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Abstract

Quantitative evaluation of how drugs combine to elicit a biological response is crucial for drug 

development. Evaluations of drug combinations are often performed using index-based methods, 

which are known to be biased and unstable. We examine how these methods can produce 

misleadingly structured patterns of bias, leading to erroneous judgments of synergy or antagonism. 

By contrast, response surface models are less prone to these defects and can be applied to 

a wide range of data that have appeared in recent literature, including the measurement of 

combination therapeutic windows and the analysis of discrete experimental measures, three-way 

drug combinations, and atypical response behaviors.
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Introduction

The importance of combination therapy to modern medicine is well established. The strategy 

of combining therapeutic agents affords greater efficacy with a potential reduction in toxicity 

and drug resistance [1], and is widely used in cancer [2–4] and infectious diseases [5–10]. 

Analysis of combined behavior can also be used to illuminate compound mechanisms and 

off-target effects [11].

Robust quantification of combined action is essential to the development of combination 

therapies. The most widely used methods for such evaluations are index-based, meaning 

that they distill the combination experiment down to a single metric that describes the 

interaction between drugs as either synergistic, antagonistic, or additive. Examples of these 
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methods include those involving volumetric deviations from Bliss independent [12], Loewe 

additive [13], and highest-single agent surfaces [14], as well as potency shift methods such 

as the Combination Index (Cl) [15]. However, numerous authors have noted that these 

methods are unstable, unpredictable, and biased [11, 16–19], creating an analytical blind 

spot that represents a critical weakness of combination therapy development — one that is 

rapidly becoming more apparent because of three recent trends. First, improvements in high­

throughput screening have spawned the rise of large-scale drug combination databases [20–

25], as well as expansive combination data portals [26, 27] and online tools for combination 

analysis [11, 28]. Second, advances in nucleic acid sequencing technology have enabled 

facile genomic and transcriptomic characterization of disease targets, leading to biology­

driven tools for comprehending compound interactions [29–31]. Third, the application 

of machine learning to molecular data has provided a framework for linking compound 

structure to disease biology, spurring a host of computational methods for learning and 

predicting combination interactions [32–35]. Taken together, these three advances carry the 

potential to robustly predict the combined behavior of drugs in silico, freeing combination 

therapeutic research from the curse of dimensionality. This goal cannot be achieved, 

however, without a reliable, robust means of quantifying the interaction between drugs – 

an issue that many assume to be well understood.

Fortunately, more robust, unbiased, statistically grounded evaluations of combination 

experiments are achievable with a sufficiently flexible parametric response surface model 

(RSM) such as the universal response surface approach (URSA) [36], GRS [37], BRAID 

[17], and MuSyC [38]. These models, though arguably more complex to use, afford greater 

stability and insight into combined action. They allow the analysis to move beyond simple 

designations of synergy and antagonism by providing a complete representation of the 

behavior of a combination at all doses through a parametric mathematical function of each 

drug’s concentration. Here, we demonstrate examples of the structured bias produced by two 

widely used index methods, Bliss volume (Bliss) and Cl, and statistically compare response 

surface methods to a wide battery of index methods in a real-world large-scale combination 

dataset. We then use the BRAID model to demonstrate how RSMs can be extended to new 

arenas of combination evaluation.

The meaning of drug synergy

The term synergy is used quite liberally in the literature, and has different connotations 

depending on the research context. Formally, a synergistic interaction is one in which 

compounds produce a larger effect in combination than one would expect from their 

behavior in isolation [19]. Critically, synergy does not mean that the combined effect is 

merely larger than the sum of the individual effects. Figure 1A shows an example in 

which two drugs are combined to produce a ‘super-additive’ or ‘sub-additive’ effect, but 

in this case, it makes little sense to call these combinations synergetic and antagonistic 

because they were simply derived by combining a single compound with itself at different 

concentrations (Figure 1B). Synergy represents a deviation from what is expected when 

doses are combined: to assess such a deviation, one needs a model of non-interaction that 

can account for the non-linear relationship between dose and effect. Although several null 

interaction models have been proposed [12–14, 38], Loewe additivity is widely regarded as 

Twarog et al. Page 2

Drug Discov Today. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the gold standard, in large part because it assumes an additive interaction when a compound 

is combined with itself [19].

Formal synergy analysis also requires knowledge of the individual dose–response behavior 

of each compound. This requirement makes combination evaluation difficult or impractical 

in situations which resources are limited or experimental design is constrained by logistical 

or ethical considerations, for example, in vivo efficacy studies or clinical trials. The 

designation of ‘synergy’ in such research contexts often means that the observed response 

was greater than what could be practically achieved by the use of single agents alone — and 

this connotation is distinct from the definition of synergy as understood in pharmacology.

Examples of bias in methods that are commonly used to analyze drug 

combinations

The two index-based methods for the analysis of drug combinations, Cl and Bliss, are 

ubiquitous in the drug discovery literature and have together been cited over 8000 times, 

including over 1000 citations in the past three years alone. The deviations that arise from 

index calculations often present as structured patterns of synergy and antagonism that give 

a false impression of the underlying interaction. To visualize these patterns, we simulated 

several dose–response curves with the same EC50 but varying with respect to Hill slope and 

maximum efficacy, combined them to be Loewe additive, and then analyzed the results using 

Cl and Bliss (Supplementary data).

Patterned bias in the Cl

Figure 1C depicts simulated single agent dose–response curves and fractional inhibitory 

coefficient (FIC) curves for an additive simulated combination experiment. Drug A and 

Drug B differ only in the value of their Hill slopes. FIC curves are a common method 

for visualizing the Cl across multiple dose ratios: deviations below and above the diagonal 

(FICA + FICB = 1) indicate synergy or antagonism, respectively. In this case, the FIC 

plot shows synergy at the 50% effect level, but additivity and antagonism were observed 

at the 90% and 99% effect levels, respectively. The presence of synergy for combinations 

involving these two curve shapes was not consistently present, but the observed antagonism 

occurred in every simulated experiment (Supplementary figure S1). Likewise, combining 

two drugs that differ in their maximum efficacies resulted in the conclusion of synergy in 

every case (Supplementary figure S2). These patterns of bias result from a false assumption 

about the behavior of constant ratio combinations in Loewe additive surfaces.

Patterned bias in Bliss

Bliss independence does not adhere to the principles of Loewe additivity, and therefore, 

Bliss-based methods such as Bliss volume and ZIP volume will often yield divergent 

conclusions about synergy or antagonism when compared to Loewe volume, Cl, and 

additivity-based RSMs [11,18,19]. Notably, the predicted Bliss surface will deviate from 

the Loewe additive surface in reproducible patterns as a result of varying the Hill slope 

and the maximum efficacy of the single agent dose–response curves. For example, Figure 

1D depicts a simulation in which the maximum efficacies of Drugs A and B are 0.35 and 

Twarog et al. Page 3

Drug Discov Today. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0.7, respectively. Bliss independence predicts that at high concentrations of both drugs, 

the combined effect will be even higher (0.815), which yields a divergent judgment of 

antagonism at these doses. Conversely, Bliss underestimates the total effect when half of 

the EC50 of one drug is combined with half of the EC50 of the other drug and concludes 

synergy. Bliss also predicts the lower doses of Drug B to have little or no effect on the 

higher doses of Drug A, which strongly disagrees with the additive surface. The result 

is a structured pattern of interaction that reflects only the disagreements between the two 

non-interaction models. Additional examples of reproducible patterns of deviation between 

Loewe additivity and Bliss independence are shown in Supplementary figure S3. These 

simulations underscore the fact that differences in the underlying assumptions of index 

methods can lead to divergent judgments of synergy and antagonism that are not driven 

by true mechanistic interactions but merely by changes in the shape of the single agent 

dose–response curves.

Mechanism of action as a ground truth of synergy

In discussions of interaction measure bias, it is impossible to avoid a sense of circularity: 

Bliss methods are biased because they do not agree with Loewe additivity, and Loewe 

methods are unbiased because they do agree with Loewe additivity. At the core of these 

issues is the reality that synergy lacks a general ground truth: there is no widely applicable 

means to determine whether a drug combination is truly synergistic. In previous work, we 

addressed this epistemological gap by postulating that a valid measure of synergy should 

be driven by, and hence carry information about, mechanism of action [11]. In essence, 

compounds that operate through the same mechanism of action should induce similar 

patterns of interaction when combined with compounds operating by different mechanisms. 

Therefore, the accuracy of the output from a method of analyzing drug combinations can 

be quantified by determining how well that metric clusters compounds according to their 

mechanism of action.

Here, we expand on that analysis to include a broader range of index methods, including 

the four volume-based methods examined by Vlot et al. [18] (Highest single agent (HSA), 

Bliss [12], Loewe [13] and zero interaction potency (ZIP) [39]), and the interaction measures 

of the RSMs URSA [36] and MuSyC [38]. These methods were applied to more than 

22,000 combinations from 38 drugs tested in 39 cancer cell lines reported in the Merck 

OncoPolyPharmacology Screen (OPPS) [23] and were used as the basis for similarity 

clustering of 32 compounds in the dataset (Figure 1E; Supplementary table S1). The 

resulting clusters were compared with the known mechanism of action of each compound 

and ranked by their agreement with that classification (Figure 1F). The RSM metrics, except 

for the MuSyC alpha2 parameter, outperformed the index-based methods, indicating that 

they were better at capturing the type of interaction present in these drug combinations. 

Furthermore, the pattern of potencies exhibited by a drug in multiple biological contexts 

is another means for determining a compound’s mechanism of action, as exemplified by 

the NCI COMPARE algorithm [40]. Because RSMs model the observed drug combination 

response surface, they incorporate information from both potency and interaction type. As 

part of its analysis, the BRAID method reports the index of achievable efficacy (IAE) metric, 

which is essentially a surface integral over the fitted response surface. Gratifyingly, BRAID 
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IAE outperformed all methods, including potency alone, in the OPPS clustering experiment, 

identifying seven mechanistic classes within the 32 compounds evaluated.

Using RSMs to assess therapeutic window

Although drug combination analysis has paid significant attention to discerning the type 

of interaction (additive, synergistic, or antagonistic), such information is not as critical 

for therapeutic evaluation as the degree to which these interactions impact the therapeutic 

window of the combination – the range of effective, yet safe, doses. As noted earlier, RSMs 

fit the observed drug combination response surface to a parametric model, so the combined 

effect at any concentration of the component drugs can be estimated and compared to other 

drug combinations, or to the same combination across different models. Weinstein et al. 
[25] elegantly demonstrated how combination evaluation in two highly divergent strains of 

yeast could be used to gauge the selectivity of a drug combination, producing a combined 

therapeutic window driven by the potency and interaction of the drugs in both organisms. 

In one example, not only were pentamidine (PEN) and staurosporine (STA) more potent in 

Candida albicans, but a significantly stronger synergy in that species produced an elevated 

selectivity over Saccharomyces cerevisiae (Figure 2A). By contrast, rapamycin (RAP) and 

methyl methanesulfonate (MMS) were less active and more antagonistic in C. albicans, 
thereby enhancing the selectivity of those two drugs for S. cerevisiae (Figure 2B).

To quantify these therapeutic windows, the authors used linear interpolation between 

raw measurements. Consequently, a linearly spaced checkboard sampling of two drug 

combinations was required, and this constrained the experiment to a narrow range of 

dose levels. Furthermore, robust goodness-of-fit statistics could not be applied to assess 

variability and confidence in the estimated values. Fortunately, the ideas presented by 

Weinstein et al. [25] can be extended and expanded through the use of an RSM. Figures 2C, 

D show how the BRAID model fits for the four combination experiments can recapitulate 

the non-parametric results in richer, more robust detail using a defined mathematical 

function that avoids over-fitting. The heightened synergy between PEN and STA and 

antagonism between RAP and MMS in C. albicans is clearly statistically significant. 

Furthermore, the therapeutic dose-pair windows obtained from RSM analysis can be 

interpolated and extrapolated to new dose regimes, quantified using such metrics as the 

BRAID IAE and used for comparison with other combinations, and evaluated statistically 

using bootstrapped confidence intervals.

RSMs are amenable to alternate assay endpoints

Though many combination experiments quantify the effect of a given combined dose as 

a continuously varying measure such as fluorescence or image intensity, a wide range 

of assays that may be relevant to combination evaluation do not produce endpoints that 

can be analyzed so cleanly. For example, discrete endpoints such as binary measures 

or integer counts lend themselves poorly to index methods, as comparison of a discrete 

value to a continuous reference surface can produce unexpected results. Several ways in 

which continuous response surface methods can be applied to such alternate endpoints are 

described below.
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Binary output

Some assays, such as the determination of minimum inhibitory coefficient (MIC), do not 

apply a continuously varying measure to a given dose, but instead separate doses into one 

of two classes (above or below the MIC). Application of an index method such as CI to 

such data would be meaningless, as there are an infinite range of doses producing both 

possible endpoint values. However, if the output is treated as a probabilistic variable, it 

can be modeled as being sampled from a Bernoulli distribution, with the expected value of 

the distribution varying as a function of dose. The same logic can be applied to two-drug 

combination data: if a two-drug response surface is used to model the varying likelihood 

of lying above the MIC, the likelihood of the observed data can be maximized to fit the 

best response surface. Figure 3A demonstrates this approach applied to the combination of 

micafungin and posaconazole in Candida auris isolated from a fungal infection [41]. Each 

tested dose pair was classified as lying above the MIC or below in one or more replicates, 

and the probability of lying above the MIC was fitted as a BRAID response surface. The 

resulting fit indicates statistically significant synergy between the two compounds.

Natural number outputs

Colony-forming assays, a gold standard for the evaluation of radio-sensitization [42], are 

increasingly used in combination evaluation to evaluate a therapy’s growth inhibitory 

potential directly [43–46]. The endpoint of the assay is a count of the number of colonies 

formed, which can be particularly challenging to fit, as more effective treatments often 

reduce the number of colonies down to zero. To address this challenge, the effect of the 

combined doses can be treated as a response surface, which can be optimized by maximizing 

the likelihood of the observed colony counts given a varying-rate Poisson distribution. 

Figure 3B demonstrates such an application, in which the expected plating efficiency (the 

expected average number of colonies as a proportion of the initially seeded cells) was 

described by a BRAID surface, which was then fitted to the measured colony counts as a 

maximum likelihood estimate. The resulting fit showed a clear synergy between the poly 

ADP ribose polymerase (PARP) inhibitor talazoparib and radiation in the desmoplastic small 

round cell tumor cell line JN-DSRCT-1.

Extending RSMs to triplet combinations

Paired compounds have received the lion’s share of the attention in the in vitro 
testing literature, but clinically important drug combinations often involve three or more 

components. A method that has no means of representing or analyzing three-drug 

combinations is severely limited in its application to translational research. The logistical 

challenges of collecting three-drug combination data with sufficient sampling are often the 

factor limiting the in vitro testing of triplet combinations, but the extension of analysis 

methods, particularly two-drug response surface methods, to such data is hardly a trivial 

question. Fortunately, nearly all response surface methods, including URSA, MuSyC, and 

BRAID, can be naturally extended to three-drug combinations. For example, both URSA 

and BRAID can be expressed as implicit equations of the form:
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fE E = fA E, DA + fB E, DB + θI E, DA, DB

where Θ is an interaction parameter indicating synergy or antagonism (α in URSA, κ in 

BRAID). Extending this equation to three dimensions involves adding a third single-drug 

term, two additional two-drug interaction terms, and a possible triplex interaction term:

fE E = fA E, DA + fB E, DB + fC E, DC + θABIAB E, DA, DB + θACIAC E, DA, DC
+ θBCIBC E, DB, DC + θ3I3 E, DA, DB, DC

Figure 3C depicts the growth-inhibitory effect of a three-drug combination in the acute 

lymphoblastic leukemia cell line 697, along with the best-fitting three-drug BRAID response 

volume. In this instance, the fit indicated potential antagonism between rolipram and 

prednisolone, clear synergy between rolipram and forskolin, weaker synergy between 

prednisolone and forskolin, and weaker antagonism for the three-drug interaction. These 

simultaneous interactions can be successfully extracted given robust, densely sampled 

data and a well-defined response volume model, whereas index methods offer no way of 

distinguishing between the different types of interaction.

Using RSMs to analyze atypical responses to drug combinations

Despite the breadth of work in the field, nearly all methods that analyze drug combinations 

make certain assumptions about the behavior of compounds when combined. A prototypical 

combined action behavior, illustrated in Figure 4A, is one in which both compounds produce 

a clear, non-zero effect of the same sign, with one effect potentially of smaller magnitude. 

Moreover, it is often posited that the combined effect will be at least as great as the 

smaller of the two maximal effects for each drug. Traditional analyses of synergy and 

antagonism assume that the response surface falls into this framework. However, it is far 

from obvious that all combination behaviors should follow this pattern. Here, we show how 

the mathematical transformation of atypical response surfaces can make them behave like 

prototypical surfaces, and thus, make it possible to leverage the computational and logistical 

advantages of RSM approaches to examine a much wider range of combined actions.

The oppositional surface

When viewed in a log-log space, the prototypical response surface carves dose space into 

four quadrants (Figure 4a). In the case where Drug B has an incomplete response, these 

four quadrants behave as follows: (I) when both drugs are low, the effect is near zero (blue); 

(II) when Drug A is high and Drug B is low, the effect is high (red); (III) when Drug B is 

high and Drug A is low, a partial or high effect is observed (yellow); and (IV) when both 

drugs are high, the effect is high (red). If this surface is flipped along the x-axis (Figure 

4b), a new surface is generated, which behaves as follows: (I) when both drugs are low, 

the effect is near zero (yellow); (II) when Drug A is high and Drug B is low, the effect is 

still high (red); (III) when Drug B is high and Drug A is low, the effect is in the opposite 

direction (below zero) from Drug A (blue); and (IV) when both drugs are high, the effect 

of Drug A dominates, and is therefore still high (red). The oppositional surface resembled 
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a drug response surface formed by the combination of doconasol and roxithromycin which 

was reported in a cell-based screen for inhibitors of HIV replication [21]. After inverting 

the concentration of roxithromycin, the BRAID RSM successfully fit the observed data 

(Supplementary data) and could then be analyzed to identify the effects of different dose 

regimes, determine therapeutic windows, estimate potentiation or suppression, and quantify 

confidence intervals for statistical comparisons.

The protective surface

Flipping the prototypical response surface along the y-axis and then inverting the effect sign 

(so that a low effect becomes high and vice versa) produces another new surface (Figure 

4c), which behaves as follows: (I) when both drugs are low, the effect is near zero (blue); 

(II) when Drug A is high, and Drug B is low, the effect is high (red); (III) when Drug B 

is high, and Drug A is low, the effect is near zero (blue); and (IV) when both drugs are 

high, the effect is below that of Drug A (yellow) because Drug B ‘protects’ against the 

effects of Drug A. This drug response surface was similar that formed by the combination 

of fluconazole and penbutolol in C. albicans [47]. After inverting the concentration of 

fluconazole (Supplementary data), the BRAID RSM successfully fit the observed data.

The adjuvant surface

Naturally, one straightforward manipulation remains: if the prototypical response surface is 

inverted along both the x-axis and the y-axis, and once again the effect sign is inverted, 

then the response surface in Figure 4d is produced: (I) when both drugs are low, the effect 

is zero (blue); (II) when Drug A is high and Drug B is low, the effect is partial (yellow); 

(III) when Drug B is high and Drug A is low, the effect is zero (blue); and (IV) when both 

drugs are high, the effect is high (red) because Drug B acts like an adjuvant and enhances or 

activates the effect of Drug A. Furthermore, one can imagine that if the single-agent effects 

of both Drug A and Drug B are both zero, then the ‘Co-Active’ surface would be observed. 

This response surface represents the ‘purest’ form of synergy because the drugs produce a 

response only in the context of the combination. Although both surfaces are amenable to 

RSM analysis, we have not encountered either one in our work to date.

In summary, transformation of the prototypical response surface leads to atypical responses 

that are amenable to analysis using RSMs. It should be noted that the application of 

traditional index methods to any of these non-traditional surfaces would be of little value. 

Such methods would reach a conclusion of extreme synergy when applied to oppositional 

or adjuvant surfaces, and extreme antagonism when applied to protective surfaces. Yet 

these judgments will tell us nothing about the details of these combinations, about how 

similar combinations behave in different contexts, or about how various combinations can be 

leveraged to produce a desired effect.

Concluding remarks

The need for reliable methods to analyze drug combinations is more critical than ever due to 

the burgeoning of large drug combination data sets from high-throughput screening efforts. 

Despite their popularity, index methods such as Cl and Bliss are unstable and/or biased on 
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the basis of the shape of the individual responses of the drugs in the combination. RSMs 

offer a flexible means to model compound interaction that is not only robust to noise and 

unbiased, but capable of providing a more complete, holistic combination representation 

than that afforded by mere classifications of synergy or antagonism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Index methods for identifying synergy produce structured patterns of bias.

• Response surface methods (RSMs) more reliably identify synergy and 

antagonism.

• RSMs can quantify two-drug therapeutic windows.

• Discrete and probabilistic endpoints can be evaluated using RSMs.

• RSMs can be extended to triplet combinations and atypical drug combination 

responses.
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Figure 1. Patterns of bias in synergy analysis methods.
(a) Examples of drug combinations producing a super-additive and a sub-additive effect. (b) 
Each treatment from (a) is a different concentration of a single drug. (c) Fractional inhibitory 

coefficient curves depicting the combination index for a simulated additive combination at 

differing effect levels. A combination of drugs with differing Hill slopes produces a false 

conclusion of extreme antagonism. (d) A combination of drugs in which Drug A has a lower 

maximum efficacy (0.35) than Drug B (0.70) (left) produces different predictions under 

Loewe additivity and Bliss independence (center). This results in a false landscape of Bliss 
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synergy and antagonism (right). (e) Examples of the clustering of OncoPolyPharmacology 

Screen (OPPS) compounds based on four interaction metrics, with fully or partially 

identified mechanistic classes highlighted. Volume metrics estimated with a uniform average 

of all 4-by-4 deviations in each response surface are marked (un), whereas metrics estimated 

with a weighted average placing more weight on central concentrations are marked (wt). (f) 
Ranking of clusterings based on all RSMs (blue) and index-based methods (red) by their 

agreement with the stated mechanistic classification of the 32 compounds. EGFR, epidermal 

growth factor receptor; FIC, fractional inhibitory coefficient; HSA, Highest single agent; 

IAE, index of achievable efficacy; MuSyC, multi-dimensional synergy of combinations; 

PI3K/AKT/mTOR, phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin; 

URSA, universal response surface approach.
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Figure 2. Response surface quantification of a two-drug therapeutic window.
(a) Measured cytotoxicity of staurosporine (STA) and pentamidine (PEN) in Saccharomyces 
cerevisiae and Candida albicans. Examination of interpolated isoboles shows that the 

elevated apparent synergy in C. albicans (green) increases the selectivity of the compounds 

for that strain over S. cerevisiae (magenta). (b) A similar examination shows that a smaller 

apparent antagonism in S. cerevisiae (magenta) increases the selectivity of the combination 

of methyl methanesulfonate (MMS) and rapamycin (RAP) for that strain over C. albicans 
(green). (c, d) Best fitting BRAID response surfaces for all four combination experiments. 
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(c) BRAID fits confirm that STA and PEN exhibit greater synergy in C. albicans than in 

S. cerevisiae, whereas (d) MMS and RAP exhibit less antagonism in S. cerevisiae than in 

C. albicans. The fitted response surface effect contours (bottom) agree with the qualitative 

results from (a) and (b).
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Figure 3. Alternate assay endpoints and three-way combinations,
(a) A BRAID response surface model (RSM) fit to the proportion of replicates in 

which a particular dose or dose-pair lies above the measured minimum inhibitory 

concentration (MIC). The high kappa value of 7.6 indicates synergy between micafungin 

and posaconazole. (b) A BRAID response surface fit to the plating efficiency in a 

clonogenic experiment, optimized by maximizing the likelihood of discrete colony counts 

according to a Poisson distribution. A kappa value of 1.3 indicates synergy between 

talazoparib and ionizing radiation, (c) Relative viability of the cancer cell line 697 in 
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response to rolipram, prednisolone, and forskolin, along with the three-drug BRAID 

response volume fit. The best fit indicates antagonism between rolipram and prednisolone 

[kappa(RP) = −1], synergy between rolipram and forskolin [kappa(RF) = 3.4], weaker 

synergy between prednisolone and forskolin [kappa(PF) = 1.5], and weaker antagonism for 

the three two-drug interactions [kappa(RPF) = −0.5].
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Figure 4. Non-traditional response surfaces,
(a) The prototypical response surface model (RSM) produces high effects when either drug 

is present at high doses, with one of the drugs potentially producing only a partial effect. 

However, manipulations to this surface can produce atypical surfaces that have qualitatively 

different behaviors, as described in the table. (b) Reflecting the prototypical surface along 

the x-axis produces an oppositional response surface (left) that resembles the inhibited 

HIV expression response surface induced by doconasol and roxithromycin (center). The 

best-fit BRAID surface is shown on the right. White bars on the left and bottom indicate 
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single-agent dose responses, (c) Reflecting the prototypical surface along the y-axis and then 

inverting the effect sign produces a protective surface (left) that resembles the observed C. 
albicans viability response to the combination of fluconazole and penbutolol (center). The 

best-fit BRAID surface is shown on the right. White bars on the left and at the bottom 

indicate single-agent dose responses. (d) Flipping the prototypical surface along both the x 

and y axes and then inverting the effect sign produces the ‘Adjuvant’ surface, in which high 

effects occur only when both drugs are present at high concentrations (left). An extreme 

form of this surface, ‘Co-Active’, occurs when both drugs are completely inactive on their 

own, but induce high activity when both drugs are present (right).
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