPTEPKKDKKKK Strong
361–375 N-361A KTFPPTEPKKDKKKK Strong
366–380 N-366 TEPKKDKKKKADETQ Strong
368–391 N-368B PKKDKKKKTDEAQPLPQRQKKQP Strong
371–385 N-371 DKKKKADETQALPQR Strong
381–395 N-381A ALPQRQKKQQTVTLL Strong
381–401 N-381B QPLPQRQKKQPTVTLLPAADM Strong
386–400 N-386 QKKQQTVTLLPAADL Strong

AMaster array peptide. BSequence based on SARS-CoV residues. Strong, average epitope intensity > 20,000; Medium, 
average epitope intensity 10,000–20,000; Weak, average epitope intensity < 10,000.



8

C L I N I C A L  M E D I C I N E

JCI Insight 2021;6(1):e148855  https://doi.org/10.1172/jci.insight.148855



9

C L I N I C A L  M E D I C I N E

JCI Insight 2021;6(1):e148855  https://doi.org/10.1172/jci.insight.148855

While the original epitopes exhibited increased IgG binding with time, the P681H-mutant epitope did not 
show detectable antibody binding signal for the same plasma samples. These data indicate that the P681H 
mutation altered the specificity of  the corresponding epitope (S-671) and rendered it unrecognizable by 
antibodies against the original coronavirus (as the plasma sample was collected prior to the emergence of  
the B.1.1.7 variant, although the genotype of  the virus was not determined).

A rapid agglutination assay to gauge epitope-specific antibody response. While the epitope peptide array may 
be used to determine antibody specificity in a systematic manner, it is not suitable for POC testing. Never-
theless, the identification of  specific epitopes that are either common to the COVID-19 patients examined 
or unique to groups with distinct clinical severity or outcome prompted us to develop a rapid test based on 
these epitopes. Inspired by the principle of  antibody-dependent red blood cell agglutination (34), we devel-
oped an epitope-dependent agglutination assay to detect epitope-specific antibody response. Specifically, 
latex beads were coated with streptavidin and conjugated to one or more biotinylated epitope peptides. 
Antibodies specific to the epitopes were found to induce the agglutination of  the corresponding latex beads 
within minutes (Figure 5A), with the area of  agglutination serving as a proxy of  antibody titer. In principle, 
the latex bead agglutination assay is more sensitive than the peptide array because it detects the total anti-
bodies (including IgG, IgM, and IgA) rather than a specific isotype. To develop an epitope test to replace 
the S and N antigens, we coated the latex beads with the most prominent S or N epitopes. Specifically, latex 
beads were coated with a mixture of  the S-811 and S-1146 (2S) peptides to represent the S antigen or the 
N-156 and N-361 (2N) peptides to represent the N antigen. When evaluated using plasma samples from 
individuals who tested positive (COVID+) or negative (COVID–) for the SARS-CoV-2 virus or samples from 
healthy donors collected in 2018 (PreCOVID), the 2S- and 2N-based agglutination assays effectively distin-
guished the COVID+ plasma from the COVID– or PreCOVID plasma (Figure 5B).

To determine if  the epitope-dependent agglutination assay could differentiate the different patient 
groups as effectively as the master epitope array, we coated the latex beads with the S epitopes S-811, S-881, 
or S-551 or the N epitopes N-156 or N-361 and performed agglutination assays on 10 patients/group based 
on the master array results (i.e., not all patients in the cohort showed antibody responses against a given 
epitope). While no agglutination was observed for the COVID– plasma, the COVID+ plasma promoted the 
agglutination of  the latex beads in an epitope-dependent manner (Figure 5, C and D). We found that the 
group with severe disease had significantly greater S-811– and N-361–specific antibody responses than that 
in moderate condition (P < 0.05). The reverse was found true for the N-156 epitope (P < 0.05). Similarly, 
significant differences in the antibodies specific for the S-811 (P < 0.002), S-881 (P < 0.05), S-551 (P < 
0.002), and N-156 (P < 0.05) epitopes were observed between the alive and fatality groups. Notably, a high 
level of  S-811–dependent agglutination was strongly and significantly correlated with patient death where-
as even a moderate level of  S-551–specific antibody response was correlated significantly with favorable 
outcome. These data reinforced our findings from the master epitope peptide array screen and identified a 
group of  epitopes, including S-811, S-881, S-551, and N-156, to which antibody responses correlated with 
clinical severity and outcome of  the COVID-19 disease.

Correlation of  epitope-specific antibody response with neutralizing efficiency and disease outcome. Because neutral-
izing antibodies play a pivotal role in the humoral immune response to the SARS-CoV-2 infection, we used 
a surrogate neutralization assay to measure efficacy of  patient plasma in blocking S-RBD binding to its host 
receptor, angiotensin-converting enzyme 2 (ACE2), in vitro (35). We found that the neutralization efficiency 
of  the plasma in the severe patient group was significantly higher than the group with moderate disease (P < 

Figure 3. Epitope-specific antibody responses distinguish COVID-19 patients with disparate disease severity and outcome. (A) Antibodies from patients 
with severe disease (n = 34) recognized significantly more epitopes than those with moderate conditions (n = 31). (B) Distribution of epitopes in moderate 
versus severe cases. (C) Number of epitopes/patient in the alive (n = 51) versus fatal (n = 14) groups. (D) Distribution of epitopes in alive versus fatal cases. 
(E) Heatmap representation of epitope-specific antibodies detected by the master array. Note that the heatmap was based on signals detected at low 
exposure. (F) Fatal cases showed significantly stronger antibody responses for the S-811 (alive n = 10, fatal n = 6) and S-881 (alive n = 10, fatal n = 8) epi-
topes. *, P < 0.05; **, P < 0.002; NS, not significant; unpaired Student’s t test with Welch’s correction. (G) Structure models to show location of the critical 
epitopes on the S protein. The epitopes S-671, S-811, and S-881 are shown on the domain structure diagram of S as well as its prefusion (left) and post-
fusion (right) conformation. The S protein has 2 cleavage sites, S1/S2 and S2′. The S-671 epitope is located at the C-terminus of S1 and disordered in the 
prefusion cryo–electron microscopy structure (left panel: Protein Data Bank 6XR8). A homology model from the SWISS-MODEL repository was employed 
to draw an S-671 epitope model in the left panel (colored blue), without cleavage at S1/S2. The Pro681 site is shown with a red sphere. The S2′ cleavage site 
is located on the S-811 epitope. The S-881 epitope is buried and inaccessible in the prefusion state but is disordered in the postfusion conformation (right 
panel: Protein Data Bank 6XRA). The S1 region is colored orange, except for the RBD, which is in cyan. The region between the S1/S2 and S2′ cleavage sites 
is shown in green. The S-811 and S-881 epitopes are colored magenta in the prefusion conformation.
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0.05). Intriguingly, the plasma from the fatality group was significantly less efficient in neutralizing S-RBD 
binding to ACE2 compared with patients who recovered from the infection (P < 0.01) (Figure 6A). This sug-
gests that the ability to inhibit the S-RBD-ACE2 interaction, the critical first step in SARS-CoV-2 infection 
of  host cells, dictates disease outcome. Because the identified S epitopes reside outside the RBD domain of  
the S protein, due perhaps to the possibility that the antibody-RBD recognition involves primarily conforma-
tional epitopes (23), we replaced the S epitopes with recombinant RBD and repeated the agglutination assay 
using the same plasma samples. We found that the S-RBD–dependent antibody response measured by latex 
agglutination significantly correlated with favorable outcome (P < 0.01) (Figure 6B).

Can the S-RBD– or epitope-specific antibody response be used to predict neutralization efficiency? 
We investigated this possibility by correlating the agglutination data obtained using the S-RBD antigen or 
the S-881, S-811, or S-551 epitopes with the neutralization data for the same set of  patient samples. We 
found a marked positive correlation between the S-RBD antibody response and neutralization in the mod-
erate or alive group but not in the severe or fatal group (Figure 6, C–F). A negative correlation between 
the S-811–specific antibody response and neutralization was observed for the moderate group whereas a 
positive correlation was seen for the severe and fatal groups. Similarly, a positive correlation was observed 
between the S-811–specific antibody response and neutralization for the severe group. Notwithstanding 
these observations, we found that the S-551–specific antibody response negatively correlated with neutral-
ization efficiency in the fatal group (Figure 6, C–F). Collectively, these data suggest that a strong S-RBD 
antibody response together with a weak S-881 or S-811–specific antibody response are correlated with 
moderate disease and favorable clinical outcome.

Table 3. A list of spike and nucleocapsid mutations examined by the variant epitope peptide array

Protein Mutation (source) Epitope sequence Overlap with 
identified epitope

Mutation disrupts 
binding

Spike HV 69-70 deletion (#) TWFHAI[HV/Δ]SGTNGTK N -
Spike Y144 deletion (#) NDPFLGV[Y/Δ]YHKNNKS N -
Spike A570D (#) QQFGRDI[A/D]DTTDAVR S-556; S-566 ND
Spike P681H (#) CASYQTQTNS[P/H]RRAR S-671A; S-676 Y
Spike P681H (centered) (#) YQTQTNS[P/H]RRARSVA S-671A; S-676 Y
Spike T716I (#) NNSIAIP[T/I]NFTISVT N -
Spike S982A (#) SVLNDIL[S/A]RLDKVEA N -
Spike D1118H (#) EPQIITT[D/H]NTFVSGN N -
Spike N501Y (# &) SYGFQPT[N/Y]GVGYQPY N -
Spike E484K (&) STPCNGV[E/K]GFNCYFP S-471 ND
Spike K417N (&) IAPGQTG[K/N]IADYNYK N -
Spike D614G (+) QVAVLYQ[D/G]VNCTEVP N -
Spike A831V (+) NKVTLAD[A/V]GFIKQYG N -
Spike N439K (+) CVIAWNS[N/K]NLDSKVG N -
Spike N709Q (+) ENSVAYS[N/Q]NSIAIPT S-696 ND
Spike A522V (+) FELLHAP[A/V]TVCGPKK N -
Spike V483A (+) GSTPCNG[V/A]EGFNCYF S-471 ND
Spike L452R (+) VGGNYNY[L/R]YRLFRKS S-451A ND
Spike A475V (+) ISTEIYQ[A/V]GSTPCNG S-471 ND
Spike N234Q (+) VDLPIGI[N/Q]ITRFQTL N -
Spike F490L (+) VEGFNCY[F/L]PLQSYGF N -
Spike V367F (+) NCVADYS[V/F]LYNSASF N -
Spike Q414E (+) VRQIAPG[Q/E]TGKIADY N -
Spike Y508H (+) NGVGYQP[Y/H]RVVVLSF N -
Spike I468F/T (+) LKPFERD[I/F/T]STEIYQA S-456 ND
Spike N165Q (+) RVYSSAN[N/Q]CTFEYVS N -

Nucleocapsid D3L (#) MS[D/L]NGPQNQRNAPRI N-1 Y
Nucleocapsid S235F (#) NQLESKM[S/F]GKGQQQQ N-221A; N-231 Y

Bold letter denotes site of mutation. AMaster array peptide. #, UK variant B.1.1.7; &, South African variant B.1.351; +, Li 
et al. (19); ND, binding not detected on variant array.
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Discussion
The relationship between COVID-19 clinical severity and the humoral immune response is a complex one. It 
remains poorly understood to date why patients with severe symptoms are characterized with a stronger anti-
body response, including neutralization antibodies, to SARS-CoV-2 than those who have moderate or mild 
symptoms (36, 37). This dichotomy suggests that not all antibodies are beneficial. Indeed, while antibodies 
may mediate the clearance of  the virus and virus-infected cells through antibody-dependent cellular cyto-
toxicity and phagocytosis, they have also been proposed to play a pathogenic role via antibody-dependent 
enhancement (38). Our epitope-based antibody analysis showed that the antibody responses from different 
patients are highly varied, and that there is generally no apparent association between the severity of  disease 
presentation and antibody response measured using a protein antigen, including S or N. Therefore, antibody 
profiling with greater resolution than a simplified S or N antibody classification is needed. Our work, which 
combines both systematic antibody screen using peptide/protein arrays and rapid antibody assays based on 
latex particle agglutination, showed that epitope-resolved antibody testing is more sensitive than S/N-based 
serology tests in discerning antibody specificity and identifying the correlates between humoral immunity 
and COVID-19 disease severity or outcome.

By identifying and validating the major S and N epitopes to enable epitope-specific antibody testing, 
our study not only provided support to the notion that linear epitopes play a critical role in mediating 
antibody responses to SARS-CoV-2 (19, 20, 22, 24, 39), but more importantly, it also demonstrated that 
the complex antibody responses in individual patients may be deconvoluted by epitope-resolved antibody 
profiling. Systematic and unbiased antibody profiling using a master array comprising the most prominent 
epitopes led to several intriguing findings. First, patients with severe disease or poor outcome tend to have 
antibodies against a large number of  epitopes. We showed that these same patients had low levels of  neu-
tralizing antibodies. It is therefore possible that the increased production of  non-neutralizing antibodies 

Figure 4. SARS-CoV-2 variants feature mutated epitopes not recognized by antibodies for the corresponding WT epitopes. (A) Layout of a SARS-CoV-2 
variant epitope array. (B) Examples of COVID-19 cases that showed distinct IgG responses to the mutated and WT epitopes (boxed). (C) Dilution series of 
P681/P681H-containing epitopes demonstrating the loss of binding for the mutant epitopes by the patient plasma.
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contributed to disease development. Second, all epitopes are not equal, and even the epitopes from the 
same protein antigen (S or N) may play distinct roles in dictating disease severity and outcome. We have 
shown not only that S-811 and S-881 are 2 of  the most prevalent epitopes but also that a high level of  anti-
bodies specific for these epitopes are strongly correlated with severe or fatal diseases. That the S-881– and 
S-811–specific antibody responses were negatively correlated with neutralization efficiency in patients who 
had moderate diseases or survived the infection suggests that the corresponding antibodies may promote 
disease progression by facilitating virus infection of  the host cells. Alternatively, antibodies targeting these 
epitopes may be a surrogate marker for a more robust and potentially excessive immune response causing 
greater tissue injury. It has been shown that the S-811 epitope is conserved in homologous antigens in 

Figure 5. Rapid epitope-dependent agglutination assay for SARS-CoV-2 antibodies effectively differentiates patient groups. (A) Latex bead agglutination assay 
to gauge antibody responses to SARS-CoV-2. The latex beads were coated with 1 or more biotinylated S or N epitope peptides and mixed with SARS-CoV-2–neg-
ative (COVID–, top) or –positive (COVID+, bottom) plasma. The presence of antibodies against the epitopes promoted the agglutination of the latex beads. Images 
shown were taken after 2 minutes’ incubation at room temperature. (B) Epitope-based latex agglutination assay distinguished COVID-19+ from COVID-19– or 
PreCOVID-19 plasma. The epitope peptides used were S-811 and S-1146 from the S and N-156 and N-361 from the N proteins. (C) Correlation of disease severity with 
antibody responses to the S-811, N-156, and N-361 epitopes determined by latex bead agglutination. (D) Correlation of disease outcome with antibody responses 
to the S-551, S-811, S-881, and N-156 epitopes determined by latex bead agglutination. P values calculated based on unpaired 1-tailed Student’s t test with Welch’s 
correction (no assumption of equal SD) (n = 20 for B; n = 10 for C and D). *P < 0.05, **P < 0.002. Error bars represent the SD.
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Figure 6. Antibody specificity predicts neutralization efficiency and disease outcome. (A) Correlation of neutralization efficiency with clinical severity (left) 
or outcome (right). *, P < 0.05; **, P < 0.01. (B) Correlation of S-RBD antibody response measured by latex agglutination with COVID-19 severity (left) or out-
come (right). **, P < 0.01. Error bars represent SD. (C–F) Pearson’s (r) correlation between epitope-dependent agglutination and neutralization. The coefficient 
of determination (R2) was calculated based on linear regression analysis. Confidence interval: 95%. The P values were calculated using a 2-tailed t distribution 
with n – 2 degrees of freedom (n = 10). P values are shown on each graph.
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several endemic coronaviruses (20). However, our results suggest that the cross-reactive antibodies may 
not provide protection against SARS-CoV-2. Third, we have shown that mutations found in SARS-CoV-2 
variants may directly affect antibody response by altering epitope specificity. This finding demonstrated the 
flexibility of  the epitope peptide array approach to quickly incorporate emerging mutations, thereby provid-
ing valuable information of  the effect of  the mutations and the corresponding VOCs on humoral immunity.

While it has been shown that mutations result in more fit, and likely more contagious, viruses (15, 16, 
40), the serological consequences of  the mutations found in VOCs are unclear (40). Recent studies have 
shown reduced binding to therapeutic antibodies or S-specific antibodies for the circulating VOCs B.1.1.7, 
B.1.351, and P.1 in vitro (41, 42). All 3 VOCs harbor an N501Y mutation within S-RBD, while the B.1.351 
and P.1 variants contain 2 additional RBD changes, K417N/T and E484K. These mutations, located at the 
interfaces of  the RBD-ACE2/antibody complexes, have been shown to increase S binding to ACE2 and 
decrease its recognition by neutralizing antibodies (28, 43–45), leading to the enhanced infection efficacy 
and transmissibility for the variants. Intriguingly, the same amino acid changes have been shown to alter 
the corresponding epitopes targeted by neutralizing antibodies (28), thereby providing a potential mecha-
nism of  immune escape by reducing or disabling antibody-mediated neutralization (43, 46–48). Besides 
the RBD, a P681H mutation located in the S1/S2 linker region of  the spike has been detected in multiple 
VOCs (31–33). We found that the P681H mutation in the spike and the S235F in the nucleocapsid rendered 
the corresponding epitopes completely incapable of  binding antibodies generated against the original virus. 
While it remains to be determined whether these mutations mediate immune escape of  the corresponding 
VOCs in some patients, our findings imply that the P681H mutation may render the WT spike mRNA–
based vaccine less effective to those who employ S-671 (which encompasses the mutated residue) as a 
major epitope. Nevertheless, we note that the P681H and S235F mutations only affected a few individuals 
in the cohort of  patients examined herein while the majority of  patients displayed no apparent antibody 
responses against the corresponding epitopes. This may explain why recent studies have shown the Pfizer 
and Moderna mRNA vaccines are effective in protecting from infection by the VOCs (49–51). It would be 
important to investigate in the future, by large-scale epitope-specific antibody profiling, the percentage of  
the population who employ S-671 as a major epitope. By the same token, prevalence of  the N-221 epitope 
(which contains the S235 residue found mutated in the B.1.1.7 strain) would provide valuable information 
on the protection of  vaccines based on inactivated intact viruses. In the same vein, hundreds of  mutations 
may be examined simultaneously in a peptide array to assess their effect on antibody response, and the 
epitope array may be readily modified to incorporate emerging mutations. The impact of  the mutations on 
humoral immunity may also involve conformational epitopes that are not recapitulated by the linear epi-
topes. However, both the master array and the agglutination-based antibody test may be quickly modified to 
include mutant S proteins. Future studies using a combination of  epitope and protein antigen-based assays 
tailored to the VOCs would provide valuable information on the population penetrance of  a given variant 
and the impact of  the associated missense or deletion mutations on antibody-mediated immunity.

While the epitope array may be used to profile antibody response in a systematic manner, the epi-
tope-dependent latex agglutination assay provides a rapid, simple, cost-effective, and accurate serological 
test that may be suitable for POC antibody testing. The agglutination assay may be carried out with indi-
vidual epitopes to map the specificity of  antibodies or with a mixture of  epitopes to test multiple anti-
gens simultaneously. The ease with which to incorporate mutated epitopes or S/N protein antigen in the 
agglutination assay makes it a nimble yet powerful tool to determine the impact of  mutations associated 
with the VOC on humoral immunity. Although the mRNA-based vaccines have shown superb efficacy, not 
all vaccine recipients would be protected. It also remains to be determined how long the immunity will 
last and against which variants. Monitoring vaccinated or recovered individuals over months to years by 
antibody testing would provide valuable information on the duration of  immune responses against SARS-
CoV-2, including variants (7). In this regard, the epitope-resolved antibody test may be used to delineate the 
specific antibodies produced by different individuals, determine persistence of  antibody in the circulation 
over time, assess the efficiency of  vaccines, and decipher the effect of  the VOCs on the immune system. The 
agglutination assay, which measures the total antibody response irrespective of  the Ig isotypes, provides a 
unique advantage over serological assays that measure a given isotype because different Ig isotypes have 
distinct dynamics and evolutionary trajectory over time (18). Longitudinal studies by the epitope-resolved 
agglutination assay would provide valuable information on the evolution of  antibody immunity from vac-
cination or previous infection.
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Methods

Patient population and blood sample collection
Spent plasma samples from 89 adult patients (including both male and female) were deidentified prior to trans-
fer from the Core Laboratory (London Health Sciences Center, London, Canada) to a biosafety level 3 (CL3) 
lab (ImPaKT, Western University) following Transportation of Dangerous Goods guidelines. All plasma 
samples were heat inactivated at 56°C for 30 minutes at the ImPaKT CL3 facility as per Western University 
biosafety regulation, then transferred to the testing laboratory. Heat inactivation did not appear to have a sig-
nificant effect on antibody integrity (52). Heat-inactivated plasma samples were then transferred to the testing 
laboratory. Clinical data for the whole cohort were not available and therefore not reported in the manuscript. 
Control samples consisted of patients admitted to hospital due to COVID-19 symptoms but subsequently test-
ed negative by RT-PCR (COVID–) as well as samples obtained in 2018, prior to the COVID-19 pandemic.

Protein microarray
Proteins. The S-ecto (53), expressed in mammalian EXPI293 cells, and N-dimer domain, N-RBD, NSP3-unique, 
NSP3-ADRP, NSP3-NAB, NSP3-PLPro, NSP4-CTD, NSP5, NSP7, NSP8, NSP9, NSP10, and NSP16 (54) 
expressed in bacterial Escherichia coli cells were supplied by the Toronto Open Access Covid-19 Protein Man-
ufacturing Center (comprising BioZone and the Structural Genomics Consortium, Toronto, Canada) under 
an Open Science Trust Agreement: http://www.thesgc.org/click-trust. The Center received funding from the 
Toronto COVID-19 Action Fund. See Supplemental Table 1 for a complete list of proteins.

Protein array printing. SARS-CoV-2 proteins were diluted to 0.5–10 μM in PBS with 5% glycerol (IgG con-
trol at 200 nM) and aliquots transferred to a 384-well microplate (ArrayIt). A total of 24 copies of the microar-
ray were printed on each nitrocellulose-coated glass slide (ArrayIt) using a VersArray Chipwriter Pro (Bio-Rad) 
equipped with a Stealth 15XB microarray quill pin (ArrayIt). Spot-to-spot distance was 850 μm with 2 reprints 
of the same spot and all spots printed in duplicate in the y dimension. A dwell time of 0.1 seconds was used for 
each spot with an approach speed of 12.5 mm/s. Samples were printed at room temperature and subsequently 
stored at 4°C until time of probing.

Peptide microarray
Peptide synthesis. Peptides were synthesized on Tentagel resin on an Intavis MultiPep RSi peptide synthesizer 
using N-(9-fluorenyl) methoxycarbonyl chemistry. All peptides were synthesized with biotin at the N-termi-
nus followed by an aminohexanoic acid and Gly-Gly spacer. A walking array of  peptides with 15–amino 
acid length and 5–amino acid overlap spanning the full sequence of  SARS-CoV-2 S (UniProt Protein Acces-
sion P0DTC2.1) and N proteins (UniProt Protein Accession P0DTC9.1) were synthesized for array printing. 
Peptides reported in a previous publication (24) as well as epitopes predicted using bioinformatics (25) were 
synthesized and printed to create the literature-reported peptide array. Peptides encompassing mutation sites 
reported in SARS-CoV-2 variants were synthesized as described above for the variant peptide array (Table 2).

Peptide array printing. Peptides were printed as neutravidin complexes on nitrocellulose-coated slides 
(ArrayIt) by mixing 10 μM neutravidin with an excess (by 4-fold) of peptide that was diluted in PBS, and ali-
quots were transferred to a 384-well microplate (ArrayIt) along with IgG printing control, S-RBD, full-length 
N, N-RBD, and N-dimer proteins. Two copies of the walking microarray, 3 copies of the literature-reported 
microarray, or 8 copies of the variant array were printed on each nitrocellulose-coated glass slide using a Ver-
sArray Chipwriter Pro (Bio-Rad) equipped with a Stealth 15XB microarray quill pin (ArrayIt). Spot-to-spot 
distance was 750 μm with 2 reprints of the same spot and all spots printed in duplicate in the y dimension. A 
dwell time of 0.1 seconds was used for each spot with an approach speed of 12.5 mm/s. Samples were printed 
at room temperature and subsequently stored at 4°C until time of probing.

Protein and peptide array probing
Microarray slides were briefly rinsed twice with Tris-buffered saline containing Tween 20 (TBST: 0.1 M Tris-
HCl at pH 7.4, 150 mM NaCl, and 0.1% Tween 20) to wet the surface and then incubated for 2 hours with 
ChonBlock ELISA blocking and antibody dilution buffer (Chondrex Inc). Slides were briefly rinsed with TBST, 
then inserted into an ArraySlide 24-chamber hybridization cassette (The Gel Company) for the proteome array 
or ProPlate Multi-Well Chamber (Grace Bio-Labs) for the peptide arrays and incubated with plasma from 
NAT-confirmed SARS-CoV-2–positive and –negative patients (1:250 dilution in ChonBlock). Slides were then 
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rinsed quickly 3 times followed by 3 washes, 5 minutes each, with TBST before probing with goat anti–human 
IgG HRP antibody at 1:10,000 (MilliporeSigma, AP113P) in ChonBlock for 1 hour. The wash step was repeat-
ed as above; then the HRP signal was visualized on a ChemiDoc XRS+ Imager (Bio-Rad) using Clarity ECL 
Substrate (Bio-Rad). Slides were incubated with ECL solution for 30 seconds; then 15 images were taken 
incrementally from 1 to 60 seconds. All incubation steps were performed at room temperature using a rocker 
for agitation of the sample. Antibodies were used in place of plasma to confirm protein printing as follows: 
anti–S-RBD (Novus Biologicals clone CR3022, NBP2-90980) at 1:1000 followed by goat anti–human IgG 
HRP (same as above) and anti-nucleocapsid (Thermo Fisher Scientific PA5-81794) at 1:1000 followed by goat 
anti-rabbit IgG HRP (Bio-Rad, 1721050) at 1:10,000. All antibodies were diluted in ChonBlock.

Array quantification
Peptide-walking arrays, literature-reported epitope peptide arrays, and the master epitope arrays were quan-
tified using ImageJ software (NIH) (55). Images were first inverted and converted to 8 bit. Background was 
subtracted using a rolling ball radius of  25 pixels. Intensities were normalized to IgG control and ranked by 
normalized signal intensity. Peptides with strongest intensity or most frequently observed were selected for 
creation of  the master array. To determine the percentage of  cases and number of  epitopes per patient, high 
exposure (60 seconds) images were captured to visualize very-low-intensity spots. Due to oversaturation at 
this exposure time, lower exposure (5–10 seconds) images were used for quantification purposes. For the 
master array quantification, signals within 2 SDs of  the mean background intensity at lower exposure were 
omitted from statistical analysis. Patient samples with no detectable antibody response (24 out of  89 patients) 
were also omitted from statistical analysis.

Preparation of SARS-CoV-2 peptide antigen-conjugated latex particles and peptide 
antigen-based agglutination assay
Blue-dyed, carboxylate-modified, streptavidin-polystyrene, latex beads, 0.25 μm in diameter, or blue-dyed, 
polystyrene, latex beads, 0.8 μm in diameter, were purchased from MilliporeSigma (L6155, L1398). Carbox-
ylate-modified latex-streptavidin or neutravidin-coated polystyrene beads were suspended at 2.5% (w/v) using 
assay buffer, 0.025 M 2-[N-Morpholino] ethanesulfonic acid–Tween 20 buffer (0.05% pH 6.0). Synthetic bio-
tin-labeled SARS-CoV-2 peptides were suspended in the same assay buffer at the concentration of  500 μg/
mL. The biotin peptides were incubated with streptavidin-latex beads for 1 hour at room temperature. The 
epitope peptide-conjugated latex bead complex was washed twice with PBS buffer (135 mM NaCl, 2.6 mM 
KCl, 8 mM Na2HPO4, and 1.5 mM KH2PO4, pH 7.4) by mixing and centrifuging the latex suspension at 
5000g for 10 minutes at room temperature. The peptide antigen-bead conjugate was blocked for 30 minutes at 
room temperature in PBS containing 3% bovine serum albumin (BSA). The conjugate was then resuspended 
at 2.5% (w/v) in PBS containing 1% BSA and stored at 4°C until use. For the agglutination assay, 5 μL plasma 
was mixed with 25 μL peptide-conjugated latex beads (2.5%, w/v) per assay as described in the full protein 
antigen agglutination assay section.

Agglutination assay for SARS-CoV-2 antibody testing and data interpretation
For the agglutination assay, 10 samples were chosen for each epitope comparison based on the presence of anti-
body responses on the microarray screens. A total of 5 μL plasma was mixed with 25 μL antigen-coated beads 
(2.5%, w/v) per assay. The agglutination was allowed to proceed for 2 minutes at room temperature before imag-
ing with a camera. The relative degree of agglutination induced by the SARS-CoV-2 antibody was measured by 
the area of clump formation based on the corresponding image. The image analysis software Qupath (v0.1.2) 
was used (https://qupath.github.io/), and quantification was done by calculating the percentage of agglutina-
tion based on estimated agglutination/clumps area (mm2) relative to the total latex reaction area. We used 5% 
agglutination as the cutoff for antibody positivity.

S-RBD–ACE2 binding ELISA surrogate neutralization assay
Biotin-ACE2 (1 μg/mL) was added to an S-RBD–coated plate after blocking and incubated for 1 hour at room 
temperature. The wells were washed 3 times with TBST (20 mM Tris, 150 mM NaCl, 0.1% Tween 20) to 
remove unbound biotin-ACE2. Streptavidin-HRP (Thermo Fisher Scientific PI21124), with 1000-fold dilution 
in ChonBlock blocking buffer, was then added to each well and incubated for 1 hour at room temperature. The 
wells were washed 3 times with TBST; 3,3′,5,5′-tetramethylbenzidine substrate (Thermo Fisher Scientific, N301) 
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was added for reaction development; and 0.18 M H2SO4 was used to stop the reaction. Absorbance at 450 nm 
was measured to detect the S-RBD–bound ACE2. To determine the neutralization efficacy of the patient plas-
ma, the plasma was diluted 1:100 and incubated with S-RBD–coated wells (blocked) for 1 hour at room tem-
perature. The wells were washed 3 times with TBST. Biotin-ACE2 was then added to the wells and incubated 
for 1 hour at room temperature followed by washing, reaction development, and detection as described above.

Statistics
All statistical analyses were performed using GraphPad Prism 9 software. Significance was determined 
using unpaired 1-tailed Student’s t test with Welch’s correction and 1-way ANOVA with Geisser-Green-
house correction and P ≤ 0.05 was considered significant. Error bars represent the SD.

Study approval
Blood samples were collected following a protocol (study number: 116284) approved by the Research Eth-
ics Board of  Western University.
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