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Abstract
Chagas disease (CD) is caused by the parasite Trypanosoma cruzi. CD affects people worldwide, primarily in tropical areas. 
The central nervous system (CNS) is an essential site for T. cruzi persistence during infection. The protozoan may pass 
through the blood–brain barrier and may cause motor and cognitive neuronal damage. Once in the CNS, T. cruzi triggers 
immune responses that the purinergic system can regulate. Treatment for CD is based on benznidazole (BNZ); however, this 
agent has negative side-effects and is toxic to the host. For this reason, we investigated whether resveratrol (RSV), a potent 
antioxidant and neuroprotective molecule, would modulate purinergic signaling and RSV alone or in combination with BNZ 
would prevent changes in purinergic signaling and oxidative damage caused by T. cruzi. We infected mice with T. cruzi and 
treated them with RSV or BNZ for 8 days. Increases in ATP and ADP hydrolysis by NTPDase in the total cortex of infected 
animals were observed. The treatment with RSV in infected group diminished ATP, ADP, and AMP hydrolysis compared to 
infected group. The combination of RSV + BNZ decreased AMP hydrolysis in infected animals compared to the INF group, 
exerting an anti-inflammatory effect. RSV acted as a neuroprotector, decreasing adenosine levels. Infected animals presented 
an increase of P2X7 and A2A density of purine receptors. RSV reduced P2X7 and A2A and increased A1 density receptors in 
infected animals. In addition, infected animals showed higher TBARS and reactive oxygen species (ROS) levels than control. 
RSV diminished ROS levels in infected mice, possibly due to antioxidant properties. In short, we conclude that resveratrol 
could act as a neuroprotective molecule, probably preventing inflammatory changes caused by infection by T. cruzi, even 
though the mice experienced high levels of parasitemia.
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Introduction

Chagas disease is caused by the Trypanosoma cruzi parasite 
that affects the liver, heart, gastrointestinal tract, and central 
nervous system (CNS). There is evidence to suggest that the 
parasite has a tropism for the CNS [1, 2]. Trypomastigote 
forms are often found in sympathetic and parasympathetic 
ganglia, where they target glial and other supporting cells 
for intracellular parasite proliferation. After completing its 
cycle, the parasite breaks out of these cells, releasing newly 
produced trypomastigote forms [3–6]. Once into the CNS, 
the parasite activates a cascade of inflammation responses 
with the recruitment of macrophages, NK cells, and lym-
phocytes [1, 2].

Chagas CNS manifestations include mental dysfunction, 
neurological deficits, and ataxia [7]. A study showed that 
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parasitic infections caused by other parasites such as Tryp-
anosoma evansi [8, 9] and Toxoplasma gondii [10] could 
negatively alter mice’s behavior interfering with neuroin-
flammatory responses.

In this context, purinergic signaling is an essential check-
point in immune cell activation that allows immune cells 
to adjust their functional responses based on the host’s 
extracellular cues. Extracellular nucleotides adenosine 
triphosphate (ATP), adenosine diphosphate (ADP), and 
adenosine monophosphate (AMP), and nucleoside adeno-
sine (ADO) [11], as well as their purinergic receptors (P1 
and P2) [12], are directly involved in parasite controlling 
and host immune responses. ATP binds to P2 receptors that 
are divided into ionotropic P2X and metabotropic P2Y sub-
types [13]. Among the receptors, we highlight one of the P2 
receptors, P2X7, for being directly involved in response to 
inflammatory reactions against intracellular parasites such 
as M. tuberculosis and T. gondii and modulate host immune 
responses against the parasites through ATP [14] bind-
ing. Although there is little information about the P2X7R 
associated by T. cruzi-infection in brain, P2X7receptor can 
mediate the immune response, regulating the activation of 
T lymphocytes, consequently the production and release 
of pro-inflammatory cytokines [15]. P2X7 also has been 
reported to control the levels of intracellular Leishmania 
in macrophages [16]. Furthermore, other receptors are 
involved in brain disorders such as P2X4, modulating the 
inflammatory response after stroke [17]. P2X4 and P2X2 are 
important in bacterial infections; the receptors are involved 
in prodcution of NO and ROS in systemic polymicrobial 
sepsis in mouse model [18–21]. In addition to its more gen-
eral involvement in cellular metabolism, specific actions of 
adenosine in the CNS as neuro‐effector are believed to be 
mediated through specific receptors that have been cloned 
and classified as A1, A2A, A2B, and A3 receptors. The A2A 
receptor subtype has been implicated in the modulation of 
inflammation into CNS [22] during brain injury, while A1R 
is related to neuroprotection [22].

Once the infection has been established in the vertebrate 
host, the parasite migrates to organs such as the liver, spleen, 
brain, intestine, and heart. To survive, the parasite exploits 
mechanisms involving NTPDase enzymes, especially 
E-NTPDase-1 [23]. The parasite increases its virulence 
through cell adhesion, modulation of the immune system, 
and increases its intracellular survival in the host [24]. The 
enzyme in the parasite interferes with extracellular ATP 
signals and interrupts purinergic signaling, inhibiting host 
defenses [24–26].

Currently, the specific treatment of CD involves benzni-
dazole (BNZ) and nifurtimox; however, in the chronic phase, 
the treatment is palliative and carries negative side-effects. 
For these reasons, new therapeutic targets should be investi-
gated. Resveratrol (RSV, 3, 4′, 5-trihydroxy-trans-stilbene), 

a natural polyphenol found in wine and grapes, possesses 
antioxidant, anti-inflammatory, and neuroprotector activi-
ties. Studies have reported that RSV reversed the adverse 
effects caused by Toxoplasma gondii on neural progenitor 
cells [10]. RSV also showed trypanocidal effects [27] and 
minimized CNS injury in mice embryos [28] during infec-
tion with T. cruzi.

Given the potential damage caused by T. cruzi infection, 
if immune responses were uncontrolled, it is probable that 
other immunomodulatory pathways may have evolved in 
response to damage caused by the parasite. Understanding 
these molecular mechanisms of immune response precondi-
tioning regulation would be essential for the development of 
therapies. Therefore, in this study, we determined whether 
the purinergic system would change during the acute phase 
of infection by T. cruzi in the mouse cerebral cortex. We also 
investigated whether RSV alone or in combination with ben-
znidazole would bolster the purinergic signaling pathway.

Material and methods

Animal infection and treatment

Four female Swiss mice were infected with T. cruzi (strain Y) 
for later infection of animals of experimental groups. After 
confirmation of infection, the animals were euthanized, and 
the blood was used to infect experimental groups. Mice were 
infected with 1 × 104 trypomastigote forms by intraperitoneal 
injection, and animals were divided into seven groups of 
five mice, each according to infection and treatment. Ani-
mals were kept in light/dark cycles (12 h) with controlled 
temperature and humidity (25 °C and 70%, respectively). 
Before initiation of treatment and at 24-h intervals, quan-
tification of trypomastigotes in total blood was performed, 
according to another study [29]. The Ethics Committee on 
Animal Experimentation of the UFSM approved all animal 
procedures under protocol number 3060040517/17.

After confirming of infection, the mice received RSV 
(C14H12O3; molecular weight 228.25 g/mol; purity of > 98%) 
at 100 mg/kg or BNZ (C12H12N4O3 – LAFEPE) at 100 mg/
kg. The treatments were orally administered over 7 days, as 
previously reported [28].

On day 8 post-infection (PI), the mice were anesthetized 
using isofluorane in a controlled inhalation box and were 
euthanized by cardiac puncture. The brains were removed, 
and cerebral cortexes were isolated and stored at –30 °C 
until analysis.

Protein determination

Protein content was determined using the Coomassie blue 
method according to Bradford [30] using bovine serum 
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albumin as standard. The protein supernatants (S1) of tis-
sue were maintained at 1.0 mg/mL.

Nucleotide and nucleoside hydrolysis assays

For enzymatic assays, cortex tissues were homogenized 
in saline solution and centrifuged for 5 min at 200 × g to 
yield supernatants for all analyses. Twenty microliters of S1 
(0.9–1.0 mg/mL protein) were added to the reaction mixture 
of NTPDase or 5′-nucleotidase for a final volume of 200 
μL and were pre-incubated for 10 min at 37 °C according 
to the method Lanzeta et al. [31]. The reaction was started 
by adding ATP or ADP as substrate at a final concentra-
tion of 1.0 mM. E-5′-nucleotidase was determined using 
the method described by Heymann et al. [32]. Phosphate 
released by ATP, ADP, and AMP hydrolysis was measured 
using KH2PO4 as the standard. The results were reported as 
ɳmol Pi released/min/mg of protein.

ADA activity was estimated spectrophotometrically as 
described by previous research [33] as the measurement 
of ammonia produced when adenosine deaminase acts in 
excess of adenosine. For the assay, 50 μL of S1 reacted for 
60 min with 21 mmol/L of adenosine, pH 6.5, at 37 °C. 
The reaction was stopped by adding a solution of 106.2 mM 
phenol and 167.8 nM sodium nitroprusside, and a hypochlo-
rite solution. Ammonium sulfate at 75 µM was used as the 
ammonium solution. The amount of ammonia produced was 
measured at 620 nm, and the results were expressed in units 
per milligram (U/mg).

Western blotting receptors assay

Samples of the total cortex were homogenized in ice-cold 
radioimmunoprecipitation assay buffer (RIPA buffer) with 
1  mM protease and phosphatase inhibitors (DTT 1  M 
(1:1000), NaF 1 M (1:1000), Na3VO4 1 M (2:1000), PMSF 
220 mM (1:1000), aprotinin 1 mg/ml (1:1000), and pepstatin 
1 mg/ml (1:1000) Sigma-Aldrich, EUA) and centrifuged at 
12.000 rpm at 4 °C for 10 min. The protein concentration 
was determined using the BCA Protein Assay Kit (Sigma-
Aldrich, EUA). The diluted samples were separated using 
sodium dodecyl sulfate–polyacrylamide gel electrophoresis 
and transferred to nitrocellulose membranes (Amersham 
Biosciences, UK). After blocking, the membranes were 
incubated overnight at 4 °C with primary antibodies: P2X7R 
(1:800 Santa Cruz Biotechnology), A1R (1:500 Santa Cruz 
Biotechnology), and A2AR (1:500, Santa Cruz Biotechnol-
ogy, CA, USA), followed by incubation with secondary 
antibody (Thermo Fisher scientific 1:10,000) for 90 min 
at room temperature. The membranes were incubated with 
an enhanced chemifluorescent substrate (Amersham Bio-
sciences) and were analyzed using an Amersham Imager 
600 (GE Healthcare Life Sciences, EUA). The membranes 

were reprobed and tested for β-actin immunoreactivity as a 
control for protein concentration, as previously described by 
Rebola et al. [34].

Lipid peroxidation and reactive species

Lipid peroxidation was measured as TBARS levels and was 
expressed in terms of malondialdehyde (MDA) content. 
MDA, an end-product of fatty acid peroxidation, reacts with 
TBA to form a colored complex. The TBARS was analyzed 
in serum as described previously [35]. The results were 
expressed as ɳmoles of malondialdehyde/mg of protein.

Reactive oxygen species (ROS) were measured using 
2′-7′-dichlorofluorescein (DCFH) fluorescence levels as an 
index of peroxide production by cellular components accord-
ing to as described [36]. Cortex tissue protein (0.8 μg) was 
added to a medium containing Tris–HCl buffer (10 mM; pH 
7.4) and DCFH (1 mM). The mixture medium was incubated 
in the dark for 1 h until the fluorescence measurement pro-
cedure (excitation at 488 nm and emission at 525 nm, and 
both slit widths were 1.5 nm). The results were expressed 
as U DCF/mg protein.

Statistical analysis

Results are expressed as mean ± standard errors of the mean 
(SEM). Statistical analysis was performed by two-way 
ANOVA using Tukey as the post hoc test with the Graph-
Pad Prism (Version 6.0) software. *p < 0.05 was considered 
statistically significant.

Results

Course of infection

To confirm T. cruzi infection, parasitemia was evaluated over 
8 days (Fig. 1). Blood smear analysis confirmed the presence 
of trypomastigote forms from 3 days PI to day 8 PI. The 
treatment with RSV (100 mg/kg) in infected animals reduced 
trypomastigote forms after 6 days of infection compared to 
infected mice (p < 0.05). The combination of RSV + BNZ 
reduced parasitemia at 5 day PI. As expected, treatment with 
BNZ in infected animals exhibited an effect per se by reduc-
ing the number of trypomastigotes 4 days after infection 
compared to the INF and untreated groups.

Nucleotide and nucleoside hydrolysis in the cortex

To investigate the capacities of infected animals to hydrolyze 
nucleotides and nucleosides, we measured ecto NTPDase, 
ecto 5′-nucleotidase, and adenosine deaminase activities in 
the total cortex (Fig. 2).
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T. cruzi-infected animals presented high NTPDase activ-
ity when ATP (Fig. 2A) and ADP (Fig. 2B) were used as a 
substrate when compared to CN group. Also, an increment in 
5′-NT was observed in the INF group using AMP (Fig. 2C) 
as a substrate in comparison to CN group (p < 0.05). Noto-
rious significant differences in ATP, but not in ADP and 
AMP hydrolysis, were observed when BNZ (100 mg/kg) was 
administered as a treatment in healthy animals compared to 
the CN group or in infected animals compared to the INF 
group.

RSV (100 mg/kg) treatment did not alter ATP (Fig. 2A), 
ADP (Fig. 2B), or AMP (Fig. 2C) hydrolysis when com-
pared to the CN group. However, RSV administration 
reduces NTPDase and 5′-NT activity in infected animals 
when ATP (Fig. 2A), ADP (Fig. 2B), and AMP (Fig. 2C) 
were used as the substrate in comparison to the INF group 
(p < 0.05). Furthermore, the combination of RSV and BNZ 
augmented NTPDase activity when ATP was used as sub-
strate and reduces ADP hydrolysis in infected animals when 
compared to the INF group (Fig. 2A) (p < 0.05).

In addition, ADO hydrolysis was measured by E-ADA 
activity in the total cortex (Fig. 2D). The data reveals an 
increment of E-ADA in T. cruzi-infected animals compared 
to the CN group (p < 0.05). BNZ and RSV isolated also 
increase E-ADA in the cortex of healthy animals compared 
to the CN group. However, no significant differences were 
observed in E-ADA activity when RSV or BNZ combinate 
were administered in infected animals compared to the INF 
group (p > 0.05).

Expression of purine receptors in the cortex

Considering the alterations in ectonucleotidase activity by T. 
cruzi infection, P2X7, A1, and A2A purinergic receptor sub-
type expression patterns were determined using western blot 
(Fig. 3). Concerning P2X7 receptor expression (Fig. 3A), 
the RSV group (100 mg/kg) showed greater expression in 

Fig. 1   Time course of Trypanosoma cruzi infection. T. cruzi para-
sitemia over time in mice treated with or without BNZ and RSV 
(INF: infected group, BNZ: benznidazole group, RSV: resveratrol 
group). There was a significant increase in trypomastigote counts on 
the fourth day PI. The animals were euthanazed on day 8 PI. The data 
represent mean ± SEM analyzed with two-way ANOVA with post hoc 
Tukey test. #p < 0.05. (#T. cruzi vs other groups)

Fig. 2   The effect of RSV on 
nucleotide and nucleoside 
hydrolysis during acute T. cruzi 
infection. A—ATP hydrolysis; 
B—ADP hydrolysis; C—AMP 
hydrolysis; D—E-ADA activity. 
(NC: negative control, INF: 
infected group, BNZ: benzni-
dazole group, RSV: resveratrol 
group). The data represent 
mean ± SEM analyzed with 
two-way ANOVA with post hoc 
Tukey test. *p < 0.05 (*signifi-
cant differences compared to 
the control group) (# significant 
differences compared to the 
infected group)
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P2X7 receptors in healthy animals when compared to the CN 
group (p < 0.05). P2X7 expression was greater during acute 
T. cruzi infection. However, treatments with BNZ, RSV, and 
the combination RSV + BNZ in the infected group dimin-
ished overexpression compared to the INF group.

The purine receptor A1 (Fig. 3B) was overexpressed 
(p < 0.05) in the BNZ (100 mg/kg) and RSV (100 mg/kg) 
groups when compared to the CN group. No significant 
differences were observed in the INF group in comparison 
to the CN group. By contrast, the administration of BNZ, 
RSV, and the combination RSV + BNZ groups increased 
A1 receptor density in infected animals compared to the 
INF group. In addition, we measured A2A receptor density 
(Fig. 3C). Our results reveal that RSV (100 mg/kg) increased 
the expression of A2A, the receptor, when compared to CN in 
healthy animals (p < 0.05). A2A receptor density was greater 
in the INF group than in the CN group (p < 0.05). The treat-
ments with BNZ, RSV, or combination RSV + BNZ signifi-
cantly reduced A2A receptor density compared to the INF 
group.

Oxidative stress in the cerebral cortex of infected 
animals

To evaluate oxidative parameters, reactive oxygen species 
(ROS) and TBARS levels were measured in the cerebral cor-
tex (Fig. 4). There were greater ROS levels in the INF group 
than in the CN group (p < 0.05). RSV treatment decreased 
ROS levels in infected animals when compared to the INF 
group.

In terms of lipid peroxidation, TBARS levels decreased 
in the BNZ (100 mg/kg) group (Fig. 4B) compared to the 
CN group. This effect was also observed in infected animals 
treated with BNZ compared to the INF group (p < 0.05). The 
treatments with RSV alone or in combination with BNZ did 
not affect TBARS levels in infected animals compared to the 
INF group (p > 0.05).

Discussion

This study aimed to investigate the effects of BNZ and RSV 
alone and in combination on the course of infection and 
as a modulator of purinergic signaling and the influence of 
these agents on oxidative stress during acute T. cruzi infec-
tion in the brain. As expected, BNZ at 100 mg/kg reduced 
the number of trypomastigotes in the blood of infected ani-
mals. The treatments with RSV-free and BNZ combination 
did not directly affect parasitemia in infected mice (Fig. 1). 
According to other studies, RSV may promote the survival 
of trypomastigote forms by interaction with Sirt genes [37, 
38]. Thus, RSV does not appear to be a therapeutic target to 

Fig. 3   RSV modulates the increment of purine receptors during acute 
T. cruzi infection. A—P2X7 receptor; B—A1 receptor; C–A2A recep-
tor (NC: negative control, INF: infected group, BNZ: benznidazole 
group, RSV: resveratrol group). The data represent mean ± SEM 
analyzed using two-way ANOVA with post hoc Tukey test. *p < 0.05 
(*significant differences compared to the control group) (# significant 
differences compared to the infected group)
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reduce trypomastigotes forms during acute phase T. cruzi 
infection.

Nevertheless, RSV is a potent anti-inflammatory, anti-
oxidant, and neuroprotector molecule that activates several 
intracellular mechanisms to prevent intense inflammatory 
and oxidative processes in the brain during CD. In addition, 
RSV crosses the blood–brain barrier [39] and attenuates the 
intracellular formation of reactive molecules, decreasing cell 
damage [40]. In this context, we investigated whether RSV 
would modulate the purinergic pathway through ectonucle-
otidase activities and P2X7, A1, and A2A purinergic recep-
tors in an experimental model of acute infection by T. cruzi.

We found that NTPDase and 5′-NT enzymes in the 
cortex were affected by T. cruzi (Fig. 2). During acute T. 
cruzi infection, increased ATP, ADP, and AMP hydrolysis 
were observed in infected animals. It is believed that this 
increased activity is related to the enzymatic modulation 
in the presence of high grade stimulation by T. cruzi dur-
ing CD infection, leading to a high release of ATP by cells. 
Once into extracellular medium, ATP acts to mediate events 
such as stimulate astrocyte proliferation and differentiation, 
cytokine release, and the formation of reactive nitrogen and 
oxygen species [24]. These events triggered by extracellular 
ATP as a danger signal can protect the host from T. cruzi and 
induce apoptosis.

Some studies have reported the involvement of nucle-
otides and nucleosides in CD. A study conducted by Do 
Carmo et al. [41] showed an increase of seric ATP and ADP 

levels in infected animals suggesting consequences on the 
pro-inflammatory response of host against parasite con-
tributing to immunomodulation response. In another study 
with patients naturally infected by T. cruzi, Souza et al. [42] 
showed alterations in ATP, AMP, and ADO levels indicat-
ing an agreement with the immune response against T. cruzi 
infection.

In our study, we observed RSV-mediated on ectonucleoti-
dases induced by T. cruzi (Fig. 2). RSV is an anti-inflamma-
tory compound that modulates several molecular pathways 
dependent on silent information regulator-1 (SIRT1). RSV 
plays an essential role in neuronal protection as it regulates 
reactive oxygen species (ROS), nitric oxide (NO), and pro-
inflammatory cytokine production [43, 44].

BNZ, a choice theraphy to CD, acts through the forma-
tion of free radicals or electrophilic metabolites, affecting 
all macromolecules of the parasite [45]; moreover, a study 
revealed that BNZ is distributed systemically in the brain, 
kidneys, and lung, among others. Although they are not the 
target organs of the parasite, the wide distribution of the 
drug prevents parasitic proliferation [46], consequently lead-
ing to host apoptosis with ATP release.

Several lines of evidence indicate that adenosine may 
be an endogenous neuroprotective agent in the CNS [47]. 
Hence, adenosine-potentiating agents which elevate endog-
enous adenosine levels by either inhibiting its degradation 
(adenosine deaminase and kinase inhibitors) or prevent-
ing its transport offer protection against damage. A grow-
ing body of evidence also supports the role of both A1 and 
A2A receptors in the neuroprotective mechanisms. It has 
been suggested that the beneficial effects seen after chronic 
administration of adenosine antagonists may be due to, e.g., 
the upregulation of A1 receptors. Here we observed that 
RSV and BNZ isolated or associated lead to lower ADO 
levels caused by enhanced ADA activity, which could have 
similar effects of A2A antagonists that diminish activation 
of microglial cells and astrocytes [47], so the lower ADO 
levels caused by enhanced ADA activity in the results may 
have a similar effect.

In addition, adenosine deaminase (ADA) activity was 
significantly augmented in infected animals compared to 
control mice (Fig. 2D). The treatments with BNZ or RSV 
alone or in combination also stimulated ADO hydrolysis by 
E-ADA. These results suggest a suitable immunosuppressive 
effect of RSV during acute T. cruzi infection [47]. Therefore, 
ADA is related to vital functions of the parasites such as 
Trypanosoma evansi [48] and Plasmodium falciparum [49], 
since this enzyme is responsible for degrading adenosine in 
inosine, which is later used in the purine rescue pathway 
of these parasites [50]. Thus, our data suggest that treat-
ments with BNZ or RSV modulate ADA activity, reduce 
ADO levels and convert inosine by E-ADA, and suppress 
immune responses. It is essential to highlight that activation 

Fig. 4   T. cruzi-infection promotes oxidative stress in the cortex. A—
ROS levels; B–TBARS levels (NC: negative control, INF: infected 
group, BNZ: benznidazole group, RSV: resveratrol group). The data 
represent mean ± SEM analyzed using two-way ANOVA with post 
hoc Tukey test. *p < 0.05 (*significant differences compared to the 
control group) (# significant differences compared to the infected 
group)

498 Purinergic Signalling (2021) 17:493–502



1 3

of various adenosine receptor subtypes has been reported 
to mediate different effects of endogenous adenosine, as 
observed in our study.

Once in the extracellular environment, nucleosides and 
nucleotides activate two families of purinergic receptors, 
named P1 and P2 receptors [11]. Our results showed that 
T. cruzi infection stimulated P2X7 receptor expression in 
the cerebral cortex (Fig. 3A). In response to parasite infec-
tion, ATP is released from immune and non-immune cells, 
which can activate P2X7 receptor. As a consequence, P2X7 
receptor activation induces ATP release-chiefly via pannexin 
hemichannels-boosting inflammation as already mencioned 
by Savio et al. [51]. Furthermore, continued activation of 
P2X7 receptors by ATP during chronic infection has been 
proposed as a mechanism for the elimination of T. cruzi in 
the thymus [52].

Previous studies conducted by our research group using 
RSV as treatmed showed that RSV can modulate P2X7 
receptors in T. gondii-infected neural precursor cells [53] as 
alternative therapy to inflect the balance between inflamma-
tion and parasite control in CNS. Here the treatments with 
BNZ, RSV, and RSV + BNZ downregulated P2X7 expres-
sion in the cerebral cortex (Fig. 3A). Overall, these data 
support a role for RSV to modulate ATP-P2X7 receptor in 
boosting the immune system against the protozoa infections.

The functions of P2X7 in inflammation and cell death 
have been studied extensively [54]. Here the treatments with 
BNZ, RSV, and RSV + BNZ combinated downregulated 
P2X7 expression in the cerebral cortex (Fig. 3A). Previous 
study by our research group showed the effect of RSV on 
P2X7 receptors in T. gondii-infected neural precursor cells 
[53]. Thus, in the presence of physiological amounts of ATP, 
P2X7 may control microglia proliferation in the CNS while 
sustained activation may induce cell death.

T. cruzi infection increased A2A but not A1 receptor den-
sity in the cortex of infected mice (Fig. 3C). BNZ and RSV, 
alone and in combination, up- and downregulated A1 and 
A2A receptor densities. Various endogenous adenosine con-
centrations may activate adenosine receptors; the levels of 
endogenous adenosine available to bind to and activate these 
receptors help control specific physiological responses to 
adenosine [22].

The A1A subtype is expressed in the CNS, mainly in the 
cerebral cortex [55, 56]. This broad distribution reflects the 
wide range of physiological functions regulated by A1AR, 
spanning neurotransmitter release, dampening of neuronal 
excitability, control of sleep/wakefulness, and other effects 
[57]. This positive modulation of the A1 receptor during T. 
cruzi infection by RSV or BNZ causes a receptor upregula-
tion in protein expression, which could promote chemotaxis 
and consequently neuroprotection by immune cells [58]. In 
addition, A2AR has expressed on both pre- and postsyn-
aptic neurons astrocytes, microglia, and oligodendrocytes, 

where it orchestrates several functions related to excitotox-
icity, including neuronal glutamate release, glial reactivity, 
blood–brain barrier permeability, and peripheral immune 
cell migration [59].

As already reported, high levels of ATP act as proinflam-
matory danger signals, activating the inflammasome that 
processes pro-IL-1β into mature IL-1β [60, 61]. Therefore, 
it has been suggested that CD39 expression has an essen-
tial role in cell proliferation and growth, inflammatory pro-
cesses, and triggering cellular responses from ATP-induced 
contribute to apoptosis and host defense [60–64]. Our find-
ings suggest an increase of ADA activity in the total cortex 
in BNZ, RSV, INF, BNZ + INF, and RSV + INF experimen-
tal groups compared to the CTL group. We suggest that this 
increase in ADA activity could result from the increment 
in extracellular adenosine (ADO). Once in the extracellular 
space, ADO binding to A1 or A2A receptors during brain dis-
order exerts neuroprotective and immunosuppressive capaci-
ties, respectively [56]. ADO inhibits neutrophil phagocytosis 
via activation of A2A receptor and ROS generation by mac-
rophages and neutrophils, improving the VEGF secretion 
by macrophages [65] and inducing a Th2-like profile in the 
CNS.

During CD, inflammatory responses involve high ROS 
levels, nitric oxide production (NO), and promotion of oxi-
dative stress as crucial defense mechanisms against intracel-
lular pathogens. We evaluated oxidative parameters to test 
our hypothesis whether RSV would reduce oxidative damage 
in the cerebral cortex and attenuate cellular damage.

In addition, we found that T. cruzi infection increased 
ROS levels in the cerebral cortex and increased lipid per-
oxidation in the INF group (Fig. 4). The treatments with 
BNZ avoid lipid peroxidation by reducing TBARS levels in 
healthy and infected animals. RSV acted as an antioxidant 
molecule, reducing ROS levels in infected mice. Previous 
studies reported that T. cruzi infection led to oxidative stress 
as a defense mechanism of the host cell to inhibit parasite 
survival and replication [66–69].

RSV is an antioxidant molecule, probably that decrease 
ROS levels in host as compensatory mechanism. However, 
the inflammatory process increases the ROS levels; these 
imply not only the parasitic action as well as other dam-
age to the host. In T. cruzi infection, these ROS can be 
produced as a consequence of tissue destruction caused by 
toxic parasite secretions, immune-mediated cytotoxic reac-
tions, and secondary damage to mitochondria [70]. Thus, 
the RSV molecule can act by decreasing tissue destruction, 
as well as decreasing ROS levels, and can prevent cell 
damage and mitochondrial dysfunction during an acute 
infection by T. cruzi. RSV also increased the activity of 
antioxidant enzymes and free radical scavengers, decrease 
the ROS levels [71]. In addition, it is known that high 
levels of ROS can impact numerous cell damage such as 
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cancer, inflammation, cardiovascular diseases, and aging 
[72]. Therefore, keeping the ROS levels low can be a com-
pensatory mechanism that may be related to the reduction 
of cellular damage caused by the inflammatory and infec-
tious process triggered by the parasite.

Conclusion

We outlined the molecular effects of RSV on puriner-
gic signaling and oxidative status during acute T. cruzi 
infection. Notably, the RSV molecule could not decrease 
parasites; however, RSV treatment had subtle effects on 
enzymes that hydrolyze extracellular nucleotides and 
nucleosides. We observed subtle positively regulated 
purinergic receptors as a compensatory mechanism to 
eliminate the parasite and oxidative damage in the cer-
ebral cortex of infected mice. In summary, the association 
between RVS + BNZ appears to be beneficial concerning 
the inflammatory damage caused by parasitic infection. 
Nevertheless, further studies are needed to determine pos-
sible associations between traditional pharmacotherapy 
with BNZ and the RSV molecule.
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