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Abstract

Introduction: Cancer neoantigens represent important targets of cancer immunotherapy. 

The goal of cancer neoantigen vaccines is to induce neoantigen-specific immune responses 

and antitumor immunity, while minimizing the potential for autoimmune toxicity. Advances 

in sequencing technologies, neoantigen prediction algorithms and other technologies have 

dramatically improved the ability to identify and prioritize cancer neoantigens. Unfortunately, 

results from preclinical studies and early phase clinical trials highlight important challenges to the 

successful clinical translation of neoantigen cancer vaccines.

Areas covered—In this review, we provide an overview of current strategies for the 

identification and prioritization of cancer neoantigens with a particular emphasis on the two 

most common strategies used for neoantigen identification: (1) direct identification of peptide 

ligands eluted from peptide-MHC complexes, and (2) next-generation sequencing combined with 

neoantigen prediction algorithms. We highlight the limitations of current neoantigen prediction 

pipelines, and discuss broader challenges associated with cancer neoantigen vaccines including 

tumor purity/heterogeneity and the immunosuppressive tumor microenvironment.

Expert Opinion—Despite current limitations, neoantigen prediction is likely to improve rapidly 

based on advances in sequencing, machine-learning, and information sharing. The successful 

development of robust cancer neoantigen prediction strategies is likely to have significant impact, 

with the potential to facilitate cancer neoantigen vaccine design.
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1. Introduction

Genetic alterations are common in cancer, including single nucleotide variants, frameshift 

insertions and deletions, aberrant splicing, and complex structural alterations. These genetic 

alterations often result in mutated proteins with novel amino acid sequences. Mutated 

proteins that are recognized by the immune system are known as cancer neoantigens. 

Investigators first established the ability of cancer neoantigens to induce immune responses 

in preclinical models and human cancer patients over two decades ago [1–3].

The development of next generation sequencing technologies has revolutionized the ability 

to identify and study cancer neoantigens. There is now emerging evidence to suggest 

that cancer neoantigens are important targets of both endogenous antitumor immune 

responses and cancer immunotherapies (reviewed in [4]). For example, increased tumor 

mutation burden (widely considered a surrogate for neoantigen load) is associated with 

greater numbers of tumor infiltrating lymphocytes and improved survival [5, 6]. Tumor 

mutation burden is also associated with response to immune checkpoint inhibition [7, 8]. 

Of particular note, there is now evidence from preclinical studies [9, 10], and early phase 

clinical trials [11–13] to suggest that targeting neoantigens with neoantigen vaccines and/or 

adoptive cell therapies can successfully induce antitumor immune responses and potentially 

improved clinical outcomes. Thus, successful development and validation of strategies 

and/or technologies for the accurate identification of cancer neoantigens is likely to have 

a significant impact.

Although neoantigen identification strategies are based on state-of-the-art technologies, only 

a small proportion of neoantigens selected by next-generation sequencing and in silico 
neoantigen prediction algorithms induce an immune response in preclinical models and in 

human translational studies [14, 15]. It is likely that limitations associated with current 

neoantigen identification strategies contribute to the low response rate. In this review, we 

describe the strategies that are commonly used to identify and prioritize cancer neoantigens, 

with a particular focus on the limitations that preclude accurate and robust selection. 

We also discuss the broader challenges that may limit the success of cancer neoantigen 

vaccines. To identify important contributions, we performed a systematic literature review 

using the PubMed, Embase, Web of Science, and Cochrane library databases. We identified 

publications focused on cancer neoantigens and neoantigen vaccines. The focus of this 

review on the limitations associated with cancer neoantigen identification and clinical 

translation is unique, and provides an important perspective on this nascent field of 

investigation.

1.1 Strategies for neoantigen identification

1.1.1 Direct identification of cancer neoantigens—Currently, two strategies are 

commonly used for neoantigen identification: (1) direct identification of peptide ligands 

eluted from peptide-MHC complexes, and (2) next-generation sequencing combined with 

neoantigen prediction algorithms. Cancer neoantigens are presented by the immune system 

in association with MHC class I and II molecules. The direct identification strategy for 

cancer neoantigen identification involves mass spectrometry analysis of MHC ligandomes 

eluted from peptide-MHC complexes [9, 16–18] (Figure 1). This strategy is typically 
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performed in parallel with exome sequencing of tumor and normal tissues. Genetic 

alterations identified by exome sequencing are used to generate a patient-specific tumor 

mutation database. Sequenced peptides from LC-MS/MS are compared to the tumor 

mutation database to identify cancer neoantigens present in the ligandome [19]. As the direct 

identification strategy identifies neoantigens that are being presented by MHC molecules, 

variations in antigen presentation presented by MHC molecules, variations in antigen 

presentation pathways, such as proteolytic cleavage in the proteasome/immunoproteasome 

are captured through this approach. In addition, cancer neoantigens derived from post

translational modifications can be recognized [20, 21].

The development of modern high-throughput mass spectrometry techniques has greatly 

enhanced the depth to which the ligandome can be surveyed. Bassani-Sternberg et al. 

published a manuscript highlighting the impact of high throughput mass spectrometry 

techniques on neoantigen identification [19]. The authors assembled the ligandomes from 

human melanomas, analyzing to a depth of 95,500 ligands. Eleven ligands were derived 

from neoantigens, and 4 were proven to be immunogenic in T-cell validation assays [19]. 

In this proof-of-concept study, the authors clearly demonstrated that it is possible to use 

high-throughput mass spectrometry techniques to identify cancer neoantigens.

However, this approach does have limitations. The process of identifying eluted ligands 

is resource and labor intensive, and the entire process can take weeks to months, limiting 

clinical translation [22]. The accuracy of the direct identification strategy is also highly 

dependent on the depth of analysis. Only a few peptide/MHC complexes are required to 

induce an immune response. As a result, the direct identification strategy has been limited, 

until recently, to use in cell lines and other preclinical models [23]. For instance, in the 

study by Bassani-Sternberg et al., the amount of tissue and analytical depth required to 

identify fewer than a dozen neoantigens in tumors known to have high mutation burden 

highlights how labor-intensive this process is, and the challenge of using this strategy in 

clinical translation [19]. While improvements have been made in starting tumor material, 

current immunoprecipitation protocols still require 5 × 107 to 1 × 109 cells, thus precluding 

the use of most needle aspirations and biopsies [24]. This is an area of active investigation, 

suggesting that improved technologies may enhance the translational potential.

1.1.2 Sequencing-based identification of cancer neoantigens—Given the 

limitations of the direct identification strategy, most studies targeting cancer neoantigens 

have relied on next-generation sequencing and in silico prediction algorithms (Figure 2). 

Next-generation sequencing technologies have greatly reduced the cost and time required for 

whole-exome and RNA-sequencing. Comparison of tumor/normal whole exome sequences 

and tumor RNA sequences is used to identify genetic alterations present only in cancer 

cells. Neoantigen identification and prioritization is then conducted in silico, generally using 

algorithms derived based on vast databases of MHC ligandomes assembled by in vitro 
binding assays and/or high-throughput mass spectrometry [25]. Early epitope prediction 

algorithms, such as NetMHC and Pickpocket, are trained on in vitro peptide binding affinity 

for specific MHC alleles, which has been shown to be correlated with immunogenicity [9, 

26, 27]. NetMHC uses an artificial neural network while Pickpocket uses position-specific 

weight matrices [28, 29]. Segal et al. were the first to demonstrate such an approach can 
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be used to identify cancer neoantigens derived from somatic mutations found in breast 

and colorectal cancer; post hoc validation revealed individual breast and colorectal cancers 

contain 10 and 7 HLA-A*0201-restricted cancer neoantigens, respectively [30].

More recently, epitopes identified by MS have greatly outnumbered ones identified in 
vitro [31]. Dozens of pipelines (e.g. pVAC-Seq, EDGE, and MHCflurry) have since been 

trained on MS data [32–36]. In addition to having a vastly larger datasets for training, 

algorithms trained with MS data avoid the circular logic of early in vitro data—only 

predicted epitopes were tested, thus potentially missing large portions of potential candidates 

[31]. While early algorithms relied predominantly on linear regression methods such 

as position weight matrices, neural networks have become the dominant algorithm for 

prediction (e.g. NetMHCpan, MHCflurry, EDGE) [37–39]. Although neural network based 

algorithms require more upfront data for learning, they are able to capture the non-linear 

relationship between peptide sequence and binding affinity that a linear regression model 

cannot. Benchmarking studies were performed by Zhao et al, whom found prediction 

accuracy to be improved with incorporation of MS datasets and use of neural networks 

versus regression-based algorithms [40]. However with machine learning approaches, there 

is always a concern of model overfitting.

Limitations of the sequencing and in silico prediction approach include biases introduced by 

sequencing technologies, imperfect algorithms used for variant calling and binding affinity 

predictions, and the imperfect association between predicted binding and immunogenicity. 

Accurate identification of immunogenic MHC class II neoantigens is particularly 

challenging given our relatively limited understanding of class II antigen processing and 

presentation, and the fact that MHC class II binding is more promiscuous.

1.1.2.1 Tandem minigene approach to test immunogenicity: Tandem minigenes 

(TMGs) have been used to as a strategy to screen for immunogenic mutations. In this 

approach, mutations are identified using whole-exome sequencing. Rather than predicting 

immunogenicity via binding prediction algorithms, minigene constructs are created from 

mutations flanked by 12 amino acids of normal protein sequence, with each minigene 

containing 6–24 mutated gene products [41, 42]. These TMGs are transfected into APCs 

to allow for translation, processing, and MHC presentation, and subsequently co-cultured 

with various TIL cultures to identify immunogenic neoantigens [43]. This approach has been 

used to identify neoantigen targets for adoptive T-cell therapy in melanoma and epithelial 

cancers and have led to durable regressions [42, 44].

1.2 Challenges of neoantigen identification and prioritization

We have identified two strategies for neoantigen identification. In practice, the direct 

identification strategy is less commonly used based on tissue requirements and other 

considerations. However, the direct identification strategy has informed sequencing-based 

strategies for neoantigen identification. In this section, we discuss limitations of sequencing

based strategies for neoantigen identification, but also highlight progress that is being 

made with direct identification of cancer neoantigens and how this progress is informing 

sequencing-based strategies for neoantigen identification.
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1.2.1 Limitations identifying genetic alterations in cancers—Next-generation 

sequencing technologies have inherent error rates that can impact neoantigen identification. 

Artifacts introduced by differences between sample preparation, sequencing alignments, 

sequencing read length and depth, and library construction may preclude accurate 

identification of genetic variants, and explain some of the discrepancies detected between 

different pipelines [45]. Despite the great strides made with next-generation sequencing, 

challenges remain to neoantigen prediction. One limitation is the relatively short reading 

frame, requiring genetic material to be read in fragments and later reassembled to acquire 

the original sequence. In sequences where there are numerous repeats, this lends itself 

to misassembly of read fragments. Furthermore, while the short reads can accurately 

capture SNVs and short indels, larger mutations and structural variants are more difficult 

to detect [46]. Sequencing of FFPE samples, which represent a significant number of 

specimens due to their use in clinical pathology, is further impeded by damage caused 

by chemical processing [47, 48]. Low tumor purity and/or tumor heterogeneity in some 

clinical specimens can influence sequencing readouts [49]. Sequencing errors can introduce 

false-positive variants. Targeting cancer neoantigens identified based on sequencing errors 

may induce immune responses, but will not improve antitumor immunity.

Imperfect variant-calling may also influence neoantigen selection [50, 51]. SNVs are readily 

identified by current variant calling algorithms, and are overrepresented in the predicted 

neoantigen repertoire. Genetic variants resulting from insertion and deletion (indel) and 

gene fusion mutations are only now being routinely identified. Additionally, cancer-specific 

post-translational modifications, which can generate potentially immunogenic amino acid 

variations, are not evaluated [20, 21]. Therefore, by focusing primarily on SNVs, current 

sequencing-based algorithms do not adequately evaluate several other classes of cancer 

neoantigens, potentially reducing the ability to identify immunogenic neoantigens. For 

instance, in a pan-cancer analysis, Turajlic et al. predicted indel mutations contributed 

greatly to the overall immunogenic phenotype of certain malignancies. Compared to SNVs, 

indel neoantigens were predicted to generate epitopes that had higher MHC class I binding 

affinity and mutant binding specificity [52]. The authors note indel mutations have not 

been widely incorporated into neoantigen prediction pipelines as current variant calling 

algorithms do not identify indel variants as accurately and reliably as SNVs [53, 54]. Indel 

variant calling is still at an early stage and additional advances need to be made to provide 

the high fidelity required for clinical application.

1.2.2 Limitations in MHC class I neoantigen prediction algorithms—Another 

limitation in neoantigen identification is the in silico algorithms used to predict candidate 

neoantigen binding to MHC class I alleles. Most in silico algorithms are based on machine

learning and their performance is highly dependent on the databases on which they are 

trained. Attempts at designing ab initio algorithms in which predictions are based on 

structural analysis rather than homology to prior data sets have been disappointing [55–58].

Recently, MHC ligandome compilation has been enhanced by data generated by high

throughput mass spectrometry. Thus, while high-throughput mass spectrometry may have 

limited utility in direct identification of neoantigens clinically, it has been essential to 

enhancing our understanding of epitope binding [59]. This technology allows for greater 
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depth of analysis capturing information on thousands of MHC ligands. This provides a 

richer database for improving and/or developing tools to predict epitope binding. In an 

analysis by Bassani-Sternberg et al, an unbiased mass spectrometry approach was used to 

generate ligandomes from cancer cell lines and deconvolute these ligands to their respective 

MHC class I alleles. A prediction algorithm trained on this database had a higher predictive 

value than standard approaches, which mostly relied on in vitro binding assays, with 

improvements most evident for MHC class I alleles that have few known ligands in current 

databases [60].

High-throughput mass spectrometry has the power to analyze ligands at great depths, 

thus revealing peptide-specific determinants of MHC-binding that were otherwise missed 

by standard techniques. Addition of these motifs to training databases has enriched our 

understanding of antigen processing and presentation. Peptide abundance, peptide length, 

and the influence of complex allosteric interactions on binding motifs have all been 

demonstrated to be important determinants of peptide-MHC binding that were inferred from 

mass spectrometry-generated data [59, 61–63]. MS peptidomics have also identified protein 

hotspots, or regions within a protein prone to proteasomal cleavage and ligand production, 

thus adding a new dimension to our understanding of antigen processing [64, 65]. Similarly, 

information regarding ligands formed from peptide splicing can help us predict de novo 

ligands that would otherwise be missed by simple analysis of sequencing data [66].

Our understanding of antigen processing and presentation was further enhanced by a study 

conducted by Abelin et al., which used mass spectrometry to profile MHC ligandomes in 

mono-allelic cells expressing single HLA-I alleles. This model enables more accurate class 

I epitope prediction without need for deconvolution [67]. The authors were able to identify 

24,000 HLA class I peptides through this pipeline, providing insights into how protein 

cleavage and levels of gene expression influence antigen presentation. Machine-learning 

algorithms trained on this database outperformed the standard. Similarly, Sarkizova et 

al used mono-allelic cells to profile >185,000 peptides and develop HLAthena, which 

predicted endogenous HLA class I- associated ligands with a 1.5-fold improved accuracy 

compared to existing tools, and correctly identified >75% of observed class I presented 

peptides for 11 patient-derived tumor cell lines [68]. Of note, tumor cells often have aberrant 

antigen processing and presentation pathways. These pathways are not well understood. 

High-throughput mass-spectrometry analyses of normal tissue may not accurately predict 

the factors influencing antigen presentation in tumor cells, which may among themselves 

have differences in antigen presentation given tumor heterogeneity. Focused peptidomic 

analyses of malignant tissue are necessary to design robust neoantigen prediction pipelines 

that can be used to design neoantigen-directed therapies.

Bioinformatic tools, such as NNAlign_MA, have also been developed to deconvolute 

ligandomes from MS datasets. The typical process for deconvolution requires 1) clustering 

of peptides, and 2) annotation of a cluster to a specific MHC molecule [69]. Earlier 

deconvolution tools, such as GibbsCluster and MixMHCp requires prior knowledge of MHC 

binding motifs [70, 71]. NNAlign_MA combines these two steps with a machine learning 

to generate a prediction algorithm covering all MHCs in the dataset [69]. By performing 

the three tasks simultaneously, NNAlign_MA is able to iteratively update peptide clustering, 
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MHC annotation, and prediction algorithms resulting in improved accuracy. This motif 

deconvolution technique serves as the basis of NetMHCIIpan [72].

Most neoantigen prediction algorithms use predicted binding affinity to MHC class I as 

a surrogate for immunogenicity, and several studies have indeed identified MHC-peptide 

binding affinity to be highly correlated with immunogenicity [9, 26]. However, antigen 

immunogenicity is complicated, and many biologic processes are likely to contribute 

beyond MHC binding. Delivery of antigen to antigen presenting cells, antigen cleavage 

and processing by immunoproteasomes, and recognition of peptide-MHC complexes by 

circulating cognate T cells are just some of the other factors that influence immunogenicity. 

Furthermore, inherent differences in these processes between the MHC class I and class II 

pathways further complicate accurate prediction [73]. Each process is highly variable and 

can impact immunogenicity of a particular protein antigen or neoantigen.

For example, current pipelines do not capture T cell-specific determinants of 

immunogenicity, such as T cell receptor affinity for peptide-MHC complexes, the prevalence 

of T cell precursor frequencies (frequencies of T-cells for a given antigen) in circulation 

and degree of costimulation. Furthermore, aberrant mechanisms of antigen processing and 

presentation within tumor cells further complicate neoantigen prioritization [74]. Several 

studies have challenged the predictive accuracy of peptide binding affinity, suggesting other 

factors, such as predicted peptide-MHC complex stability, are more important determinants 

of immunogenicity [75]. Duan et al. evaluated the conformational stability of several 

peptide-MHC class I complexes derived from neoantigens and identified immunogenic 

neoantigens that were predicted to have low-binding affinity by NetMHC [76]. However, 

approaches integrating peptide-MHC complex stability with binding are limited given the 

relative lack of robust tools for prediction of peptide-MHC complex stability, and may not 

be feasible in a clinical setting [77, 78]. To date, epitope prediction algorithms integrating 

antigen processing and presentation have only demonstrated modest gains compared to 

predictions based on binding affinity alone [25].

1.2.3 Limitations in MHC Class II neoantigen prediction algorithms—CD4 T 

cell responses are an integral part of adaptive immunity. CD4 T cells are essential for the 

generation of specific, potent, and long-lasting cellular immunity [79, 80]. CD4 T cells 

may also contribute to reprogramming the tumor microenvironment, promoting antitumor 

immunity [81]. In a study conducted by Alspach et al. evaluating the mediators of antitumor 

immunity following checkpoint blockade, the authors found activation of CD4 T-cells was 

essential for tumor rejection, emphasizing the important role of MHC class II antigens in 

antitumor immunity [82]. Of note, tumor cells that downregulate MHC class I expression 

to evade cytotoxic T cells are still susceptible to CD4 T cell-mediated immunity. There 

is evidence from preclinical studies and early clinical trials that cancer neoantigens may 

contain MHC class II epitopes. Accurate identification of neoantigens containing class II 

neoantigens may be critical for optimizing neoantigen vaccines and other therapies targeting 

cancer neoantigens.

MHC class I and II antigen processing and presentation are fundamentally different. 

Developing epitope-prediction algorithms for MHC class II epitopes has been challenging. 
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MHC class II peptides are longer and more variable in length than MHC class I peptides, 

ranging from 11–20 amino acids [83]. MHC class I peptides reliably anchor within the MHC 

class I binding groove at their N- and C-termini. However, binding of MHC class II peptides 

is more variable and flanking regions, which do not engage with the peptide binding groove, 

still contribute to epitope specificity [84]. Furthermore, MHC class II binding is not as 

dependent on the anchor residues, resulting in more promiscuous peptide binding. While 

algorithms that prioritize neoantigens based on MHC class II binding affinity have been 

developed, they are only now being translated into the clinic [85, 86].

Kreiter et al. were one of the first to develop a neoantigen prioritization pipeline to identify 

MHC class II-restricted neoantigens based on binding affinity. Vaccination with these 

neoantigens in a preclinical model led to tumor regression [81]. The importance of CD4 

T cell-mediated responses is further highlighted by some of the first clinical trials evaluating 

neoantigen vaccines in melanoma patients. Sahin et al. vaccinated patients with polyepitope 

RNA vaccines encoding 10 neoantigens predicted to have high class I and/or class II binding 

affinities and found the majority of immunogenic neoantigens induced exclusively CD4 

T cell-mediated responses [11]. A more surprising observation was made by Ott et al., 

who immunized patients with a multi-peptide vaccine; despite only including neoantigens 

identified via a class I binding affinity algorithm, most detectable immune responses were 

generated by CD4 T cells [12]. From these observations, it appears evident that optimization 

of personalized neoantigen-directed therapy requires inclusion of MHC class II neoantigens.

With the advent of high-throughput mass spectrometry, comprehensive analysis of MHC 

class II ligands has allowed for the development of more reliable binding prediction 

algorithms [87, 88]. Similar to studies characterizing class I ligandomes, high-throughput 

mass spectrometry analyses of class II ligandomes have revealed patterns of antigen 

processing including locations of cleavage hotspots as important determinants of class II 

recognition and CD4 T-cell-mediated immunity [65, 89]. In an important study performed 

by Abelin et al., class II ligandomes were generated from a series of mono-allelic cells. 

The authors then used this dataset to develop a class II neoantigen prediction algorithm 

and found higher fidelity than the most commonly used algorithms [90]. The study also 

identified key aspects of class II ligand presentation that should be incorporated into class II 

prediction algorithms. For example, they found that class II peptide loading is influenced by 

individual chaperone protein alleles, such as HLA-DM alleles, and behaviors of professional 

antigen-presenting cells. The authors discovered that representation of certain genes in the 

ligandome did not correlate with gene expression levels, suggesting other factors affecting 

antigen presentation need to be considered in designing class II prediction algorithms. 

Other investigators have also used machine-learning algorithms trained on MS-generated 

data to develop class II prediction algorithms. These algorithms have also demonstrated 

superior predictive value compared to the most commonly used algorithms [88, 91–94]. 

Taken together, these studies have enhanced our understanding of class II antigen processing 

and presentation, which had previously remained incompletely understood [85, 95].
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1.3 Additional challenges targeting cancer neoantigens

Even if neoantigen identification and prioritization is improved, there are other challenges 

that may potentially limit the success of therapies targeting cancer neoantigens. In other 

words, even if the most immunogenic neoantigens can be identified and prioritized, 

there may be challenges successfully inducing neoantigen-specific immune responses 

and/or improving clinical outcomes. For example, cancer patients may have acquired 

immune system deficiencies resulting in diminished antitumor immunity compared to 

healthy individuals. Stronen et al. identified a large repertoire of immunogenic neoantigens 

recognized by T-cells from healthy individuals that were neglected by T-cells from cancer 

patients with cognate HLA alleles [96]. Tumor-specific properties, such as low tumor 

mutational burden (TMB), extensive intra-tumor heterogeneity and immunosuppressive 

tumor microenvironment, may also contribute to resistance to strategies targeting cancer 

neoantigens. In fact, many tumors appear to have developed microenvironments that confer 

resistance to immune-based and/or neoantigen-directed therapies.

1.3.1 Malignancies with low mutation burdens—Neoantigens serve as important 

targets of cancer immunotherapy and TMB is generally correlated with clinical response to 

immune checkpoint inhibition therapy. Using data from The Cancer Genome Atlas (TCGA), 

Rooney et al. found that neoantigen load was positively associated with increased cytotoxic 

activity and improved survival across multiple tumor types [6]. However, mutation burden 

is highly variable between malignancies [4]. A comprehensive analysis of 27 cancer types 

conducted by Lawrence et al. identified marked heterogeneity in mutation burden, with 

median frequency of somatic mutations in cancers ranging from 0.1/megabase to over 

100/megabase in melanoma and non-small cell lung cancer (NSCLC) [97, 98]. Initial 

studies of neoantigen vaccines have been focused on melanoma and NSCLC. However 

there are studies ongoing in a number of lower TMB cancers with mixed results. Using a 

preclinical ovarian cancer model known to have a low-to-intermediate mutation rate, Martin 

et al. designed and administered peptide vaccines encoding 17 neoantigens. The authors 

were able to detect an immune response to 7 neoantigens, but vaccination did not lead to 

tumor regression or improved survival [99]. Similarly, Zhang et al. identified neoantigens in 

human triple negative breast cancer using sequencing and neoantigen prediction algorithms. 

Neoantigen-specific human CD8 T cells were able to protect immunocompromised mice 

from tumor challenge with autologous patient-derived xenografts [100].

In order to facilitate the use of neoantigen vaccines and other therapies targeting cancer 

neoantigens in lower TMB cancers, additional research is needed to understand the biology 

of cancer neoantigens in these cancers. Cancer neoantigens capable of inducing immune 

responses are less common in these cancers. However, tumor-infiltrating lymphocytes are 

still present in many of these cancers, suggesting that other antigens may contribute to 

antitumor immunity [5]. It is possible that as neoantigen repertoires expand with the 

incorporation of indel and gene fusion neoantigen predictions, strategies targeting cancer 

neoantigens may be successful in a broader range of cancers.

1.3.2 Tumor heterogeneity—The accumulation of mutations is one of the factors 

that contributes to oncogenesis and ultimately cancer invasion and metastasis. Once a 
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malignancy develops, individual cancer cells continue to acquire mutations, resulting 

in multiple distinct genomic profiles within the tumor. Gerlinger et al. were able to 

demonstrate this with multiregion sequencing in patients with metastatic renal cell 

carcinoma. The authors found that more than 2/3 of all somatic mutations were not 

conserved spatially throughout a tumor, suggesting divergent evolution of tumor cells during 

tumor progression [101]. This intratumoral heterogeneity can greatly impact neoantigen 

identification. Neoantigen prioritization is often based on whole-exome sequencing and 

RNA-seq of a small sample of tumor. In a tumor with extensive heterogeneity, such a sample 

may not accurately capture the complexity of the neoantigen repertoire. One strategy to 

mitigate the impact of tumor heterogeneity is multiregion sequencing. This may allow a 

more comprehensive analysis of the neoantigen repertoire. A second strategy is to target 

multiple candidate neoantigens with the assumption that generating an immune response 

to multiple neoantigens will provide coverage of all tumor cells. However, this strategy is 

limited by the fact that only a small proportion of predicted neoantigens actually induce 

detectable immune responses.

Of note, several studies have found that immune responses may be dominated by only a 

few antigens, a phenomenon known as immunodominance [4, 26, 102]. Thus, neoantigen

specific immune responses may be limited to a small number of neoantigens, and strategies 

focused on incorporating more neoantigen candidates may not be an ideal solution. This 

phenomenon further underscores the importance of neoantigen prioritization. Conversely, 

the immunogenic effects of just a few dominant neoantigens may be aided by epitope 

spreading. In this case, neoantigen-specific antitumor immune responses result in tumor 

lysis, antigen release, and priming of a broader immune response. Epitope spreading may 

mitigate resistance associated with tumor heterogeneity and/or antigen loss as well as 

facilitate antitumor responses to metastatic lesions, as seen in abscopal responses [103].

Cancer therapies often have a significant impact on tumor heterogeneity. Cancer 

immunoediting is the process by which tumors lose expression of antigens that stimulate 

antitumor immunity [104, 105]. This phenomenon can be particularly pronounced after 

strategies targeting cancer neoantigens. Verdegaal et al. demonstrated that advanced 

melanomas gradually lost expression of cancer neoantigens following adoptive T cell 

therapies [106]. Preclinical models suggest that tumors that lose expression of cancer 

neoantigens are more likely to evade antitumor immunity, proliferate, and progress [105].

1.3.3. Immunosuppressive tumor microenvironment—Many cancers develop, 

grow and metastasize in the context of an immunosuppressive tumor microenvironment. 

This immunosuppressive tumor microenvironment may be a major barrier to the success 

of cancer immunotherapies. Multiple mechanisms contribute to the immunosuppressive 

tumor microenvironment. These mechanisms have been reviewed elsewhere and include 

expression of immune checkpoint molecules, increased number and/or altered function of 

regulatory immune cells (such as regulatory T-cells and myeloid-derived suppressor cells), 

activation of anti-inflammatory pathways, and others [107–109]. Thus, there is considerable 

interest in combining neoantigen-directed therapies with other cancer immunotherapies. 

Early clinical trials evaluating neoantigen vaccines demonstrate that immune checkpoint 

inhibition may enhance the response to neoantigen vaccines [11, 12, 110]. Other strategies 
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include combining neoantigen vaccines with strategies targeting regulatory T cells, tumor

associated macrophages, or myeloid derived suppressor cells [111].

2 Expert opinion

Cancer immunotherapies have the potential to revolutionize cancer therapy. A mechanistic 

understanding of how cancer immunotherapies target and eradicate tumor cells is essential 

for optimizing currently available therapies and for the development of new therapies. 

Cancer neoantigens have emerged as prominent targets of cancer immunotherapies. Specific 

targeting of cancer neoantigens may avoid central tolerance and minimize autoimmune

related toxicities. Strategies targeting cancer neoantigens attempt to exploit these unique 

properties of cancer neoantigens to prime and enhance antitumor immune responses. A 

personalized approach appears mandatory, as the diversity of cancer-associated somatic 

mutations and HLA polymorphism imply that the neoantigen landscape is almost certain 

to be unique to an individual. Neoantigen identification has only recently become widely 

accessible. Advances in sequencing technologies and variant calling algorithms allows for 

identification of genetic alterations in cancer. In silico neoantigen prediction algorithms are 

currently the most commonly used tools to identify potentially immunogenic neoantigens. 

Multiple neoantigen prioritization pipelines have been created based on data generated in 

different model systems. Each has its own set of advantages and disadvantages, but none so 

far have been able to definitively identify immunogenic neoantigens with high accuracy.

Some have interpreted these limitations as reasons to abandon strategies targeting cancer 

neoantigens [112]. This would be premature. First, neoantigen prioritization pipelines are 

a relatively new technology, having only emerged within the past 10 years. Pipeline 

developers are continually modifying these programs to improve prediction accuracy. 

To date, pipelines have been created by independent groups in parallel, with limited 

communication between groups. Development of a standardized approach may require 

extensive information sharing and collaboration [34, 113].

For instance, in 2020 the Tumor Neoantigen Selection Alliance (TESLA) was formed to 

compare neoantigen prediction algorithms. 25 teams from around the world each used their 

own unique neoantigen prediction algorithm(s) to identify and prioritize cancer neoantigens. 

Each group used genomic data provided by the Alliance from the same 6 patient samples 

(3 melanoma, 3 NSCLC). The immunogenicity of candidate neoantigens was validated by 

a core laboratory by detection of MHC-restricted T-cells in subject-matched PBMC. The 

Alliance determined that approximately 50% of immunogenic epitopes are characterized 

by strong MHC binding affinity, prolonged half-life, high expression, and either low 

agretopicity or high foreignness. This study highlights the significant differences between 

groups, and the potential gains that may be realized through further collaboration and efforts 

to standardize neoantigen prediction pipelines [114].

Second, adoption of immune checkpoint inhibition therapy to treat certain malignancies 

has revealed the need for accurate neoantigen identification to elucidate mechanisms 

of action and identify predictive biomarkers of response. Several studies have found 

immune checkpoint inhibition to enhance the immune responses against cancer neoantigens 
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and, conversely, that the neoantigen repertoire influences response to immune checkpoint 

inhibition [7, 115, 116]. Thus, accurate identification of neoantigens is not only crucial to 

targeting cancer neoantigens, but may also identify targets of immune checkpoint inhibition.

Neoantigen prioritization algorithms will benefit from additional research elucidating the 

mechanisms of antigen processing and presentation, and from advances in sequencing, 

machine-learning, and increased collaboration. Neoantigen prioritization algorithms are 

likely to become more standardized, with the ability to optimally identify candidate 

neoantigens. Strategies targeting cancer neoantigens will continue to evolve with the 

potential to prime and enhance antitumor immunity.

3. Conclusion

To date, clinical trials targeting shared tumor antigens based on “off-the-shelf” therapeutics 

have been disappointing. Cancer neoantigens appear to be important targets of cancer 

immunoediting and cancer immunotherapies, and strategies targeting cancer neoantigens can 

prime endogenous immunity and enhance antitumor activity. Identification and prioritization 

of cancer neoantigens has only recently become practical with the development of 

sequencing and bioinformatics technologies that can identify and validate expression 

of somatic mutations, and predict immunogenicity in the setting of a particular MHC 

genotype. Identification of cancer neoantigens by direct analysis of ligands eluted from 

MHC alleles, while attractive, is currently too laborious to seamlessly translate into clinical 

applications. Instead, neoantigen identification strategies have evolved to leverage pipelines 

that combine next-generation sequencing with in silico prediction of MHC binding. While 

these technologies can readily be translated to a clinical setting, key limitations highlighted 

in this review need to be addressed prior to optimize success.
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ARTICLE HIGHLIGHTS

• Strategies targeting cancer neoantigens, such as neoantigen vaccines, rely on 

accurate identification of cancer neoantigens.

• “Off-the-shelf” immune therapies targeting shared tumor antigens have 

had limited success, emphasizing the need to target cancer neoantigens. 

Recent studies demonstrate that cancer neoantigens are important targets 

of immune checkpoint inhibition, adoptive cell therapy and other cancer 

immunotherapies.

• The two most common strategies to identify cancer neoantigens are: (1) 

direct identification based on proteomic analysis of ligands eluted from 

peptide-MHC complexes and (2) indirect identification based on sequencing 

and bioinformatic pipelines. Since direct identification is currently too 

cumbersome for widespread use, most clinical trials targeting cancer 

neoantigens have relied on indirect identification based on sequencing.

• Next-generation sequencing is currently in clinical use, facilitating 

identification of the genetic alterations encoding cancer neoantigens.

• While neoantigen vaccines have successfully generated neoantigen-specific 

immune responses in preclinical models and early phase clinical trials, most 

candidate neoantigens do not generate immune responses. This suggests 

that additional study is necessary to improve current neoantigen prediction 

algorithms.

• Neoantigen identification and prioritization pipelines will likely improve 

in the future, benefitting from insights into the mechanisms of antigen 

processing and presentation within tumor cells, advances in sequencing and 

machine-learning technologies, and collaborative efforts.

• In addition to improving strategies targeting neoantigens, accurate neoantigen 

prediction is likely to enhance our mechanistic understanding of cancer 

immunotherapies.
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Figure 1: 
Direct identification of cancer neoantigens. HLA epitopes are eluted from tumor cells in 

parallel to whole exome sequencing of the tumor. Variant calling of WES data is performed 

against reference sequence to generate a patient specific mutational database. Eluted ligands, 

sequenced by MS, are compared to this database to identify neoantigen candidates.
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Figure 2: 
Sequencing-based identification of cancer neoantigens. Tumor and patient genomes are 

sequenced and variant calling is performed between the two sequences. Identified mutations 

are processed by neoantigen prediction algorithms based on known rules of HLA binding 

and antigen processing to predict neoantigen candidates.
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