Table 2. Meta-regression of the Log (pooled DOR) of AI-assisted CT diagnostic technology†.
Variable | Estimate (95% CI) | Standard error | P value |
---|---|---|---|
Intercept | 9.4338 (7.4538, 11.4137) | 0.9818 | <0.0001 |
Algorithms (control = deep belief network) | |||
Support vector machine (1: yes, 0: no) | −3.1780 (−4.5967, −1.7587) | 0.7036 | <0.0001 |
Decision tree (1: yes, 1: no) | −2.3370 (−3.8411, −0.8320) | 0.7460 | 0.0031 |
Convolutional neural networks (1: yes, 1: no) | −2.1640 (−3.8342, −0.4931) | 0.8284 | 0.0124 |
Artificial neural network (1: yes, 0: no) | −2.9970 (−6.1486, 0.1548) | 1.5628 | 0.0618 |
Others (1: yes, 0: no) | −3.0740 (−4.6794, −1.4692) | 0.7959 | 0.0004 |
No. of nodules (1: ≥150, 0: <150) | −0.8420 (−1.8731, 0.1889) | 0.5112 | 0.1068 |
China (1: yes, 0: no) | −2.0550 (−3.6124, −0.4980) | 0.7722 | 0.0109 |
†, a multilevel linear regression model (method = REML, weight = 1/variance of odds) was used to control for the study random effects. DOR, diagnostic odds ratio; AI, artificial intelligence.