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Background. MicroRNA-1-3p (miR-1-3p) exerts significant regulation in various tumor cells, but its molecular mechanisms in
head and neck squamous cell carcinoma (HNSCC) are still ill defined. This study is aimed at detecting the expression of miR-
1-3p in HNSCC and at determining its significant regulatory pathways. Methods. Data were obtained from the Cancer Genome
Atlas (TCGA), Gene Expression Omnibus (GEO), Oncomine, ArrayExpress, Sequence Read Archive (SRA) databases, and
additional literature. Expression values of miR-1-3p in HNSCC were analyzed comprehensively. The R language software was
employed to screen differentially expressed genes, and bioinformatics assessment was performed. One sequence dataset
(HNSCC: n = 484; noncancer: n = 44) and 18 chip datasets (HNSCC: n = 656; noncancer: n = 199) were obtained. Results. The
expression of miR-1-3p in HNSCC was visibly decreased in compare with noncancerous tissues. There were distinct differences
in tumor state (P = 0:0417), pathological stage (P = 0:0058), and T stage (P = 0:0044). Comprehensive analysis of sequence and
chip data also indicated that miR-1-3p was lowly expressed in HNSCC. The diagnostic performance of miR-1-3p in HNSCC is
reflected in the sensitivity and specificity of the collection, etc. Bioinformatics analysis showed the possible biological process,
cellular component, molecular function, and KEGG pathways of miR-1-3p in HNSCC. And ITGB4 was a possible target of miR-
1-3p.Conclusions. miR-1-3p’s low expression may facilitate tumorigenesis and evolution in HNSCC through signaling pathways.
ITGB4 may be a key gene in targeting pathways but still needs verification through in vitro experiments.

1. Introduction

HNSCC is a human malignant neoplasm common in certain
regions. The morbidity of HNSCC has improved dramati-
cally in recent years, particularly among women. Each year,
over 600,000 patients are diagnosed HNSCC globally, over
half in the Asia-pacific regions [1]. Platinum-based chemo-
therapy, radiotherapy, and cetuximab are commonly used
to treat recurrent/metastatic HNSCC in Asia [2]. Unfortu-
nately, about 75% of these patients have local progression
(60%) or metastasis (15%) upon first contact, and the
median survival of patients with relapse and/or metastasis

is only 6 months. Survival rates drop rapidly in patients
who fail first-line treatment, often dying within three
months [3]. Seeking antitumor therapies that are more effec-
tive, more scholars are paying close attention to molecular-
targeted therapy. Recently, many studies on microRNAs
(miRNAs) have been affirmed in the cancer field, and
molecular-targeted therapy has become a burgeoning treat-
ment for tumors [4].

MicroRNAs of approximately 22 nucleotides long are
noncoding single-stranded RNAs, coded efficiently by endog-
enous genes [5]. They regulate the expression of posttranscrip-
tion genes. Many studies have presented distinctions in the
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expression of some miRNAs in cancerous and noncancerous
tissues [6], utilizing signaling pathways to control key genes
affecting physiological and biochemical processes such as pro-
liferation and differentiation in tumor cells. Notwithstanding,
the clinical value and molecular functions of individual miR-
NAs remain relatively unexplored. As a gene member,
miRNA-1-3p targets different proteins or genes and affects
the occurrence and development of gastric [7], colon [8],
and breast carcinomas [9, 10], among others [11–13]. How-
ever, there are few relevant articles about the expression of
miR-1-3p in HNSCC. Only 8 research teams have explored
the ontology of miR-1-3p on key genes that regulate HNSCC
[1, 14–20]. Potential molecular mechanism regulation in
HNSCC is still unclear, and new enrichment regulatory path-
ways need to be proposed.

In this study, a total of 1,140 cancer samples and 243
noncancer samples were collected based on sequencing,
microarray, and literature data to probe the clinical signifi-
cance and impact ofmiR-1-3p inHNSCC. Potential molecular
mechanisms, including significant genes and enrichment
paths of miR-1-3p in HNSCC, were summarized. ITGB4 was
one of the target genes. The schematic of the research design
is shown in Figure 1.

2. Materials and Methods

2.1. Sources of miR-1-3p Expression Data in HNSCC

2.1.1. MicroRNA-Seq Data. The miRNA sequence dataset
was obtained from TCGA [21], including samples of cancerous

and noncancerous tissues. The steps for data download were as
follows: the site for UCSC-Xena (https://xena.ucsc.edu/)
visited, checked “TCGA hub” in the “DATASETS” option,
and selected “TCGA(HNSC),” which contains 25 datasets. In
the new interface, selected “IlluminaHiseq (n = 529) TCGA
hub” to download matrix files and gene annotation files. By
matching the two, the expression value of miR-1-3p was
determined. After deleting missing data, mature miR-1-3p
expression data were extracted. Meanwhile, using “sanger-
box,” the corresponding clinical case data were downloaded
for analysis.

2.1.2. Microarray Data.Microarrays were filtered to evaluate
miR-1-3p expression in Gene Expression Omnibus (GEO)
[22]. The overall strategy for retrieval was OSCC OR
HNSCC OR “head and neck” OR “nasopharynx.” We
adjusted search terms to achieve the best range. The search
was restricted to “Series” in “Entry type” and “H. sapiens”
in “organisms.” All research contained in the chips followed
these criteria: (1) the species is human, (2) the objective is
tissue, (3) microarray results include required gene, (4) con-
taining both HNSCC tissues and nontumor tissues, and (5)
miR-1-3p expression is mature. Conversely, the exclusion
criteria were (1) objects other than human, (2) serum sample
or other liquid types, (3) the chip does not contain the
required genes, (4) there is only the experimental group or
the control group, (5) control samples have other related dis-
eases, and (6) include drug-related research or other unre-
lated interventions. After filtering the chips, chip number
was input into the GEO database for querying detailed data;
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we downloaded the “SOFT formatted family file(s)” probe
annotation files and “Series Matrix file(s)” gene probe expres-
sionMatrix file, to find the miR-1-3p corresponding expression
data. For chip screening in ArrayExpress [23], Oncomine [24],
and SRA [25], the methods were the same as above.

2.1.3. Literature Data. We reviewed articles about gene
expression in HNSCC in Chinese and foreign scientific
research sites, including CNKI, Wanfang, Vip, PubMed,
Web of Science, and EBSCO databases.We extracted these chips
to supplement existing microarrays to acquire unabridged data.
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Figure 2: The miR-1-3p expression decreases in different clinicopathological parameters of HNSCC: (a–d) violin figure; (e–h) ROC curve.
(a, e) The total expression of miR-1-3p in HNSCC and nontumor tissue from the TCGA database. (b, f) The relationship between miR-1-3p
expression and tumor status. (c, g) The relationship between miR-1-3p expression and pathologic stage. (d, h) The relationship between
miR-1-3p expression and T stage. The differential expression of miR-1-3p in HNSCC was statistically significant, which was manifested
in tissue, tumor status, pathological stage, and T stage. AUC: the area under the ROC curve; P value: T-test with two independent samples.
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2.2. Comprehensive and Detailed Analysis. Based on the
sequencing data and the specific content of each microarray,
the data were selected to make log2 processing or not. The
mean expression level (mean) and standard deviation (SD)
were calculated using SPSS 22.0. The “car” package of R
was employed to draw violin plots to clarify that the
miR-1-3p’s expression was different in cancerous and
noncancerous tissues. To evaluate the expression level of
miR-1-3p comprehensively, a meta-analysis of continuous
variables was conducted with Stata 12.0. When heterogeneity
was small (I2 < 50%), the fixed effect model was adopted for
analysis. On the contrary, if heterogeneity was extensive
(I2 > 50%), a random-effect model was used, and we contin-
ued to perform sensitivity analysis to determine the sources
of heterogeneity. After removing the chips that contributed
to heterogeneity, we reanalyzed the results based on remaining
data. If heterogeneity was less than 50%, the results were
reliable. For statistical analysis, if the standard mean
deviation ðSMDÞ < 0 and the 95% confidence interval (CI)
did not cross the 0-point coordinate line, the gene was demon-
strated to be significantly lower inHNSCC. An SMD > 0meant
that the research object was highly expressed in carcinoma. The
ROC curves were plotted using SPSS, and the sROC curve was
drawn using the Stata software to forecast the clinical signifi-
cance of miR-1-3p in HNSCC. When the area under the curve
was >0.5, this index had a certain diagnostic value for diseases.
The AUC over 0.7 indicated a good diagnostic value. Publica-
tion bias was determined using Begg’s funnel plot.

2.3. Screening of Differential Genes. Based on log ∣ FC ∣ >1
and P < 0:05, 39 arrays of the expression of long noncoding
genes in HNSCC and 3 miR-1-3p transfection samples
(GSM610393, GSM610394, GSM639297) were selected from
TCGA, GEO, Oncomine, and ArrayExpress databases.
DEGs that appeared over 8 times were singled out from 39
datasets, combined with miR-1-3p transfected samples and
the prediction tool (miRWalk 2.0) to form final differential
genes of HNSCC.

2.4. Bioinformatics Analytical Methodology. Gene annotation
and pathway enrichment analysis of DEGs were conducted
in DAVID v 6.8; top-ranked annotations and pathways
were listed, and P < 0:05 indicated that the difference was
statistically significant. The MCODE plugin in Cytoscape
3.4.0 is an APP that performs topological gathering on a
fixed net to find dense connection areas. All differentially
expressed genes enriched in five Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways were introduced
into the software. In addition, the most central modules
in the PPI network were confirmed by MCODE.

2.5. Verify the Expression of Target Genes. Gene expression
profile information of the 11 key genes in the sequence
was imported into the cBioPortal website for genetic varia-
tion to verify the regulatory relationship between pivotal
genes and miR-1-3p. In addition, the GraphPad Prism 8
software was used to verify the association between miR-1-
3p and key genes.

3. Results

3.1. miR-1-3p Expression Decreased in HNSCC in miRNA-
Seq. In total, 44 nontumor and 484 HNSCC tissue samples
were included in the miRNA sequence. Compared with non-
cancerous tissues, the expression of miR-1-3p in HNSCC
visibly decreased (5:139 ± 3:275 vs. 8:709 ± 3:788, P < 0:001)
(Figure 2(a)). The area under the ROC curve (AUC) was
0.775 (P < 0:001) (Figure 2(e)). From the statistical analysis
of clinical parameters, the expression of miR-1-3p in tumor
tissues showed distinct differences in tumor state (P = 0:0417,
Figure 2(b)), pathological stage (P = 0:0058, Figure 2(c)), and
T stage (P = 0:0044, Figure 2(d)) (Table 1).

Table 1: The relationship between miR-1-3p gene expression and
clinical parameters in TCGA by using T-test.

Parameters N Mean ± SD T value P value

Tissue

HNSCC 484 5:139 ± 3:274 6.048 0.0001

Normal 44 8:709 ± 3:788
Age

≥60 267 5:027 ± 3:259 0.756 0.4500

<60 214 5:253 ± 3:275
Gender

Male 350 5:099 ± 3:284 0.465 0.6420

Female 132 5:255 ± 3:267
Lymphovascular invasion

Yes 113 5:897 ± 3:548 1.702 0.0905

No 211 5:223 ± 3:314
Tumor status

With tumor 124 5:649 ± 3:467 1.967 0.0417

Tumor free 310 4:941 ± 3:177
Histological grade

G3-G4 122 5:307 ± 3:487 0.382 0.7022

G1-G2 340 5:175 ± 3:204
Pathologic stage

III-IV 376 4:924 ± 3:239 2.771 0.0058

I-II 106 5:915 ± 3:308
T stage

T3-T4 299 4:814 ± 3:069 2.762 0.0044

T1-T2 172 5:702 ± 3:515
N stage

N1-N3 239 5:055 ± 3:268 0.763 0.4465

N0 225 5:287 ± 3:274
M stage

M1 5 2:968 ± 1:602 3.043 0.0541

M0 457 5:198 ± 3:279
Margin status

Positive 55 5:246 ± 3:219 0.457 0.6480

Negative 322 5:467 ± 3:344
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3.2. Expression and ROC Curves of miR-1-3p in HNSCC in
Different Gene Chips. Eighteen pieces of qualified chips were
filtered from GEO, ArrayExpress, Oncomine, and SRA data-
bases (Table 2). We calculated the mean and the SD in
microarrays (Table 3) and plotted violin diagrams
(Figure 3). We used adoptive data to calculate the AUC

(Figure 4). Foregoing chip results revealed that the miR-1-
3p expression level in HNSCC was lower than in noncancer
cells, in accordance with the results from the sequence.

3.3. Meta-analysis of miR-1-3p Expression Levels in HNSCC
Decreased Compared to Nontumor Tissues. Detailed and

Table 2: The gene chip dataset information of miR-1-3p.

Chip name First author Country Public year Sample Platform

GSE11163 Michele Avissar USA 2008 Tissue GPL6690

GSE22587 Yang Shu China 2013 Tissue GPL8933

GSE28100 Hyunmin Jung USA 2012 Tissue GPL1085

GSE31277 Patricia Severino Brazil 2014 Tissue GPL4133

GSE32906 Zhaohui Luo China 2012 Tissue GPL11350

GSE32960 Jun Ma China 2012 Tissue GPL14722

GSE34496 Michael F Ochs USA 2013 Tissue GPL8786

GSE36682 Rongrong Wei China 2012 Tissue GPL15311

GSE41268 Zijun Xie China 2012 Tissue GPL10850

GSE43329 Jinze Zheng China 2013 Tissue GPL16475

GSE45238 Shine-Gwo Shiah China 2015 Tissue GPL8179

GSE46172 Jeffrey Bethony USA 2014 Tissue GPL16770

GSE62819 Jugao Fang China 2014 Tissue GPL16384

GSE69002 Chad Creighton USA 2016 Tissue GPL18044

GSE73171 Zenghong Li China 2016 Tissue GPL14613

GSE82064 Nicola Valeri Switzerland 2017 Tissue GPL21968

GSE98463 Cintia Micaela Chamorro Spain 2017 Tissue GPL21572

GSE10393 Yujin Hoshida USA 2017 Tissue GPL3921

Table 3: Basic statistical indicators of miR-1-3p expression values in the experimental groups and control groups were summarized.

Name Case_n Case_mean Case_sd Cont_n Cont_mean Cont_sd TP FP FN TN

GSE11163 16 5.0060 2.9502 5 6.9577 3.0365 11 1 5 4

GSE22587 8 1.3000 5.5401 4 10.1731 6.4789 7 1 1 3

GSE28100 17 9.1189 2.1971 3 8.6146 3.0807 15 2 2 1

GSE31277 15 3.4416 0.2865 15 3.7763 0.1914 13 5 2 10

GSE32906 16 7.7991 2.3468 6 1.2160 1.4288 6 1 10 5

GSE32960 312 8.6397 0.3116 18 8.5930 0.3889 211 8 101 10

GSE34496 44 1.2115 0.3470 25 1.2232 0.3832 15 6 29 19

GSE36682 62 8.7352 0.4357 6 9.0868 0.0713 54 0 8 6

GSE41268 7 -1.1088 3.6207 3 -3.0293 0.3337 2 0 5 3

GSE43329 31 6.5909 0.2343 19 6.6317 0.0071 17 4 14 15

GSE45238 40 8.6857 2.4182 40 11.9760 2.0615 36 8 4 32

GSE46172 4 -2.8090 0.5321 4 3.9720 6.9307 3 0 1 4

GSE62819 5 4.2859 3.0773 5 3.7886 3.0131 5 4 0 1

GSE69002 3 2.9315 0.0689 4 2.9969 0.1152 3 2 0 2

GSE73171 3 1.5082 0.0336 3 1.8233 0.4318 3 1 0 2

GSE82064 35 5.9177 1.9298 12 6.9437 1.2942 14 0 21 12

GSE98463 8 1.8867 1.9029 8 2.0199 2.4693 8 7 0 1

GSE103931 30 5.0757 1.3494 19 5.9368 2.4772 29 14 1 5
aCase_n, Case_mean, Case_sd: number, mean, standard deviation of experimental groups; Cont_n, Cont_mean, Cont_sd: number, mean, standard deviation
of control groups; TP, FP, FN, TN: true positive, false positive, false negative, and true negative.
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comprehensive statistical analyses of data from the sequence
and chips were performed to calculate the SMD values and
to draw the forest plot (SMD = −0:59 (-0.75, -0.43), I2 =
78:5%, P < 0:001, Figure 5(a)). Data heterogeneity was overt.
The random-effect model was used (Figure 5(b))
(SMD = −0:41 (-0.80, -0.03), I2 = 78:5%, P < 0:001). In the
figure, the diamond occupied left of the invalid vertical line,
miR-1-3p was weakly expressed in HNSCC, and the differ-
ence was statistically significant. Further sensitivity analysis
was performed (Figure 5(c)). We selected four most influen-
tial studies to detect possible sources of heterogeneity

(Figure 5(d)). Results showed that I2 = 47:0%, P = 0:023,
heterogeneity decreased obviously, and the difference was
statistically significant. This heterogeneity might come from
these four chips: GSE32906, GSE32960, GSE34496, and
GSE45238. The European SMD value was -0.28 (95% CI:
-0.60, 0.04) (I2 = 0:0%), and the Asian SMD value was
-0.32 (95% CI: -0.92, 0.28) (I2 = 83:7%) (Figure 5(e)), sug-
gesting that heterogeneity may be derived from the country
subgroup. The result of Begg’s test was P = 0:961, indicating
that there was no apparent publication bias in our study
(Figure 5(f)).
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Figure 3: Expression of miR-1-3p in head and neck squamous cell carcinoma and noncancerous tissues in different gene chips.
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3.4. Clinical Significance and Value of miR-1-3p in HNSCC.
We computed the true positive (TP), false positive (FP), false
negative (FN), and true negative (TN) of each dataset based

on the most approximate den index and the corresponding
cutoff value (Table 3). The area under the sROC curve was
0.83 (95% CI: 0.80-0.86) (Figure 6(a)). The values of total
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Figure 4: ROC curves of miR-1-3p in HNSCC and nontumor tissues in different gene chips.

7BioMed Research International



Study
ID SMD (95% CI)

–0.66 (–1.68, 0.37) 2.39

1.33

1.66

3.92

1.41

11.13

10.43

3.48

1.31

7.66

10.26

0.99

1.36

1.04

0.82

5.66

2.44

7.42

25.27

100.00

–1.52 (–2.89, –0.15)

–1.37 (–2.17, –0.57)

–0.03 (–0.52, 0.46)

–0.84 (–1.69, 0.01)

0.61 (–0.77, 2.00)

–0.22 (–0.79, 0.35)

–1.46 (–1.96, –0.97)

–1.38 (–2.97, 0.21)

1.14 (–0.22, 2.50)

–0.66 (–2.21, 0.89)

–1.03 (–2.78, 0.72)

–0.57 (–1.24, 0.09)

–0.71 (–1.73, 0.30)

–0.46 (–1.04, 0.12)

–1.08 (–1.39, –0.76)

–0.59 (–0.75, –0.43)

3.06 (1.72, 4.39)
0.15 (–0.33, 0.62)

0.22 (–1.01, 1.45)

weight
%

GSE11163

GSE22587

GSE28100

GSE31277

GSE32906

GSE32960

GSE34496

GSE36682

GSE41268

GSE43329

GSE45238

GSE46172

GSE62819

GSE69002

GSE73171

GSE82064

GSE98463

GSE103931

TCGA

–4.39 4.390

Overall (I2 = 78.5%, p = 0.000)

(a)

Figure 5: Continued.

8 BioMed Research International



–0.66 (–1.68, 0.37)

100.00

7.50

6.68

5.09

6.38

2.99

3.45

3.97

3.35

6.98

6.72

3.90

5.69

6.99

7.04

4.05

5.88

4.36

3.93

5.05

–1.52 (–2.89, –0.15)

–1.37 (–2.17, –0.57)

–0.03 (–0.52, 0.46)

–0.84 (–1.69, 0.01)

0.61 (–0.77, 2.00)

–0.22 (–0.79, 0.35)

–1.46 (–1.96, –0.97)

–1.38 (–2.97, 0.21)

1.14 (–0.22, 2.50)

–0.66 (–2.21, 0.89)

–1.03 (–2.78, 0.72)

–0.57 (–1.24, 0.09)

–0.71 (–1.73, 0.30)

–0.46 (–1.04, 0.12)

–1.08 (–1.39, –0.76)

–0.41 (–0.80, –0.03)

3.06 (1.72, 4.39)

0.15 (–0.33, 0.62)

0.22 (–1.01, 1.45)

Study
ID SMD (95% CI) weight

%

GSE11163

GSE22587

GSE28100

GSE31277

GSE32906

GSE32960

GSE34496

GSE36682

GSE41268

GSE43329

GSE45238

GSE46172

GSE62819

GSE69002

GSE73171

GSE82064

GSE98463

GSE103931

–4.39 4.390

TCGA

Overall (I2 = 78.5%, p = 0.000)

Note: weights are from random effecta analysis

(b)

Figure 5: Continued.

9BioMed Research International



GSE11163

–0.85 –0.75 –0.59 –0.43 –0.24

GSE22587

GSE28100

GSE31277

GSE32906

GSE32960

GSE34496

GSE36682

GSE41268

GSE43329

GSE45238

GSE46172

GSE62819

GSE69002

GSE73171

GSE82064

GSE98463

GSE103931

TCGA

Meta-analysis estimates, given named study is omitted
Lower CI limit
Estimate
Upper CI limit

(c)

Figure 5: Continued.

10 BioMed Research International



–2.97 2.970

GSE11163

GSE22587

GSE28100

GSE31277

GSE36682

GSE41268

GSE43329

GSE46172

GSE62819

GSE69002

GSE73171

GSE82064

GSE98463

GSE103931

TCGA

Overall (I2 = 47.0%, p = 0.023)

Note: weights are from random effecta analysis

Study
ID SMD (95% CI) weight

%

–0.66 (–1.68, 0.37) 6.07

4.02

4.73

8.12

7.61

3.96

10.93

3.18

4.07

3.31

2.71

9.69

6.15

10.80

14.63

100.00

–1.52 (–2.89, –0.15)

–1.37 (–2.17, –0.57)

–0.84 (–1.69, 0.01)

0.61 (–0.77, 2.00)

–0.22 (–0.79, 0.35)

–1.38 (–2.97, 0.21)

1.14 (–0.22, 2.50)

–0.66 (–2.21, 0.89)

–1.03 (–2.78, 0.72)

–0.57 (–1.24, 0.09)

–0.71 (–1.73, 0.30)

–0.46 (–1.04, 0.12)

–1.08 (–1.39, –0.76)

–0.62 (–0.93, –0.31)

0.22 (–1.01, 1.45)

(d)

Figure 5: Continued.

11BioMed Research International



GSE11163
Europe

GSE28100
GSE34496
GSE46172

GSE69002
GSE82064
GSE98463

GSE22587
GSE31277
GSE32906
GSE32960

GSE36682
GSE41268
GSE43329
GSE45238
GSE62819
GSE73171
GSE103931

Subtotal (I2 = 0.0%, p = 0.529)

Subtotal (I2 = 83.7%, p = 0.000)

Asia

Note: weights are from random effecta analysis

Study
ID SMD (95% CI) weight

%

–0.66 (–1.68, 0.37)

–1.52 (–2.89, –0.15) 4.22

6.32

4.35

7.58

6.12

4.18

7.23

7.51

4.65

3.21

7.19

62.57

5.43

4.69

7.53

3.60

3.71

6.86

5.61

37.43

–1.37 (–2.17, –0.57)

–0.84 (–1.69, 0.01)

–0.22 (–0.79, 0.35)

–1.46 (–1.96, –0.97)

–1.03 (–2.78, 0.72)
–0.46 (–1.04, 0.12)
–0.32 (–0.92, 0.28)

0.16 (–1.08, 1.41)

0.61 (–0.77, 2.00)

0.15 (–0.33, 0.62)
3.06 (1.72, 4.39)

–0.03 (–0.52, 0.46)
–1.38 (–2.97, 0.21)
–0.66 (–2.21, 0.89)
–0.57 (–1.24, 0.09)
–0.06 (–1.04, 0.92)
–0.28 (–0.60, 0.04)

0.22 (–1.01, 1.45)

–4.39 4.390

(e)

Figure 5: Continued.

12 BioMed Research International



sensitivity, total specificity, positive likelihood ratio (PLR),
negative likelihood ratio (NLR), diagnosis rate (DOR), and
95% confidence interval were 0.41 (95% CI: 0.38-0.44)
(Figure 6(b)), 0.77 (95% CI: 0.72-0.82) (Figure 6(c)), 2.31
(95% CI: 1.56-3.40) (Figure 6(d)), 0.40 (95% CI: 0.26-0.61)
(Figure 6(e)), and 7.87 (95% CI: 4.22-14.69) (Figure 6(f)),
respectively.

3.5. Gene Enrichment Analysis of miR-1-3p in HNSCC.
According to the logFC and P value, 174 upregulated dif-
ferentially expressed genes and 103 downregulated genes
were screened. Given that miR-1-3p was lowly expressed
in HNSCC, we chose 174 upregulated DEGs for GO
annotation and KEGG enrichment by DAVID 6.8
(P < 0:05), whose top five enriched terms were summa-
rized according to P value (Table 4). Leukocyte migra-
tion, positive regulation of cell proliferation, apoptotic
process, cell adhesion, and inflammatory response were
the five most conspicuous terms for biological process
(BP). In the cellular component (CC), genes were major
enriched in the cytoplasm, cytosol, nucleoplasm, extracel-
lular exosome, and membrane. As for molecular function
(MF), the coexpressed proteins were involved in protein
binding, ATP binding, identical protein binding, receptor

binding, and protein heterodimerization activity. For the
KEGG pathway, the coexpressed genes were major gath-
ered in pathways in cancer, proteoglycans in cancer,
PI3K-Akt signaling pathway, focal adhesion, and micro-
RNAs in cancer (Figure 7). In these genes, gene networks
showed that KRAS, CD44, COL4A1, SHC1, CAV2, ITGB4,
THBS1, SPP1, FLNA, FN1, and NRAS were closely con-
nected in the pathways (Figure 8(a)).

3.6. Preliminary Prediction of ITGB4 as Target Gene of
miR-1-3p. The results of cBioPortal showed that the 11 tar-
get genes had different degrees of variation in HNSCC,
reflected in a missense mutation, gene fusion, gene ampli-
fication, and gene deletion (Figure 8(b)). Only 2 HNSCC
articles mentioned ITGB4 and showed that it may be the
target of HNSCC, which can promote distant metastasis
of tumors through the blood. Pearson correlation analysis
showed that miR-1-3p had a correlation with ITGB4,
which was statistically significant (P < 0:001) (Figure 8(c)).
For this reason, this gene was selected for further verifi-
cation, and special attention was focused on the expres-
sion and prognosis of ITGB4 in HNSCC (Figures 8(d)
and 8(e)).

–3

–2

–1

0

1

0

P = 0.961

10.5
s.e. of: SMD

Begg’s funnel plot with pseudo 95% confidence limits
SM

D

(f)

Figure 5: The meta-analysis of miR-1-3p expression levels in HNSCC decreases compared to nontumor tissues. (a) Forest map of SMD
(fixed-effect model). (b) Forest plot of SMD (random-effect model). (c) The sensitivity analysis. (d) After the heterogeneity studies were
eliminated, the forest plot of SMD based on 15 microarrays. (e) Subgroup analysis of countries was carried out to further explore the
sources of heterogeneity. (f) Begg’s funnel plot showed no obvious publication bias.
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Figure 6: The values of total sensitivity, total specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnosis rate
(DOR), and 95% confidence interval are statistically significant. (a) The SROC curve of miR-1-3p expression based on 19 datasets. (b–f)
The forest map showed the diagnostic performance of miR-1-3p in HNSCC: the sensitivity of the collection, the specificity of the
collection, the positive likelihood ratio of the summary, the negative likelihood ratio of the summary, and the summary diagnostic ratio
based on the qualified dataset.
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Table 4: Gene ontology analysis of DEGs involved in biological process, cellular component, molecular function, and KEGG pathways.

Category Term Genes Count P value

Biological
process

GO:0050900 Leukocyte migration
CD44, KRAS, LYN, SHC1, CAV1, FN1, ITGB1,

MIF, MMP1, MSN, MYH9, NRAS, OLR1,
SLC7A11, SLC7A5, SLC7A8

16 4.40E-13

GO:0008284
Positive regulation
of cell proliferation

E2F3, FOSL1, KRAS, LYN, SHC1, TTK, ADM,
BIRC5, CSNK2A1, FN1, ITGB1, IL24, OSMR,

PGF, THBS1, TNFSF4
16 3.00E-05

GO:0006915 Apoptotic process
BAX, BCL2L11, HTATIP2, BIRC5, CSNK2A1,
CLIC4, HIP1, IGFBP3, IL1A, IL1B, IL2RA,
IL24, PLSCR1, PHLDA2, STAT1, SULF1

16 2.60E-04

GO:0007155 Cell adhesion
ABL2, CD44, CASK, DST, FN1, LOXL2,

NRP2, OLR1, PXN, SPP1, THBS1, TROAP
12 3.80E-03

GO:0006954
Inflammatory

response
CXCL3, LYN, NMI, IL1A, IL1B, IL2RA, IL24,

MIF, OLR1, SPP1, THBS1
11 2.90E-03

Cellular
component

GO:0005737 Cytoplasm

BAX, CD44, CDC42BPA, CDC42EP3, POLD1,
E2F3, ERCC6L, FRMD4A, FGD6, GNA13, GINS4,
HAUS2, HTATIP2, KRAS, LYN, NMI, NUDCD1,
OIP5, PDLIM7, PPFIA1, RAD54B, RECQL, TTK,

WDHD1, ADM, BIRC5, B2M, CASK, CA2,
CAPRIN1, CENPE, CLIC4, CCNA2, CDKN3,
DTL, DNAH17, DST, EXO1, FTH1, FLNA,
GJB3, GMPS, HIP1, HPRT1, HIF1A, ITGB1,

MIF, MSN, MYO1B, MYO5A, MYH9,
NASP, PXN, PSPH, PLAT, PHLDA2, PHLDB2,
KCNS3, PCNA, PSMB9, RGS4, STAT1, SSH1,
SLC7A5, SLC7A8, TACC3, TCOF1, TROAP

68 1.10E-04

GO:0005829 Cytosol

ABL2, ATP6V1C1, BAX, BCL2L11, CDC42EP3,
ERCC6L, ERF, FOSL1, HAUS2, KRAS, LYN, PPFIA1, SHC1,

AP2M1, BIRC5, CASK, CA2,
CSNK2A1, CAPRIN1, CDCA3, CENPE, CENPL,
CENPN, CLIC4, CCNE2, DST, FTH1, FLNA, GLS,

GMPS, HPRT1, HIF1A, IL1A, IL1B, MYO5A,
MYH9, NDE1, PXN, PLSCR1, PSPH, PSMB9, RGS4,
STAT1, SNRPF, SNRPG, SLC7A5, TGM2, TPM3

48 2.20E-04

GO:0005654 Nucleoplasm

POLD1, DSCC1, E2F3, ERCC6L, ERF, GABPB1,
GINS2, GINS4, HAUS2, HTATIP2, NMI, OIP5,
POP1, RAD54B, RAD54L, RECQL, WDHD1,

BIRC5, CSNK2A1, CENPL, CENPN, CCNA2, CCNE2,
DTL, EXO1, HIF1A, KIF20A, LOXL2, MIF, NASP,
NFYA, OLR1, PXN, PCNA, PSMB9, RFC3, STAT1,
SSH1, SNAPC1, SNRPF, SNRPG, TBL1XR1, ZNF367

43 1.40E-04

GO:0070062
Extracellular
exosome

ATP6V1C1, BAX, CD276, CD44, CDC42BPA,
GNA13, H2AFZ, LYN, AP2M1, AK2, B2M, CA2,
CLIC4, DST, FTH1, FN1, FLNA, HPRT1, IGFBP3,
ITGB1, IL1B, MIF, MSN, MYO1B, MYO5A, MYH9,
MTMR11, NRAS, OLR1, PLSCR1, PLAT, PLAU,

PCNA, PSMB9, SPP1, SERPINE1, SLC7A5, SLC7A8,
SOD2, THBS1, TGM2, TMEM33, TPM3

43 1.80E-04

GO:0016020 Membrane

ATP2B4, BAX, DDX18, POLD1, ERCC6L, GNA13,
HTATIP2, KRAS, LARP4, RECQL, TTK, AGPS,

ASPH, B2M, CAV1, CAV2, CAPRIN1, CENPE, CEP55,
FLNA, HIP1, ITGB1, LOXL2, MYO5A, MYH9, NRAS,

NRP2, NDE1, OLR1, PLSCR1, PGF, PHLDA2,
SLC7A11, SLC7A5, SLC7A8

35 4.70E-04
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4. Discussion

The downregulation of miR-1-3p in HNSCC was sup-
ported by 1,140 HNSCC and 243 noncancer tissue sam-
ples from TCGA, GEO, Oncomine, ArrayExpress, and
SRA databases, which enhanced the dependability of our
results. miR-1-3p’s low expression could be associated
with the burgeoning of HNSCC. To study the functional
implication of miRNA-1 in HNSCC cells and identify
new neoplastic paths, a more reliable set of target genes
was obtained by integrating potential target genes com-
posed of four parts: miR-1-transfected DEGs, sequence
DEGs, chip DEGs, and the targets in the prediction tool.
KEGG pathway analysis showed the most significant

pathways were “the pathways in cancer,” “proteoglycans
in cancer,” “PI3K-Akt signaling pathway,” “focal adhe-
sion,” and “MicroRNAs in cancer.” We confirmed pivotal
targets of miR-1-3p. ITGB4 was one of the most impor-
tant targets.

In recent years, research on noncoding RNAs appears to
have advanced rapidly, especially the inquiry of miRNAs. A
large number of miRNAs exert their functions in human
diseases [26–28]. Most miRNAs serve as tumor suppres-
sors for human cancers, such as miR-874 [29, 30], miR-
21[31, 32], and miR-155 [33], while some miRNAs are
overexpressed in human cancer tissues, such as miR-93,
miR-218, and miR-375. Likewise, many miRNAs regulate
miRNA expression and promote or suppress HNSCC cell

Table 4: Continued.

Category Term Genes Count P value

Molecular
function

GO:0005515 Protein binding

ABL2, ATP6V1C1, ATP2B4, BAX, BCL2L11,
CD276, CD44, CDC42BPA, DDX18, POLD1, DSCC1,
E2F3, ERCC6L, FOSL1, GNA13, GABPB1, GINS2,
GINS4, H2AFZ, HTATIP2, KRAS, LYN, MET, NMI,
NUDCD1, OIP5, PDLIM7, POP1, PPFIA1, RAD54B,
RAD54L, RECQL, SHC1, TTK, WDHD1, YEATS2,
AP2M1, ADM, AGPS, APOL1, ASPH, BIRC5, B2M,
CASK, CA2, CSNK2A1, CAV1, CAV2, CDCA3,

CENPE, CENPL, CEP55, CLIC4, COL4A1, CCNA2,
CCNE2, CDKN3, DTL, DCBLD2, DST, ECE2, EXO1,

FTH1, FN1, FLNA, GLS, HIP1, HPRT1, HIF1A, IGFBP3,
ITGB1, IL1A, IL24, KIF20A, LOXL2, MIF, MAGOHB,

MSN, MYH9, NASP, NRIP3, NFYA, NDE1, OLR1, PXN,
PLSCR1, PGF, PLAT, PLAU, PHLDB2, PCNA, PSMB9,
RFC3, SPP1, SCG5, SERPINE1, STAT1, SSH1, SNRPF,
SNRPG, SLC7A11, SLC7A8, THBS1, TBL1XR1, TACC3,

TGM2, TMEM33, TCOF1, TROAP, TPM3

110 5.30E-07

GO:0005524 ATP binding

ABL2, ATP2B4, CDC42BPA, DDX18, ERCC6L, KRAS,
LYN, MET, RAD54B, RAD54L, RECQL, TTK, AK2,
CASK, CSNK2A1, CENPE, DYRK3, DNAH17, GMPS,

KIF20A, MYO1B, MYO5A, MYH9, TGM2

24 7.70E-03

GO:0042802
Identical protein

binding
BAX, CDC42BPA, NMI, BIRC5, B2M, CAV1, FN1,
HPRT1, NDE1, PCNA, STAT1, SOD2, THBS1

13 3.80E-02

GO:0005102 Receptor binding
ABL2, CD276, LYN, ADM, CAV1, GRP, MIF, MSN,

PLAT, SERPINE1, TNFSF4
11 1.40E-03

GO:0046982
Protein

heterodimerization
activity

BAX, GABPB1, H2AFZ, BIRC5, CAV1, CAV2, HIP1,
HIF1A, ITGB1, PGF

10 2.50E-02

KEGG
PATHWAY

hsa05200 Pathways in cancer
BAX, E2F3, GNA13, KRAS, MET, BIRC5, COL4A1,
CCNE2, IL24, FN1, HIF1A, ITGB4, MMP1, NRAS,

PGF, STAT1, TPM3
17 5.90E-05

hsa05205 Proteoglycans in cancer
CD44, KRAS, MET, CAV1, CAV2, FN1, FLNA, HIF1A,

ITGB1, MSN, NRAS, PXN, PLAU, THBS1
14 6.30E-07

hsa04151
PI3K-Akt signaling

pathway
BCL2L11, KRAS, MET, COL4A1, CCNE2, FN1,

ITGB1, IL2RA, NRAS, OSMR, PGF, SPP1, THBS1
13 8.10E-04

hsa04510 Focal adhesion
MET, SHC1, CAV1, CAV2, COL4A1, FN1, FLNA,

ITGB1, PXN, PGF, SPP1, THBS1
12 3.20E-05

hsa05206 MicroRNAs in cancer
BCL2L11, CD44, E2F3, KRAS, MET, SHC1, CCNE2,

GLS, NRAS, PLAU, THBS1
11 2.20E-03

bKEGG: Kyoto Encyclopedia of Genes and Genomes.
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proliferation [1, 34]. miR-1-3p was proven dysregulated in
HNSCC [16, 35]. Nohata et al. [15] demonstrated that
miR-1 was downregulated in HNSCC samples and disclosed
that transgelin 2 (TAGLN2) was directly adjusted by miR-1.
Koshizuka et al. [1] verified gene expression in HNSCC and
found that miR-1 was reduced clearly in HNSCC tissues.
However, only eight studies have investigated miR-1 expres-
sion in HNSCC. Further studies are needed to determine the
relationship between miR-1 and HNSCC.

The 174 upregulated differentially expressed genes were
screened from 39 datasets, three miR-1 transfection samples,
and a prediction tool using the R language tool. Although
the gene list was not large, screening was rigorous. The
obtained difference genes were accurate and had a certain
degree of persuasion. The KEGG enrichment pathway is
involved in multifarious cancer processes. G protein-
coupled receptors (GPCRs) play a vital role in signal
transmission [36, 37]. Targeted proteins recognize and
bind to binding sites in eukaryotes and activate a series
of signaling pathways, causing changes in tumor cell
states, promoting tumor blood vessel regeneration, and
participating in the occurrence and course of neoplasms
[38–41]. Therefore, understanding the specific mechanism
of GPCR involvement in malignant tumors and related
target genes is conducive to providing new opportunities
for cancer prevention and treatment [36, 37]. Some studies
have explored this pathway in bladder cancer [42, 43],
colorectal cancer [38], melanoma [44, 45], endometrial
cancer [46], lung cancer [47], renal cell carcinoma [48,
49], and thyroid cancer [50, 51]. Moreover, Koshizuka
et al. found that miR-1 inhibited tumor growth by target-
ing growth factor receptors and participated in various sig-
naling pathways, including the “pathways in cancer,”
which was consistent with our results [1].

As key genes corresponding to important action sites,
which contained important signal pathway information,

we focused on hub genes in further research. Eleven
hub genes were enriched in KEGG pathways, most of
which had been reported by a large number of previous
studies on HNSCC. ITGB4 caught our attention. The
results showed that ITGB4 was highly expressed in
HNSCC and was harmful to patient prognosis
(P < 0:001).

Integrin family, a family of cell adhesion receptors, is
recognized to play a key role in malignant tumor metas-
tasis [52]. As a component of the basement membrane,
the expression levels of laminin-5 and its ligand were
negatively correlated with tumor invasiveness, metastasis,
and poor clinical prognosis [53–55]. ITGB4 encodes a
receptor for laminin-5. Studies have shown that the
decreased expression of ITGB4 and laminin-5 genes
occurs during the progression of prostate intraepithelial
neoplasia and the development of prostate cancer [56].
Meanwhile, ITGB4 can be used as a target site to form
a lump in colorectal cancer [57], gastric cancer [58, 59],
prostate cancer [60–62], lung cancer [63], and other dis-
eases [64, 65] to regulate the progress of diseases. A sin-
gle study explored the extracellular matrix- (ECM-)
receptor interaction, and ITGB4 can be an underlying tar-
get for the diagnosis and treatment of HNSCC [66].
Through PCR analysis of oral squamous cell carcinoma
data and assessment of pathological clinical parameters,
Nagata et al. [67] found that ITGB4 could promote dis-
tant metastasis of tumors. ITGB4 is a good biological
indicator of tumors. In this study, we used bioinformatics
methods to speculate that ITGB4 gene can influence the
disease course of HNSCC, and ITGB4 gene was corre-
lated with miR-1-3p. In the treatment of HNSCC, this
feature could be used to develop an inhibitor of ITGB4
for treatment of HNSCC.

Our research aimed to integrate microarrays and
miRNA sequencing to study the expression and deep-
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Figure 7: Gene enrichment circles of miR-1-3p in HNSCC: (a) biological process; (b) cellular component; (c) molecular function; (d) KEGG
pathways.
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seated mechanism of miR-1-3p in HNSCC. There are lim-
itations in this research. First, data came from online data-
bases; thus, larger clinical samples are needed for further
experimental inquiry. Second, the targeting relationship
between miR-1-3p and ITGB4 was preliminarily verified,
but further experiments are needed before clinical
application.

5. Conclusion

Our research confirms the downregulation of miR-1-3p in
HNSCC, revealing that miR-1-3p can act on target genes,
activate signaling pathways, and participate in the develop-
ment of HNSCC. ITGB4 may be a novel biological target
protein, which requires further experimentation.
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Figure 8: Preliminary prediction of ITGB4 as target gene of miR-1-3p. (a) Protein interaction network of 11 hub proteins. (b) 11 proteins
were genetically altered in the HNSCC based on cBioPortal website. (c) Pearson correlation analysis showed that miR-1-3p was negatively
correlated with ITGB4 (P < 0:0001). (d) ITGB4 expressed highly in HNSCC tumor tissues than in noncancer tissues. (e) Kaplan-Meier
survival curve was used to analyze the ITGB4 expression data and evaluate its effects on the prognosis of HNSCC. ITGB4 had an
apparent influence on the survival of HNSCC patients (P < 0:0001).
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