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Abstract

Background: Drug-induced QT prolongation is a potentially preventable cause of morbidity and 

mortality, however there are no widespread clinical tools utilized to predict which individuals are 

at greatest risk. Machine learning (ML) algorithms may provide a method for identifying these 

individuals, and could be automated to directly alert providers in real time.

Objective: This study applies ML techniques to electronic health record (EHR) data to identify 

an integrated risk-prediction model that can be deployed to predict risk of drug-induced QT 

prolongation.

Methods: We examined harmonized data from the UCHealth EHR and identified inpatients who 

had received a medication known to prolong the QT interval. Using a binary outcome of the 

development of a QTc interval >500 ms within 24 hours of medication initiation or no ECG with a 

QTc interval >500 ms, we compared multiple machine learning methods by classification accuracy 

and performed calibration and rescaling of the final model.

Results: We identified 35,639 inpatients who received a known QT-prolonging medication and 

an ECG performed within 24 hours of administration. Of those, 4,558 patients developed a QTc 

> 500 ms and 31,081 patients did not. A deep neural network with random oversampling of 

controls was found to provide superior classification accuracy (F1 score 0.404; AUC 0.71) for 

the development of a long QT interval compared with other methods. The optimal cutpoint for 

prediction was determined and was reasonably accurate (sensitivity 71%; specificity 73%).
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Conclusions: We found that deep neural networks applied to EHR data provide reasonable 

prediction of which individuals are most susceptible to drug-induced QT prolongation. Future 

studies are needed to validate this model in novel EHRs and within the physician order entry 

system to assess the ability to improve patient safety.
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Introduction

Drug-induced long QT syndrome (diLQTS) is characterized by marked prolongation 

of the QT interval on an electrocardiogram (ECG) following drug administration. This 

prolongation of the QT interval increases the risk of developing Torsades de Pointes (TdP), 

a form of polymorphic ventricular tachycardia which can be fatal.1 The 99th percentile for 

the QTc interval is 480 milliseconds (ms) in adult women and 470 ms in adult men2 and 

the risk of TdP significantly increases when the QTc interval exceeds 500 ms.2-8 There have 

been numerous cardiac and noncardiac medications associated with QT prolongation and 

TdP, and it is the most common cause for withdrawal of medications on the market as well 

as failure to make it out of the drug development pipeline.9-11 Recently, this condition has 

gained media notoriety given that at least 2 of the medications utilized early in the treatment 

of COVID-19, hydroxychloroquine and azithromycin, can cause QT prolongation.12 Given 

that diLQTS is a preventable cause of morbidity and mortality, an accurate prediction 

model is needed to stratify an individual’s risk of developing this condition. In most cases, 

alternative therapies could be considered for an individual identified as high risk.13 In cases 

where a medication may be unavoidable,14 knowing an individual’s risk could be used to 

guide monitoring.15 A system for stratifying patients by risk of diLQTS16,17 would improve 

safety for the use of known QT-prolonging medications.

Machine-learning methods can leverage big data sources to predict various cardiovascular 

and non-cardiovascular outcomes. Many standard machine-learning techniques, such as 

support vector machines,18 random forests,19 and boosted/ bagged decision trees,20 have 

successfully predicted clinical outcomes; however, recently deep-learning models have 

demonstrated superior results.19,21-25 Deep learning methods are composed of multiple 

hierarchical layers of neural networks which allows improved learning potential and power 

but requires a larger amount of data. Data from the electronic health record (EHR) is 

increasingly a source for the development of prediction models using machine learning 

methods. Consolidation of EHR data into harmonized databases allows deep learning 

methods to be utilized for clinical applications and allows a model created in one EHR 

to be directly deployed in others.17,26-29 Furthermore, a model built directly off of EHR data 

can be directly inserted into a physician order entry (POE) system to alert a provider of 

increased risk in real time.

In this study we present a method for risk stratification using machine learning techniques 

applied to harmonized EHR data. We hypothesize that deep machine-learning methods can 
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reliably identify patients at risk for diLQTS. Ultimately, we aim to develop a system that can 

be integrated into EHR systems to alert providers of this risk.

Methods

Data Source and Study Population

We examined data from the UC Health hospital system, an integrated academic healthcare 

system that includes 3 main regional centers (North, Central, South) across the Colorado 

Front Range that share a single Epic instance. Data were gathered from 2003 through 

November, 2018, and were queried using Google BigQuery to create a dataset and conduct 

analyses directly on the Google cloud platform.

Inpatient encounters were selected in which the patient was administered a known QT­

prolonging medication (Supplementary Table 1),30 and had an ECG performed within 24 

hours of medication administration.

Case Selection

The primary outcome was the presence or absence of a QTc interval of greater than 

500 ms. Cases were identified as those encounters in which the QTc by ECG exceeded 

500ms31,32 and controls were those in which no ECG had a QTc > 500 ms throughout 

the encounter, after having received a known QT-prolonging medication. These designations 

(case/control) were the labels used for training and testing the learning models. ECGs with 

conduction disease in the form of bundle branch block, intraventricular conduction disease, 

or ventricular pacing, defined by a QRS duration of greater than 120 ms, were excluded.

Model Development and Data Analysis

We used a common data model for EHR data, based on the Observational Health Data 

Sciences and Informatics (OHDSI) collaboration, which uses the Observation Medical 

Outcomes Partnership common data model (OMOP-CDM) which is a mapping of the raw 

EHR data to a harmonized dataset.28 6,458 variables were included in the model which 

consisted of medications, procedure codes, diagnosis codes, labs, and demographic data. 

There were no missing variables for continuous variables, and the remaining data was coded 

as a binary variable with no history of that variable being coded as a zero.

After label assignment, data was split into a training (80%) and testing set (20%). The 

training set was used to develop and compare deep learning models using 5-fold cross­

validation, to allow comparison of models and tuning of hyperparameters.

Given the relative infrequency of the outcome, there was imbalance between the cases 

and controls. Re-sampling techniques can be used to improve this balance and avoid the 

over-assigning of new cases to the majority class.26 Both oversampling techniques (increase 

frequency of cases relative to controls) and undersampling techniques (reduce frequency of 

controls used) were employed. These techniques included SMOTE,33 ADASYN, random 

oversampling, and random undersampling. The random oversampling technique generated 

21,100 additional samples and the random undersampling discarded 21,100 samples in order 

to match the majority and minority class.

Simon et al. Page 3

J Cardiovasc Pharmacol Ther. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Once an optimal resampling approach was selected, several classification algorithms (naïve 

Bayesian classification, regularized logistic regression, random forest classification, deep 

neural networks) were compared. The deep neural network model contained 6 hidden 

layers. The first hidden layer used 1024 neurons, and layers 2-6 had 512 neurons each. 

The activation function used was sigmoid for all of the neurons on the hidden layer and 

50% dropout at each hidden layer. Models were selected based on discrimination using 

the F1-score,34 which measures performance on imbalanced datasets more effectively than 

alternative metrics such as classification accuracy and the receiver operating characteristic35 

(ROC), which was used for secondary comparison.

We also examined calibration of the optimal model for discrimination using calibration 

curves, binned by deciles of predicted probability, displaying frequency of events within 

each bin. To perform Platt rescaling, we performed logistic regression using 50% of 

the testing set (random sampling) with predicted probability from the optimal model on 

the actual events, and then used the predicted coefficients to calculate a “rescaled” risk 

probability on the other 50% of the testing set. We used Youden’s J method to identify 

an optimal cutoff for the rescaled prediction model,36 and then examined sensitivity and 

specificity curves (as well as false positive and false negative) over various cutoffs, with 

attention to identifying an optimal cutoff to fit the clinical application.

All analyses were run on Google Cloud Platform, using 96 CPUs and 620 GB of RAM. 

Scripts were composed in Python (version 3) and were run on Jupyter Notebook with 

Tensorflow platform on the Google Cloud Platform. Machine learning packages included 

scikit-learn and keras.

Results

Across the entire dataset, 35639 inpatients were identified who received a known QT­

prolonging medication and had an ECG within 24 hours following administration. Of those, 

4558 (12.8%) patients developed a QTc > 500 ms by ECG, while the QTc of the remaining 

31081 (87.2%) patients remained < 500 ms for the duration of the encounter. The age and 

gender did not significantly differ between the groups, and the prevalence of cardiovascualr 

risk factors for each group is displayed in Table 1.

We examined various re-sampling methods to address the substantial degree of imbalance 

in the dataset of cases compared to controls. We found that random oversampling had the 

overall best performance by F1 score and AUC (F1 0.404; AUC 0.71) as compared with 

other re-sampling methods including SMOTE, random undersampling, and ADASYN (Table 

2).

Using random oversampling on the training data, we tested the accuracy of various 

classification models on the held-out dataset. A deep neural network provided superior 

classification for development of a long QT interval compared with other methods with an 

F1 score of 0.404 and an AUC of 0.71 (Figure 1). The F1 Score is a measure of the weighted 

average of precision and recall which takes into account false positives and false negatives 
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and is a more useful measurement with uneven distributions. Prediction accuracy for other 

methods is listed in Table 3.

In order to rescale predictions, we performed logistic regression of predicted risk of diLQTS 

on actual outcomes in a 50% split sample from the testing set, in which the model 

parameters were β0 (intercept) −3.7 ± 0.1, β1 4.1 ± 0.2, pseudo-R2 0.15, P < .0001, and 

then applied the predicted probabilities from that model to the predictions in the other 50% 

sample for Platt rescaling. After recalibration, no subject had over 0.5 predicted probability 

of diLQTS, with overall better calibration than the original model (Figure 2). We then 

applied Youden’s J method to identify the optimal cutoff probability for classification to 

both the original and resampled probabilities, and found that while rescaling had decreased 

the optimal cutoff from 0.43 to 0.14, there was no difference in the discrimination based on 

AUC (0.71 for both). When applied to the testing set, this cutpoint yielded a sensitivity of 

71%, specificity 73%, false positive rate 28%, and false negative rate 30% (Figure 3).

Discussion

In this analysis, we examined the prediction of drug-induced QT prolongation using 

harmonized EHR data. We found that a deep neural network with random oversampling 

had the most accurate classification performance and overall performance of the model was 

reasonable.

A frequent challenge encountered in prediction analysis of healthcare data is that of 

an imbalanced class distribution. In this case, the minority outcome (development of a 

prolonged QTc interval), was much less frequent than the majority outcome (no significant 

increase in QTc interval). This imbalance can become a problem when applying machine 

learning methods as some assume a relatively equal balance between classes. This 

assumption leads to a tendency to favor the majority class when applied to an imbalanced 

dataset, which can decrease the accuracy in classifying minority occurrences.37 Because 

this is a frequently encountered scenario, prior groups have studied various rebalancing 

strategies.37,38 Previous analysis has shown an improvement in prediction accuracy when 

applying rebalancing methods, as long as the dataset is sufficient in size.39 Resampling 

techniques including random oversampling of the minority class or random undersampling 

of the majority class each have drawbacks. In the case of oversampling the minority class, 

this can lead to an overfit model, while in the case of undersampling the majority class, there 

is an associated loss of information.40 In our dataset, rebalancing using over-sampling was 

likely the superior method given the increase in power obtained with this method. However, 

no one technique will be optimal for all datasets and it remains essential to evaluate multiple 

rebalancing methods for any given problem.

We found the prediction classification using a deep neural network to be reasonably 

accurate for classifying individuals at risk of developing diLQTS and superior to alternative 

classification methods. Deep learning methods combine multiple layers of neurons allowing 

for nonlinear relationships to be modeled.41 These methods have recently been found 

to have superior prediction capabilities and have been applied to the prediction of 

cardiovascular outcomes and cardiovascular imaging analysis.42,43 Deep learning techniques 
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tend to perform better than other techniques as the amount of data increases which is 

likely why it had superior performance when applied to our large dataset. One of the major 

disadvantages of using a deep learning model is the black-box nature of the method and 

therefore an inability to determine individual predictor variables for the outcome. Therefore, 

this analysis does not inform the identification or modification of risk factors for developing 

drug induced QT prolongation.

We developed our model directly from harmonized EHR data (OMOP common data model). 

Machine learning models are notoriously biased for the population from which they are 

derived, and using a common data model allows for direct application and validation in a 

separate EHR to examine bias. Once verified, this model can also be directly incorporated 

into the EHR as a clinical decision support tool. Based on a given risk probability for 

the development of a prolonged QT interval, patients can be assigned a risk score. This 

information is stored on the EHR backend and is hidden from users but can be incorporated 

into front-end logic in the form of a best-practice advisory (BPA). Identifying individuals 

at increased risk could sway providers to choose an alternative therapy not known to cause 

QT prolongation when possible, or to appropriately monitor patients who must receive a QT 

prolonging agent.

Prior investigators have developed risk scores for predicting diLQTS, but this is the first to 

our knowledge to utilize deep learning methods applied to EHR data.44,45 Prior studies have 

typically focused on a specific patient population, while this study examined all inpatient 

encounters regardless of reason for admission or hospital location. Other groups have used 

machine learning techniques in the prediction of long QT, but have focused on the drug 

molecules rather than individual factors.46

Calibration measures how accurately the model’s predicted probability matches the observed 

probability of the outcome. Prior to recalibration, our model showed generally poor 

calibration, with a pattern indicative of overfitting; however, after Platt rescaling, the 

model had better calibration, and showed satisfactory discrimination. Further evaluation 

of sensitivity/specificity curves identified other potential cutoffs for screening for diLQTS, 

depending on the overall goal and follow-up options (Figure 3). By choosing different 

cutpoints, we can improve the sensitivity of our prediction at the expense of specificity, or 

vice-versa, which can be an important clinical tool. Currently, patients who are initiating 

certain antiarrhythmic agents including Dofetilide and Sotalol are recommended to undergo 

direct observation in the hospital. When trying to determine who may not need such 

intensive monitoring, decreasing false negatives could be favored, and in our model, 

lowering the cutoff to 0.04 for the rescaled prediction yields a sensitivity of 0.94, with 

a decrease in specificity to 0.24 (Figure 3). Alternatively, when identifying outpatients 

initiating more benign agents who might benefit from more intensive monitoring, a higher 

cutpoint with low false positives may be preferred.

There are several limitations of this study. First, it was performed in a single hospital system 

and global applicability is unproven. Validation in novel institutions is necessary prior to 

widespread clinical use. Additionally, the retrospective and observational nature lead to 

many missed cases, as most patients will not have an ECG performed within 24 hours of 
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medication administration. Further, some variables that could potentially be useful for model 

development are excluded if they were not included in the harmonized dataset.

Conclusion

As we enter the age of precision medicine, we work toward the goal of identifying the right 

drug, for the right patient, at the right time. In this investigation, we applied ML models 

to individuals receiving known QT prolonging medications, and found that these methods 

can reasonably predict which patients are susceptible to develop significant drug induced 

QT prolongation. The combination of random overrsampling and a deep neural network 

algorithm provided superior classification compared with other models. Our methodology 

and use of harmonized EHR data is an important step for developing prediction tools that 

can be applied to clinical practice. Future studies should examine whether the addition 

of common genetic variants can improve the prediction accuracy of diLQTS and whether 

clinical decision support tools can be developed to improve the safety surrounding the use of 

medications known to prolong the QT interval.
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Figure 1. 
Receiver operating characteristic for deep neural network.
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Figure 2. 
Original model predictions and predictions following rescaling.
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Figure 3. 
Model performance at varying cutpoints.
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Table 1.

UCHealth Population Baseline Demographics.
a

Control Case

Number (%) 31081 4558

87.22% 12.78%

Age (Mean ± SD) 54.34, 18.81 58.78, 17.45

Female sex (%) 53.3% 52.04%

Hypertension (%) 2.77% 2.41%

Coronary artery disease (%) 1.07% 1.38%

Heart failure (%) 0.3% 0.68%

Diabetes mellitus (%) 0.9% 0.61%

Obesity (%) 0.53% 0.54%

Chronic kidney disease (%) 0.31% 0.41%

a
Diagnoses based on presence of diagnosis code (ICD-10; ICD-9) for each. Hypertension: I10x; 401.x, Coronary artery disease: I25.1; 414.01 

Heart failure: I50.9, 428.0, Type II Diabetes Mellitus: E11.9, 250.00, Obesity: E66.9, 278.0, Chronic kidney disease: N18.9, 585.9.
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Table 2.

Various Resampling Techniques Using Deep Neural Network.

Sampling method F-Score AUC

SMOTE 0.385 0.68

RandomUnderSampler 0.126 0.53

ADASYN 0.35 0.68

RandomOverSampler 0.404 0.71
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Table 3.

Accuracy of ML Methods.

ML method F1-score AUC

Random Forest 0.385 0.69

Logistic Regression 0.364 0.65

Naïve Bayes 0.383 0.67

Deep Neural network 0.404 0.71
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