Skip to main content
. 2021 Aug;13(8):4797–4811. doi: 10.21037/jtd-21-810

Table 2. Meta-regression of the Log (pooled DOR) of AI-assisted CT diagnostic technology.

Variable Estimate (95% CI) Standard error P value
Intercept 9.4338 (7.4538, 11.4137) 0.9818 <0.0001
Algorithms (control = deep belief network)
   Support vector machine (1: yes, 0: no) −3.1780 (−4.5967, −1.7587) 0.7036 <0.0001
   Decision tree (1: yes, 1: no) −2.3370 (−3.8411, −0.8320) 0.7460 0.0031
   Convolutional neural networks (1: yes, 1: no) −2.1640 (−3.8342, −0.4931) 0.8284 0.0124
   Artificial neural network (1: yes, 0: no) −2.9970 (−6.1486, 0.1548) 1.5628 0.0618
   Others (1: yes, 0: no) −3.0740 (−4.6794, −1.4692) 0.7959 0.0004
No. of nodules (1: ≥150, 0: <150) −0.8420 (−1.8731, 0.1889) 0.5112 0.1068
China (1: yes, 0: no) −2.0550 (−3.6124, −0.4980) 0.7722 0.0109

, a multilevel linear regression model (method = REML, weight = 1/variance of odds) was used to control for the study random effects. DOR, diagnostic odds ratio; AI, artificial intelligence.