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1  | INTRODUC TION

The COVID-19 pandemic has led to press need for treatments and 
preventative strategies to manage acute and chronic lung disease. 
Given the rapid spread of COVID-19, it is expeditious to utilize med-
ications that are already FDA-approved and that are known to have 
limited side effects. Selective serotonin reuptake inhibitors (SSRIs) 
have been explored as anti-inflammatory agents in the context of 
autoimmune and inflammatory diseases, and research suggests 
that SSRIs may inhibit inflammatory pathways implicated in acute 
and chronic lung disease. In this review, we will explore the utility of 
SSRIs in treatment and prevention of inflammatory lung disease and 
discuss the application of these findings to COVID-19.

2  | PATHOGENESIS OF LUNG 
INFL AMMATION

COVID-19 is caused by the SARS-CoV-2 virus, an enveloped, single-
stranded positive-sense RNA betacoronavirus.1,2 Alveolar mac-
rophages detect viral components, leading to a T-cell-mediated immune 
response.1–4 Cells infected with the virus also stimulate interferon and 
cytokine release via interferon regulatory factor and transcription 
factor NF-κB activation,5 and recruit more immune cells to the site of 
infection.1 These immune cells propagate release of more proinflam-
matory molecules, leading to pulmonary and systemic disease.4

COVID-19 presents a variety of problems to clinicians, including 
rapid onset of severe disease, various manifestations of pathology,6–8 
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Abstract
Selective serotonin reuptake inhibitors (SSRIs) have anti-inflammatory properties that 
may have clinical utility in treating severe pulmonary manifestations of COVID-19. 
SSRIs exert anti-inflammatory effects at three mechanistic levels: (a) inhibition of 
proinflammatory transcription factor activity, including NF-κB and STAT3; (b) down-
regulation of lung tissue damage and proinflammatory cell recruitment via inhibi-
tion of cytokines, including IL-6, IL-8, TNF-α, and IL-1β; and (c) direct suppression 
inflammatory cells, including T cells, macrophages, and platelets. These pathways 
are implicated in the pathogenesis of COVID-19. In this review, we will compare the 
pathogenesis of lung inflammation in pulmonary diseases including COVID-19, ARDS, 
and chronic obstructive pulmonary disease (COPD), describe the anti-inflammatory 
properties of SSRIs, and discuss the applications of SSRIS in treating COVID-19-
associated inflammatory lung disease.
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and paucity of demonstrably effective treatments.9–12 SARS-CoV-2 
infection initially manifests as fever, cough, and fatigue, among other 
symptoms, which can progress to severe pneumonia and hypoxemic 
respiratory failure.13 On imaging, patients with COVID-19 have bi-
lateral ground-glass opacities7 and upper lobe infiltrates associated 
with dyspnea and hypoxemia.13,14 These severe manifestations 
are mediated by several proinflammatory cytokines, including IL-
6, TNF-α, IL-17, GM-CSF, and G-CSF.1,7,15–20 Cytokines involved in 
COVID-19 pathogenesis are summarized in Table 1.

Cytokine storm in COVID-19 infection can cause acute respi-
ratory distress syndrome (ARDS), an inflammatory state in which 
increased vascular permeability leads to pulmonary edema and tis-
sue destruction.21,22 A major cause of ARDS is sepsis secondary to 
bacterial pneumonia,23–27 and influenza A28 and coronaviruses29–

31ARDS is characterized by a primary insult, such as infection or 
trauma, leading to a secondary insult of inflammation and tissue 
damage. These insults cause capillary leakage in lung parenchyma 
which ultimately impairs oxygenation.32,33 Macrophages, endothe-
lial cells, epithelial cells, and neutrophils release proinflammatory 
signaling molecules including IL-6, IL-8, TNF-α, and IL-1β, further 
increasing vascular permeability.34–36 More inflammatory cells are 
recruited, become activated and propagate the inflammatory re-
sponse.37,38 Many cells and cytokines involved in the inflammatory 
response in ARDS pathology are implicated in COVID-19 infection39 
and are summarized in Table 1.

Comorbid pulmonary disease, specifically chronic obstructive 
pulmonary disease (COPD), is an important risk factor for poor out-
comes in COVID-19.40 Interestingly, patients with COVID-19 rarely 
reported comorbid COPD overall, potentially due to underdiagno-
sis.41 COPD and COVID-19 cause lung damage through a shared 
mechanism of increased inflammation, dysregulated immunity, and 
impaired repair function.42–45 These effects are summarized in 
Table 1 and Figure 1.

3  | ANTI- INFL AMMATORY PROPERTIES 
OF SSRIS

Selective serotonin reuptake inhibitors (SSRIs) were first used in 
the 1980s,46 where they found success in treating depression by 
blocking reuptake and subsequent degradation of serotonin at 
the synaptic cleft and potentiating serotonin signal transduction 
at the postsynaptic neuron.47–49 SSRIs were hailed as a break-
through medication for depression with fewer side effects than 
tricyclic antidepressants and without the addictive potential of 
benzodiazepines.46,50 More recently, the anti-inflammatory prop-
erties of SSRIs have been explored. SSRIs inhibit inflammation-
induced lung tissue destruction at three mechanistic levels: 
inhibition of proinflammatory transcription factors,51 reduced 
production of inflammatory cytokines through canonical sero-
tonergic mechanisms,52 and inhibition of inflammatory cellular 
responses53,54 (Figure 1).

3.1 | Selective serotonin reuptake inhibitors 
modulation of inflammatory transcription factors

Selective serotonin reuptake inhibitors alter the transcriptional regu-
lation of genes encoding non-serotonergic neurotransmitter systems 
and inflammatory factors.51 Serotonin receptor activation decreases 
activity of signal transducer and activator of transcription 3 (STAT3)55 
and NF-κB,53,56 leading to reduced downstream expression of pro-
inflammatory markers TNF-α, IL-1β, IL-6, and cyclooxygenase-2.57–59 
The inhibitory effects of SSRIs on inflammatory transcription factors 
may have implications for treating inflammation-mediated damage 
caused by SARS-CoV-2 infection.60–62 In lung tissue, STAT3 and NF-
κB are implicated in a variety of inflammatory processes including 
pathogen-induced acute lung injury, pulmonary inflammation, pul-
monary fibrosis, and pulmonary vascular remodeling.63–75 SSRIs may 
decrease inflammation by suppressing the proinflammatory activi-
ties of STAT3, NF-κB, or both.

3.2 | Selective serotonin reuptake inhibitors 
modulation of inflammatory cytokines

Patients with depression have been found to have increased levels 
of inflammatory cytokines at baseline,76–85 and cytokines modu-
late the hypothalamic-pituitary-adrenocortical (HPA) axis leading 
to increased production of corticotropin releasing hormone and 
glucocorticoid receptor resistance.83,86 Loss of negative feedback 
at glucocorticoid receptors leads to dysregulated proinflammatory 
response.87,88 Fluoxetine inhibited HPA axis-mediated inflammatory 
edema in a rat model,89 and clinical studies have demonstrated the 
ability of antidepressants to modulate glucocorticoid receptor func-
tion in humans.90

Several specific proinflammatory cytokines are implicated in 
pathogenesis of depression. Levels of TNF-α, IL-6, and IFN-γ, among 
others, are significantly higher in patients with depression when 
compared to non-depressed controls.84,91–95 IL-1β, TNF-α, and IFN-γ 
reduce serotonin production and increase tryptophan and serotonin 
uptake in the brain, leading to overall depletion of serotonin96 and 
depression-like behavior.97 Conversely, serotonin influences macro-
phage activity in a dose-dependent manner, increasing production 
of IL-1 at physiologic concentrations of serotonin and inhibiting 
proinflammatory activity at elevated concentrations.98 Serotonin 
can, therefore, influence proinflammatory cytokine pathways, and 
SSRIs have been explored as immune modulators.

Selective serotonin reuptake inhibitors directly inhibit proinflam-
matory pathways. Administration of SSRIs inhibit TNF-α production 
in a mouse model of inflammation99,100 and impair TNF-α release from 
monocytes101 and microglia.102 TNF-α has neuromodulatory effects 
on norepinephrine secretion that are reversible with antidepres-
sant administration.103 INF-α and IL-2 treatment induced reversible 
depressive symptoms in patients,86,104 and administration of sero-
tonin reduced TNF-α and IL-6 in human blood.105 SSRIs were able 
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to inhibit LPS-induced IL-6 production106 and NLRP3 inflammasome 
activation and downstream IL-1β production in macrophages.107 
Acute administration of SSRIs leads to release of proinflammatory 
5-HT,108 whereas chronic administration leads to overall depletion 
of serotonin.109–111 Effects of SSRIs on proinflammatory cytokines 
are summarized in Figure 1.

3.3 | Selective serotonin reuptake inhibitors 
modulation of inflammatory cellular responses

Selective serotonin reuptake inhibitors inhibit presynaptic reup-
take of serotonin to increase extracellular serotonin concentrations, 
thereby ameliorating depressive symptoms,112 and they also inhibit 
serotonin uptake by peripheral cells.110,113–115 Ninety five percent of 
the body's serotonin is produced by enterochromaffin cells in the gut 
and plays a variety of secretory, sensorimotor, homeostatic, and im-
munologic roles.116,117 SSRIs block the serotonin transporter (SERT), 
expressed on platelets,118 T cells,119 macrophages,115 and other im-
mune cells.117 SSRIs increase extracellular serotonin concentrations 
to exert indirect (serotonergic) activation of serotonin receptors.120 
Platelets take up peripheral serotonin produced in enterochromaf-
fin cells via SERT,121–123 and intracellular transport of serotonin mol-
ecules leads to platelet activation and aggregation.124,125 Release of 
platelet-derived serotonin modulates proinflammatory responses and 
activation of monocytes and T cells.126 Administration of SSRIs in-
creased SERT expression on T cells in patients with depression, which 

inhibited T-cell proliferation and promoted apoptosis.119 SSRIs also 
directly suppress antigen-presenting cells.127 SSRIs also exert direct 
(non-serotonergic) activation of serotonin receptors through direct 
binding. Fluoxetine binds with high affinity to 5-HT2B serotonin re-
ceptors to induce antidepressant effects that are abrogated in 5-HT2B 
knockouts.128 Fluoxetine transitions macrophages from a proinflam-
matory M1 phenotype to an anti-inflammatory M2 phenotype.129

4  | SELEC TIVE SEROTONIN REUPTAKE 
INHIBITORS :  IMPLIC ATIONS FOR 
COVID -19

Strategies to combat COVID-19 continue to develop, and treat-
ments currently under investigation include antiviral and antima-
larial agents,12,130,131 immunosuppressant medications,6,132 and 
anti-IL-6 modulators.17,133,134 Olanzapine, an atypical antipsychotic 
and potent H1 antagonist, has been proposed as a therapeutic IL-6 
modulator for COVID-19 infection.135 The inflammatory processes 
implicated in the pathogenesis of COVID-19 overlap with mecha-
nisms in acute and chronic lung disease, and SSRIs modulate these 
pathways at several distinct points. Chronic administration of SSRIs 
reduce levels of IL-6 and TNF-α136 to the degree that decreased IL-6 
can be used as a marker for SSRI efficacy.137 SSRIs, therefore, may 
have clinical utility in targeting IL-6 to treat COVID-19.

Selective serotonin reuptake inhibitors have been studied as 
modulators in lung disease. Fluoxetine was found to be protective 

F I G U R E  1   Mechanism of SSRI modulation in pulmonary inflammatory disease. Infectious and inflammatory insults stimulate NF-κB 
translocation and cytokine release in alveolar macrophages and epithelial cells. These cytokines recruit neutrophils to the lung, leading 
to tissue damage and apoptosis. In acute inflammatory disease, M1 macrophages stimulate platelet activation and endothelial injury, and 
activated platelets recruit neutrophils and promote NET formation, mediating further tissue damage. In chronic disease, T cells lead to direct 
and indirect tissue damage and promote remodeling associated with decreased pulmonary function. SSRIs reduce pulmonary inflammation 
in each of these pathways by inhibiting 1 NF-κB activity, (2) downstream cytokine release, and (3) cellular activity by impairing serotonin 
reuptake by SERT
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against asthma and depression in a rat model,138 and patients with 
comorbid asthma and depression had improved asthma outcomes 
when treated with a SSRI.139 Fluoxetine also protects against chronic 
methamphetamine-induced pulmonary inflammation.140 Patients 
with COPD reported improvements in dyspnea when a SSRI was 
added,141–144 and improved walking distances correlated with im-
provements in depressive symptoms over time.145–147 SSRIs have 
therapeutic utility in pulmonary arterial hypertension (PAH), a com-
mon sequela of COPD associated with pulmonary vascular remodel-
ing.148 Fluoxetine prevents and reverses PAH in mice149 and inhibits 
remodeling and inflammation in rat lung tissue.150 SSRI use cor-
related with 50% reduction in risk of death in patients with PAH,151 
and baseline SSRI use was associated with a reduced incidence of 
PAH and decreased mortality in PAH.152 However, one study found 
increased morbidity and mortality among elderly adults who were 
newly started on a SSRI medication.153 A Cochrane review was un-
able to determine the efficacy and safety of SSRIs in COPD and rec-
ommends further study.142

Patient appropriateness for the use of SSRIs is generally very 
broad, but caution should be used with certain comorbid illnesses 
and certainly patients should be aware of common side effects 
and less frequent serious risks. Significantly, patients on SSRIs for 
treatment of COVID-19 symptoms would likely require treatment 
for periods of days to weeks, rather than the treatment of months 
or years seen for their primary disease indications of depression 
and anxiety. SSRIS are among the most prescribed medications in 
the United States and have very benign safety profiles. Most side 
effects associated with SSRIs (including sexual dysfunction, drows-
iness, weight gain, and insomnia) are mild and many resolve within 
a few weeks of initiating treatment.154 Other documented side ef-
fects include malaise and diminished mental energy,155 diarrhea, 
diaphoresis, syndrome of inappropriate antidiuretic hormone and 
hyponatremia,156 movement disorders,157,158 and cardiac QT pro-
longation159 although these are exceedingly rare. Chronic use of 
SSRIs has also been linked, but with very low incidence, to intersti-
tial lung disease in elderly patients, especially women.160,161 SSRIs 
interact with antiplatelet medications including aspirin and clopi-
dogrel162,163 and nonsteroidal anti-inflammatory drugs (NSAIDs) 
to prolong bleeding times in some patients.164,165 SSRIs have been 
linked to increased incidence of gastrointestinal and other bleeding 
incidents and should not be used in patients with an active life-
threatening bleed.166 Many of the life-threatening complications 
of COVID-19 and ARDS are associated with blood clots and so 
these patients often receive antiplatelet and anticoagulant medica-
tions.167,168 SSRIS should not be coadministered with linezolid anti-
biotic treatment or other monoamine oxidase inhibitors due to the 
high risk for serotonin syndrome and caution should be used when 
combining SSRIs with other serotonergic medications including me-
peridine, tricyclic antidepressants, and serotonin-norepinephrine 
reuptake inhibitors.169

Recent evidence strongly points to a role for acute brief use of 
SSRIs in COVID-19 positive patients to prevent serious complications 

such as hospitalization, intubation, and death. Ultimately, more clini-
cal studies are needed to understand the potential risks and benefits 
associated with SSRI use in COVID-19.

5  | CONCLUSION

Selective serotonin reuptake inhibitors modulate inflammatory path-
ways that are shared in acute and chronic lung inflammation. SSRIs 
have therapeutic utility in pulmonary arterial hypertension (PAH), 
a common sequela of COPD associated with pulmonary vascular 
remodeling.148 Fluoxetine prevents and reverses PAH in mice149 
and inhibits remodeling and inflammation in rat lung tissue.150 SSRI 
use correlated with 50% reduction in risk of death in patients with 
PAH,151 and baseline SSRI use was associated with a reduced in-
cidence of PAH and decreased mortality in PAH.152 However, one 
study found increased morbidity and mortality among elderly adults 
who were newly started on an SSRI medication.153 A Cochrane re-
view was unable to determine the efficacy and safety of SSRIs in 
COPD and recommends further study.142

Clinicians must consider potential detrimental effects of med-
ications. Most side effects associated with SSRIs (including sex-
ual dysfunction, drowsiness, weight gain, and insomnia) are mild 
and resolve within a few weeks of initiating treatment.154 Other 
documented side effects include malaise and diminished mental 
energy,155 diarrhea, diaphoresis, syndrome of inappropriate antid-
iuretic hormone and hyponatremia,156 movement disorders,157,158 
and cardiac QT prolongation159 although these are exceedingly rare. 
SSRIs have also been linked to interstitial lung disease in elderly 
patients, especially women.160,161 SSRIs interact with antiplatelet 
medications including aspirin and clopidogrel162,163 and nonsteroi-
dal anti-inflammatory drugs (NSAIDs)164,165 and can cause serotonin 
syndrome when combined with other serotonergic medications in-
cluding tricyclic antidepressants, monoamine oxidase inhibitors, and 
serotonin-norepinephrine reuptake inhibitors.169 These are import-
ant considerations for patients presenting with COVID-19, especially 
as antiplatelet and anticoagulant medications are sometimes used 
in treatment of ARDS.167,168 Notably, however, high-quality ran-
domized trials demonstrate SSRIs are not associated with increased 
bleeding events.170 Ultimately, clinical studies are needed to under-
stand the potential risks and benefits associated with SSRI use in 
COVID-19.
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