TABLE 2.
Model | MAE (years) | MRD | Optimal algorithm |
---|---|---|---|
Morphometry + WM Connectomes | 1.1801 | 1.962 | SEML—Family |
WM alone | 1.3494 | 2.634 | SEML—Family |
Morphometry alone | 1.578 | 4.301 | Deep learning (MLP) |
Age‐harmonized—Morphometry + WM | 0.261 | 0.128 | SEML—Family |
Age‐harmonized—WM alone | 0.332 | 0.185 | SEML—Family |
Age‐harmonized—Morphometry alone | 1.438 | 3.964 | SEML—Family |
Outcome‐harmonized—Morphometry + WM | 0.880 | 1.270 | SEML—Family |
Outcome‐harmonized—WM alone | 0.776 | 1.246 | SEML—Family |
Outcome‐harmonized—Morphometry alone | 1.801 | 4.152 | XGBoost |
Global FA + eTIV | 2.582 | — | — |
Global FA alone | 2.858 | — | — |
eTIV alone | 2.591 | — | — |
Note: SEML Models using both morphometry and white matter connectomes performed best when using the unharmonized brain data (top) and age‐harmonized brain data (middle). A SEML model using only the white matter connectomes performed best when using the outcome‐harmonized brain data (middle). All ML models outperformed linear models using FA and/or eTIV (bottom).
Abbreviations: FA, fractional anisotropy; MAE, mean absolute error; MLP, multi‐layer perceptron; MRD, mean residual deviance; SEML, stacked ensemble machine learning, WM, white matter.