Skip to main content
. 2021 Jul 9;42(14):4568–4579. doi: 10.1002/hbm.25565

TABLE 2.

Brain age prediction accuracy across all models

Model MAE (years) MRD Optimal algorithm
Morphometry + WM Connectomes 1.1801 1.962 SEML—Family
WM alone 1.3494 2.634 SEML—Family
Morphometry alone 1.578 4.301 Deep learning (MLP)
Age‐harmonized—Morphometry + WM 0.261 0.128 SEML—Family
Age‐harmonized—WM alone 0.332 0.185 SEML—Family
Age‐harmonized—Morphometry alone 1.438 3.964 SEML—Family
Outcome‐harmonized—Morphometry + WM 0.880 1.270 SEML—Family
Outcome‐harmonized—WM alone 0.776 1.246 SEML—Family
Outcome‐harmonized—Morphometry alone 1.801 4.152 XGBoost
Global FA + eTIV 2.582
Global FA alone 2.858
eTIV alone 2.591

Note: SEML Models using both morphometry and white matter connectomes performed best when using the unharmonized brain data (top) and age‐harmonized brain data (middle). A SEML model using only the white matter connectomes performed best when using the outcome‐harmonized brain data (middle). All ML models outperformed linear models using FA and/or eTIV (bottom).

Abbreviations: FA, fractional anisotropy; MAE, mean absolute error; MLP, multi‐layer perceptron; MRD, mean residual deviance; SEML, stacked ensemble machine learning, WM, white matter.