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Abstract

Despite the decades old knowledge that diabetes mellitus is a major risk factor for cardiovascular 

disease, the reasons for this association are only partially understood. While this association is true 

for both type 1 and type 2 diabetes, different pathophysiological processes may be responsible. 

Lipids and other risk factors are indeed important, whereas the role of glucose is less clear. 

This lack of clarity stems from clinical trials that do not unambiguously show that intensive 

glycemic control reduces cardiovascular events. Animal models have provided mechanisms 

that link diabetes to increased atherosclerosis, and evidence consistent with the importance of 

factors beyond hyperglycemia has emerged. We review clinical, pathological, and animal studies 

exploring the pathogenesis of atherosclerosis in humans living with diabetes and in mouse models 

of diabetes. An increased effort to identify risk factors beyond glucose is now needed to prevent 

the increased cardiovascular disease risk associated with diabetes.

eTOC

Diabetes increases cardiovascular disease risk, but the reasons for the association are not fully 

understood. Here, Eckel et al. review clinical and animal studies that explore the pathogenesis 

of atherosclerosis in the diabetes context. They discuss the need to identify and understand risk 

factors beyond glucose in order to prevent increased cardiovascular disease risk in diabetes.

Address correspondence to: Robert H. Eckel, MD, Divisions of Endocrinology, Metabolism and Diabetes, and Cardiology, University 
of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, (robert.eckel@cuanschutzedu). 

Disclosures
R.H.E. serves as a consultant for Kowa Corp. and Novo Nordisk. K.E.B. has received research support from Novo Nordisk A/S. I.J.G. 
has served as a consultant for Arrowhead, Akcea and Esperion and received research support for pre-clinical studies from Arrowhead 
Pharma. I.J.G has no disclosures.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review 
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Cell Metab. Author manuscript; available in PMC 2022 August 03.

Published in final edited form as:
Cell Metab. 2021 August 03; 33(8): 1519–1545. doi:10.1016/j.cmet.2021.07.001.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

The association of cardiovascular disease (CVD) and diabetes has been known for decades. 

Despite this, the reasons for this relationship are incompletely understood. Because 

treatment of hyperglycemia alters a number of factors other than circulating glucose levels, 

clinical and experimental data support the hypothesis that factors other than hyperglycemia 

are the culprit. As shown in Figure 1, clinical trials have assessed whether glycemic control 

or reduction of other risk factors, such as LDL-cholesterol (LDL-C), triglycerides (TGs), 

blood pressure, and systemic inflammation prevent incident CVD in humans with diabetes. 

These trials have overwhelmingly shown a beneficial effect of LDL-C lowering, and some 

additional beneficial effect of targeting inflammation, while the roles of glucose reduction, 

TG lowering and blood pressure control are less clear. While an important clinical goal 

is reduction of hyperglycemia to reduce microvascular complications, primarily disease of 

the eyes and kidneys, the influence of glucose reduction in atherosclerotic CVD (ASCVD) 

prevention remains elusive in the majority of patients with type 2 diabetes mellitus (T2DM). 

In this review, we will integrate the clinical and experimental data from animal models 

of diabetes and atherosclerosis, focusing on how diabetes alters the steps involved in 

atherogenesis.

Lesion pathology:

Before considering the clinical trial and experimental data, it is important to review the 

vascular pathology in patients with type 1 diabetes mellitus (T1DM) and T2DM. ASCVD in 

patients with diabetes differs somewhat from that in patients without diabetes, but these 

differences are subtle. Although greater calcification in the arterial media is found in 

patients with diabetes, especially T2DM (Yahagi et al., 2017) (Figure 2), in asymptomatic 

T2DM and T1DM patients examined by multi-slice computerized tomography with similar 

coronary artery calcification scores, patients with T2DM had more extensive ASCVD 

and more non-calcified plaques than those with T1DM (Djaberi et al., 2009). In the 

CACTI (Coronary Artery Calcification in Type 1 Diabetes) study of subjects with T1DM, 

coronary calcification was associated with insulin resistance, a finding typically more 

characteristic of T2DM and poor glycemic control (Bjornstad et al., 2016). This suggests 

that insulin resistance, when present, contributes to vascular disease also in people with 

T1DM (Purnell et al., 2013). However, in general the lesions’ morphology appears similar, 

and the principal effect of diabetes is likely due to acceleration of several of the phases 

of atherogenesis. Unlike renal and retinal microvascular disease, there is no pathological 

fingerprint identifying a distinct atherosclerotic plaque in the setting of diabetes. Post­

mortem coronary plaques from subjects with either T1DM or T2DM tend to have more 

macrophages and larger necrotic core areas, concomitant with increased plaque burden, as 

compared to plaques from subjects without diabetes (Yahagi et al., 2017). These studies also 

suggested that plaques from patients with T1DM or T2DM have more evidence of rupture 

and repair. Overall, these data indicate that the lesions from patients with diabetes might 

progress faster. Risk factors that likely drive this process will be discussed below.

Animal models of diabetes often show accelerated atherogenesis. Most of these models, 

however, are confounded by diabetes-induced changes in circulating lipoproteins. In 
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others, extraordinary levels of circulating cholesterol appear to “swamp out” effects of 

hyperglycemia or defective insulin actions. One approach to illustrate the effects of diabetes 

without severe hypercholesterolemia involves assessment of early lesions, assuming these 

represent the initiation of disease. In one model, insulin-deficient LDL receptor-deficient 

(Ldlr−/−) mice, a model of T1DM without marked hyperlipidemia, had more macrophage 

accumulation in early lesions in (Renard et al., 2004). In the same model, diabetes promoted 

the incidence of hemorrhage and necrotic core expansion in advanced lesions (Johansson et 

al., 2008; Kanter et al., 2019). Increased necrotic core formation, an indication of advanced 

plaques, also occurred in mice with loss of insulin receptors in macrophages (Han et al., 

2006). Greater necrotic core could result from reduced efferocytosis (the clearance of dead 

cells by phagocytes), which was reported in ob/ob mice, a mouse model of T2DM (Li et al., 

2009). Although rodent lesions are generally deficient in calcification, the combination of 

insulin resistance, dietary cholesterol, and saturated fat was reported to create calcification in 

the arterial wall (Nguyen et al., 2013). Thus, animal pathology indicates that diabetes leads 

to faster lesion initiation and progression to more advanced lesions.

Glycemic control and CVD

Human epidemiologic and clinical trial data clearly show that improved glycemic control is 

associated with fewer CVD events in patients with T1DM (Diabetes Control Complications 

Trial/Epidemiology of Diabetes, 2016; Nathan et al., 2005). The Diabetes Control and 

Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/

EDIC) study was and remains a clinical trial on improved glucose control by intensive 

insulin treatment vs. conventional treatment in subjects with T1DM (DCCT) and a 

subsequent observational period (EDIC) following most of the DCCT subjects. The DCCT 

reported a decrease in cardiovascular events (~40%) but this decrease was not statistically 

significant, likely due to the small number of events in this low-risk population. In 

the EDIC observational study the decrease in cardiovascular events became statistically 

significant as more events accrued. However, because more intensive insulin treatment 

affects many parameters, these data cannot provide information on the primary cause of 

greater ASCVD with diabetes. For instance, studies have shown that at the 15.8-year DCCT/

EDIC follow-up period the development of hypertension was decreased in the intensive 

insulin group (de Boer et al., 2008). Moreover, early in the active phase of DCCT there 

were favorable changes in several inflammatory markers (soluble ICAM-1, TNF-R1) with 

intensive glucose control, and decreases in high-sensitivity C-reactive protein (hsCRP; a 

marker of systemic inflammation) in patients in the lower third of weight gain (Schaumberg 

et al., 2005). Epidemiologic data show that a number of risk factors other than glycemic 

control strongly associate with ASCVD risk in patients with diabetes, especially T2DM 

(Orchard et al., 2003). The failure of improved glycemia with insulin, sulfonylureas, and 

DPP4 inhibitors to reduce CVD events in patients with T2DM also implies that factors other 

than hyperglycemia are important, as reviewed (Schmidt, 2019). Moreover, the observation 

that patients with metabolic syndrome who do not yet have an overall increase in circulating 

glucose—levels of glycated hemoglobin (hemoglobin A1c; HbA1c; a marker of glycemic 

control) are not in the currently accepted diabetic range—also have greater CVD risk 

has been interpreted as evidence that hypertension, obesity, dyslipidemia, thrombosis, and 
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inflammation and not glucose levels alone drive CVD risk in patients with T2DM (Haffner 

et al., 2000). This increased CVD might be especially profound in women (Haffner et al., 

1997). As will be reviewed below in more detail, apart from LDL-C lowering, clinical trials 

have failed to provide a clear picture, either because of the many actions of drugs, the many 

causes of atherosclerosis, and/or differences in human response to a specific intervention.

Clinical trials of glucose reduction:

For many years, clinicians accepted that hyperglycemia explained the increased incidence of 

CVD in patients with diabetes. Recent epidemiological data from the Swedish National 

Diabetes Registry in a large cohort of patients with T1DM (n=33,170) support the 

importance of improved glycemic control in reducing acute myocardial infarction, CVD 

death and overall CVD risk (Matuleviciene-Anangen et al., 2017). However, even in patients 

with HbA1c ≤6.9% the relative risk was 2.53, suggesting that factors other than average 

glucose impart vascular toxicity. Further clinical trial support for the adverse effects of 

hyperglycemia in T1DM was obtained in the DCCT/EDIC population and the UKPDS 

population with recent onset of T2DM. The UK Prospective Diabetes Study (UKPDS) was 

a multicenter trial of glycemic and blood pressure lowering therapies in 5,102 patients 

with newly diagnosed T2DM. It ran for twenty years in 23 UK clinical sites and showed 

that improving blood glucose and/or blood pressure control reduced the microvascular 

complications of T2DM (UK Prospective Diabetes Study Group, 1998a). Subsequently, all 

surviving patients were entered into a 10-year, open label monitoring program. Subjects 

in the original intensive treatment group experienced a 15% reduction in cardiovascular 

events, which became statistically significant despite loss of within trial blood glucose and 

antihyperglycemic therapy differences, the so-called legacy effect (Holman et al., 2008). 

However, the predictive association of mean HbA1c on subsequent CVD events in both 

studies was partly dependent on standard risk factors (Diabetes Control and Complications 

Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Research 

Group, 2016; Stevens et al., 2004). Thus, the importance of hyperglycemia per se on CVD 

risk remains unclear (Figure 1, upper left).

The argument that factors other than hyperglycemia fuel the greater incidence of CVD 

events and related mortality in patients with T1DM and T2DM is supported by several 

“failed” clinical trials (Laakso, 2001; Meigs, 2003) briefly summarized in Figure 1, upper 

left. The open label EDIC extension of the DCCT confirmed that better glycemic control 

in subjects with T1DM during the first seven years of intensive glycemic control reduced 

CVD events by over 50%; and this effect was evident despite similar levels of HbA1c in 

the intensive vs. control groups (Nathan et al., 2005). As discussed below, the importance of 

glucose control in this outcome has been challenged.

Of interest, in DCCT/EDIC there was an increased risk for any CVD event and major 

adverse cardiovascular events (MACE) in patients on higher insulin doses but when these 

data were adjusted for systolic blood pressure, pulse rate, HDL-C and LDL C, TG and 

HbA1c, there was no longer a relationship and the risk factor that explained most of 

this confounding was TG (Braffett et al., 2019). Moreover, urinary albumin excretion and 

sustained microalbuminuria or macroalbuminuria were associated with ~2-fold increased 
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risk of any CVD event and rendered the effect of HbA1c no longer significant (Diabetes 

Control Complications Trial/Epidemiology of Diabetes, 2016). Moreover, with age, the 

association of mean HbA1c on subsequent CVD events was increasingly related to favorable 

modification of standard risk factors (Bebu et al., 2017). In another assessment of ASCVD 

in the DCCT/EDIC cohort using carotid intima-media thickness, not CVD events, fibrinogen 

was the best predictor for intima-media thickness progression (Hunt et al., 2015). Thus, 

the benefit of improved glycemic control in the DCCT/EDIC on ASCVD appears to be 

multifactorial, associates with a number of changes, and fails to prove cause and effect.

If glucose control were the primary driver of increased ASCVD in T2DM, then one would 

have expected that insulin, sulfonylureas, and the many other glucose-reducing agents 

would also have reduced CVD events. But several large studies of T2DM have failed to 

prove benefits of glucose reductions in these patients (Figure 1, upper left). These trials 

are difficult to interpret, and the results lend themselves to multiple interpretations. One 

view is that failure of these trials to show CVD benefit from glucose reduction supports 

the hypothesis that factors other than hyperglycemia are more important accelerators of 

ASCVD in these patients. Unlike UKPDS, previously outlined, the Action to Control 

Cardiovascular Risk in Diabetes (ACCORD) study, tighter glycemic control actually led 

to more death (ACCORD Study Group., 2011). Although not a usual focus of discussion, the 

better-controlled subjects in ACCORD had fewer new myocardial infarctions, leading some 

to suggest that better glycemic control reduced atherogenesis while more hypoglycemia in 

the intensive treatment group with underlying CVD increased hypoglycemia, arrhythmic 

events and sudden death (Koska et al., 2018). Of interest, patients in ACCORD who died 

were those in whom reductions in glycemia by more intensive insulin management were less 

likely to be achieved. ADVANCE was a similar cardiovascular outcome trial (CVOT) that 

enrolled 11,140 T2DM patients in 215 collaborating centers in 20 countries from around the 

world. Sulfonylurea-based intensive glycemic therapy targeting a HbA1c ≤6.5% vs. standard 

of care was associated with a 10% reduction in combined microvascular and macrovascular 

events compared with standard therapy, an effect largely driven by a 23% reduction in 

the risk of microvascular events, principally nephropathy (Advance Collaborative Group 

et al., 2008). A subsequent publication by the ADVANCE group presented an additional 

5.4 years of follow-up data. The group assigned to intensive glucose control still failed 

to demonstrate any macrovascular or mortality benefits over the standard therapy group 

(Zoungas et al., 2014). Another large glucose reduction study, VADT, showed an overall 

benefit but only during the prolonged period in which the glycated hemoglobin curves 

were separated (Reaven et al., 2019). In a separate analysis, patients in VADT with low 

coronary artery calcium had the greatest benefit (Koska et al., 2018). Could it be that 

glucose reduction prevents atherosclerosis in patients without severely damaged arteries, but 

does not prevent the final processes that lead to CVD events? Although a meta-analysis of 

these 4 trials did report a modest and statistically significant 9% decrease in death from 

cardiovascular disease, non-fatal myocardial infarction, and non-fatal stroke (Control Group 

et al., 2009), perhaps, with long-standing diabetes, the horse has left the barn and many 

years of hyperglycemic damage is mostly irreversible and not impeded. This could reflect 

arterial stiffness, a signature for vascular aging that in part is explained by glycation-induced 

accumulation of advanced glycation endproducts (AGEs) (Stehouwer et al., 2008).
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Another issue with interpretation of these clinical trials are questions related to the method 

used to track glycemic control. HbA1c reflects average glucose control over a 3-month 

period, but this measurement does not reveal the variation in glucose levels during the day. 

It is argued that glucose variability and/or time in range and not average glucose leads 

to CVD risk. This conclusion is supported by clinical data correlating glucose variability 

with evidence of greater plaque vulnerability (more necrotic core) (Hirsch, 2015). A study 

of coronary calcium also associated higher score with glucose variability (Snell-Bergeon 

et al., 2010a). However, this hypothesis was not supported in PRANDIAL, a study in 

patients with T2DM following an acute myocardial infarction who were randomized to 

three premeal doses of a fast-acting insulin targeting 2-hour postprandial blood glucose to 

<7.5 mmol/L (135 mg/dL) vs. an intermediate-acting insulin twice daily or a long-acting 

insulin once daily targeting fasting/premeal blood glucose <6.7 mmol/L (120 mg/dL) (Raz et 

al., 2009). Although differences in fasting blood glucose were achieved, less-than-expected 

differences in postprandial blood glucose were noted and there was no difference in CVD 

events at a mean of 963 days after randomization. Overall, in patients with T1DM, both 

long term observational and one well done randomized controlled trial provide evidence 

that better control of glycemia, likely associated with improvement in other risk factors, 

is associated with less ASCVD events. However, in patients with T2DM, this relationship 

appears unconvincing.

Anti-diabetic drugs - SGLT-2 inhibitors, GLP-1 receptor agonists, PPARγ receptor agonists 
and metformin:

The requirement that glucose-lowering agents be assessed for CVD safety and efficacy 

has generated large clinical trial data using newer agents approved for the treatment of 

T2DM. These studies have been reviewed in detail elsewhere (Dardano et al., 2020; Lim 

et al., 2018; Rodriguez et al., 2017; Wilcox et al., 2020). Glucagon-like peptide-1 receptor 

agonists (GLP-1 RAs) reduce cardiovascular events, the mechanism proposed is a reduction 

in atherosclerosis. Sodium glucose co-transporter 2 inhibitors (SGLT-2is) also are beneficial; 

however, their major benefits are to reduce hospitalization for heart failure and favorably 

modify the natural history of diabetic nephropathy. In contrast, although DPP4 inhibitors 

raise circulating levels of GLP-1 these agents do not reduce CVD events. It appears that the 

benefits of GLP-1 RAs and SGLT-2is are exclusive of their glucose-reducing actions (Table 

1). This contention is supported by data that demonstrate similar heart failure benefits in 

patients without diabetes (McMurray et al., 2019; Packer et al., 2020).

Another class of agents peroxisome proliferator-activated receptor (PPAR)γ agonists that 

includes pioglitazone,, led to fewer recurrent strokes in a pre-diabetes population (Kernan et 

al., 2016) and reduced CVD events by ~15% in subjects with T2DM and evidence of CVD 

in the PROactive trial (Dormandy et al., 2005). However, the significance of this benefit 

was lost when peripheral vascular disease events were included in the analysis. Of note, in 

PROactive, less than half of the patients were taking statins and average LDL-C was ~110 

mg/dL (2.9 mmol/L). Pioglitazone, however, reduced plasma TG and increased HDL-C 

levels, and reduced blood pressure. In a lower risk population, the TOSCA-IT study use of 

pioglitazone more than sulfonylurea when added to metformin did not provide CVD benefit 

(Vaccaro et al., 2017). A meta-analysis of ten studies using pioglitazone demonstrated a 
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reduced rate of recurrent MACE, myocardial infarction, or stroke (de Jong et al., 2017). 

However, the effect of pioglitazone was not mediated by reductions in glycemia and was 

associated with increases in heart failure; thus, this drug is contraindicated in patients with 

more advanced heart failure (Paneni and Lüscher, 2017).

PPARγ agonists do reduce atherosclerosis in mouse models (Collins et al., 2001; Li et al., 

2000), suggesting a direct vascular or macrophage effect of these drugs. Several attempts 

were made to show similar effects in humans, all were comparisons with sulfonylureas. 

The CHICAGO Trial showed a decrease in carotid-medial thickness in subjects treated with 

pioglitazone rather than a sulfonylurea (Mazzone et al., 2006). The benefits of pioglitazone 

were most evident at the first analysis (24 weeks); the rate of thickening between 48 and 

72 weeks in the treated and untreated groups was parallel. In PERISCOPE, intravascular 

ultrasound analysis of atherosclerosis progression showed a benefit of pioglitazone over 

glimepiride to halt disease progression over 18 months (Nissen et al., 2008). In the short­

term 6-month Pioneer study, with a similar reduction in HbA1c, pioglitazone increased 

HDL-C, increased adiponectin, and reduced carotid intimal medial thickness, hsCRP and 

several other inflammatory markers (Pfutzner et al, 2005).

Another glucose reducing agent, metformin, appears to have some benefit to reduce CVD 

events. While studies with metformin have been small and not of the level of quality of 

many CVOTs, the results of these trials have demonstrated a beneficial effect of metformin 

on CVD (Hong et al., 2013; Kooy et al., 2009; UK Prospective Diabetes Study (UKPDS) 

Group, 1998). It is unknown if these effects are mediated by glucose lowering, weight loss, 

or other factors

A direct role of hyperglycemia in animal models of diabetes and atherosclerosis is likewise 
uncertain:

Diabetes and atherosclerosis have been studied in a variety of animal models (Table 2). The 

data here are also conflicted as some models have reported more atherosclerosis or more 

inflammatory plaques, while others have shown no effect or, in some cases, less disease in 

the presence of hyperglycemia and diabetes.

Before reviewing the studies, we should note that many animal models of diabetes and CVD 

are extreme. Human ASCVD and diabetes complications occur over years, longer than the 

relative lifespan of most experimental animals. Thus, studies of insulin-deficient diabetes 

are often performed with levels of hyperglycemia in excess of those found in even poorly 

controlled human diabetes. Moreover, the levels of cholesterol in Western diet-fed or high 

cholesterol-fed LDL receptor-deficient or apoE-deficient mice (the most common models of 

atherosclerosis) exceed those found in humans except for rare dyslipidemic patients. Studies 

of models with lower cholesterol levels produce small lesions that some have argued are 

more akin to fatty streaks than true atherosclerosis. Nevertheless, the role of these models 

is to analyze effects in an experimentally tractable period allowing investigators to uncover 

pathological mechanisms, some of which are not valid for humans.

Mouse models reproduce many diabetes-mediated processes that are thought to accelerate 

atherosclerosis, as reviewed in (Hsueh et al., 2007). The most commonly used mouse 
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diabetes models are those created by either genetic (Akita), T-cell mediated, or chemical 

destruction of pancreatic islet β cells (streptozotocin). In these models, the insulin 

deficiency is often severe and more akin to T1DM than T2DM. Moreover, with the usual 

atherosclerosis-prone models—LDL receptor-deficiency or apoE deficiency—circulating 

cholesterol levels are higher with diabetes when the mice are fed a fat-enriched diet. This 

increase is either due to changes in lipoprotein production and removal or to greater food 

intake that accompanies the diabetes (Hsueh et al., 2007; Jun et al., 2011). Mouse models in 

which circulating cholesterol levels are excessively elevated often fail to show the effects of 

diabetes on lesion development even in the presence of marked hyperglycemia (Hsueh et al., 

2007; Reaven et al., 1997; Schmidt, 2019), perhaps because the extremely high cholesterol 

levels generated with these knockouts drive rapid atherogenesis and obliterate contributions 

of other physiologically meaningful processes. An example is the study by Biddinger et al., 

who reported that loss of insulin receptors in the liver led to more atherosclerosis, likely 

caused by the accompanying hyperlipidemia (Biddinger et al., 2008). Similarly, infusion 

of insulin into apoE-deficient mice reduces atherosclerosis, but this benefit is associated 

with reduced circulating lipoprotein levels (Park et al., 2018). Some interventions do 

increase lesion size in hypercholesterolemic models of diabetes. Expression of the enzyme 

aldose reductase, which leads to aberrant metabolism of glucose, increases lesions in both 

diabetic LDL receptor-deficient (Vikramadithyan et al., 2005) and apoE-deficient models 

(Vedantham et al., 2011). A recent study using repetitive peritoneal infusion of glucose to 

reproduce glucose variability showed accelerated atherosclerosis associated with increased 

myelopoiesis (Flynn et al., 2020). These effects were prevented by deletion of the glucose 

transporter GLUT1 in myeloid cells, an effect attributed to reduced glucose uptake in 

neutrophils (Flynn et al., 2020). These two studies support a role for glucose in promoting 

atherosclerosis in mouse models.

The obvious candidates responsible for greater CVD with diabetes are hyperglycemia and 

defective insulin action, leading for example to dyslipidemia or direct pro-atherogenic 

processes in vascular cells. The receptor for advanced glycation endproducts (RAGE) is 

activated in the presence of diabetes and other inflammatory diseases, and infusion of 

a soluble portion of RAGE prevents atherosclerosis in hypercholesterolemic mice with 

diabetes (Park et al., 1998). However, RAGE is activated by many ligands, including 

several damage-associated molecular pattern molecules, such as S100 calprotectins and 

high-mobility group box1 (HMGB1) proteins (Palanissami and Paul, 2018), which serve an 

important role even in the absence of hyperglycemia. An effect of RAGE deletion therefore 

does not necessarily suggest a direct effect of hyperglycemia.

Cellular processes mimicking those of increased glucose uptake in lesion cells were 

studied by cell type-selective overexpression of the glucose transporter GLUT1 in mice. 

Overexpression of GLUT1 in myeloid cells increased glucose uptake but did not increase 

atherosclerosis in LDL receptor-deficient mice fed a low-fat diet or a high-fat high­

carbohydrate diet, which caused insulin resistance (Nishizawa et al., 2014; Wall et al., 

2018). When GLUT1 was overexpressed in smooth muscle cells (SMCs) (Wall et al., 

2018), a worsening of atherosclerosis was evident, but only in mice fed the high-fat high­

carbohydrate diet, which was associated with myelopoiesis. In the absence of myelopoiesis, 
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SMC overexpression of GLUT1 had no effect. Thus, forcing increased glucose uptake into 

myeloid cells or SMCs is not sufficient to promote atherosclerosis.

The role of insulin signaling in CVD was studied by deletion of the insulin receptor in 

various vascular cell types. Deletion of insulin receptors in endothelial cells increased 

atherosclerosis (Rask-Madsen et al., 2010), suggesting an anti-atherogenic effect of insulin 

in endothelial cells. Insulin signaling modulates endothelial cell function, both by altering 

vascular growth and vascular reactivity (King et al., 2016). Deletion of insulin receptors 

in hematopoietic cells or myeloid cells produced discrepant effects on atherosclerosis in 

two different studies (Baumgartl et al., 2006; Han et al., 2006). Loss of insulin receptors 

in SMCs reduced intimal thickening and SMC proliferation after vascular injury (Li et 

al., 2019). Increased SMC proliferation in lesions, mediated by insulin signaling, might be 

beneficial if it results in thickening of the fibrous cap.

Mouse models to replicate the biology of T2DM are limited. High-fat high-carbohydrate 

diets create insulin resistance, dyslipidemia, and increase atherosclerosis in Ldlr−/− mice 

(Subramanian et al., 2008; Wall et al., 2018). A combination of high-fat diets to create 

obesity along with a milder degree of islet destruction by streptozotocin has been used 

to study lipoprotein metabolism (Yu et al., 2017) (Table 2). In general, when corrected 

for circulating cholesterol levels, an independent effect of insulin resistance on vascular 

disease is not apparent. Another commonly used model of T2DM is that due to defects in 

leptin signaling (ob/ob and db/db), such mice have been used for atherosclerosis studies. 

Despite the obesity and hyperglycemia, leptin defective mice have reduced vascular disease 

attributed to less lymphocyte-driven inflammation (Taleb et al., 2007). Thus, definite 

evidence on whether hyperglycemia accelerates atherosclerosis in mouse models of T2DM 

in addition to the dyslipidemia and increased inflammation in these models awaits further 

studies and better models.

Another approach to assessing the effects of diabetes on arteries without the overwhelming 

effects of severe hypercholesterolemia involves assessment of lesion regression after 

transplantation of arteries into non-hypercholesterolemic mice or after genetic or 

pharmacologic reduction of circulating cholesterol (Fisher, 2016). Regression, defined as 

the reduction in macrophages and lipid but not lesion size, is defective in mice with 

streptozotocin-induced insulin deficiency (Parathath et al., 2011; Yuan et al., 2018) and is 

discussed in more detail below. With current clinical practice to markedly reduce circulating 

LDL-C levels in patients with established or high risk of ASCVD, there is a greater focus on 

the repair/regression of established lesions. With marked LDL-C reduction, vascular lesions 

in most patients either do not expand or regress and become more stable (Nicholls et al., 

2011). Despite marked cholesterol reduction, patients with diabetes (mostly T2DM) still 

have more CVD events (Dash and Leiter, 2019). Limited data in humans also support the 

concept that diabetes prevents regression (Nicholls et al., 2008).

Together, these studies show that loss of insulin receptors in cells in lesions alters the 

atherogenic process in cell type-specific manners, reflecting beneficial effects of insulin 

in endothelial cells and possibly SMCs, whereas a clear direct role for hyperglycemia is 

lacking. It is possible that hyperglycemia has more direct effects in endothelial cells, as 
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suggested by Brownlee and colleagues (Shah and Brownlee, 2016), and that these effects 

explain why microvascular complications are more easily prevented by improved glucose 

control than is ASCVD.

LDL and CVD in diabetes

Although diabetes leads to several alterations in lipoprotein metabolism (Figure 3), the 

relationship primarily of LDL to CVD events has been most studied. Adults with T1DM 

most often have normal levels of total cholesterol, TG, HDL-C and LDL-C and in some 

cohorts have more favorable lipid and lipoprotein profiles (Wadwa et al., 2005). However, 

when T1DM is poorly controlled, plasma TG levels are increased (Ginsberg, 1991). In 

the EURODIAB study, patients with T1DM and CVD had lower levels of HDL-C and 

higher TG levels than those without CVD (Koivisto et al., 1996). In the T1DM Pittsburgh 

Epidemiology of Diabetes Complications study, higher levels of TG and LDL-C and lower 

levels of HDL-C were associated with greater risk for CVD and mortality (Orchard et al., 

2001). In DCCT/EDIC, despite relatively normal levels of plasma lipids and lipoproteins, 

there remained a relationship between TG and LDL-C and any CVD event (Diabetes 

Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications 

(DCCT/EDIC) Research Group, 2016).

Patients with T2DM do not typically have higher LDL-C levels than age and weight 

matched controls, but they do have more dyslipidemia. These patients are typically obese 

and have a higher prevalence of the metabolic syndrome, including elevated prevalence 

of plasma TG >150 mg/dL and reduced HDL-C (levels <40 for men and <50 mg/dL for 

women) (Alexander et al., 2003; Isomaa et al., 2001). The prevalence of dyslipidemia in 

patients with T2DM is in the range of 40–60% (Eriksson et al., 2011; Scott et al., 2011). The 

lipid and lipoprotein abnormalities correlate with increased CVD risk (Eckel, 2007; Eckel 

et al., 2005; Wadwa et al., 2005). While LDL-C levels are typically normal, LDL particles 

are frequently small and dense, which some have argued makes them more atherogenic 

(Lamarche et al., 1997). It is possible that small dense LDL penetrate the arterial wall 

more easily, stick to matrix with a greater affinity, or are more susceptible to oxidation. 

Others have questioned the independent contribution of small dense LDL to atherosclerotic 

risk (Sacks and Campos, 2003). Because small dense LDL have less cholesterol, greater 

atherogenicity could indicate that apoB rather than cholesterol drives disease, as larger LDL 

have a greater cholesterol content.

Numerous LDL-C lowering CVOTs have been implemented in patients with T2DM using 

statins and to a lesser extent ezetimibe and proprotein convertase subtilisin/kexin type 9 

inhibitors (PCSK9is). The benefits of statin-induced LDL-C reduction have been repeatedly 

seen and if anything, are greater in subjects with diabetes (Figure 1, upper right). Although 

post-hoc analysis of the 4S trial data demonstrated that CVD events, CVD mortality 

and all-cause mortality were similar in non-diabetic CVD patients with and without the 

metabolic syndrome, based on expected higher risk in patients with the metabolic syndrome 

a higher absolute risk reduction was seen in the metabolic syndrome patients (Pyörälä et 

al., 2004). In most of the LDL-C lowering CVOTs with statins, relative risk reduction in 

patients with T2DM was similar to that in patients without T2DM (Kearney et al., 2008). 
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Of great interest, however, in the IMPROVE-IT trial where statin-treated patients were 

randomized to ezetimibe, a drug that reduces cholesterol absorption in the small intestine, 

vs placebo and then stratified by the TIMI (thrombolysis in myocardial infarction) risk 

score for a second CVD event, all patients with T2DM demonstrated benefit with ezetimibe/

simvastatin regardless of risk. In contrast, among patients without T2DM, only those with a 

high-risk score experienced a significant (18%) relative reduction in the composite of CVD, 

myocardial infarction, and ischemic stroke; patients without T2DM at low or moderate risk 

demonstrated no benefit with the addition of ezetimibe to simvastatin (Giugliano et al., 

2018).

LDL-C can also be reduced by inhibitors of PCSK9. PCSK9 inhibitors act in large part 

by increasing hepatocyte cell surface levels of LDL receptors, which leads to increased 

LDL removal. In FOURIER, the PCSK9 inhibitor evolocumab reduced CVD outcomes 

consistently in patients with and without T2DM (Sabatine et al., 2017). In ODYSSEY 

OUTCOMES, alirocumab produced similar relative reductions in the primary endpoint, 

a composite of death from coronary heart disease, nonfatal myocardial infarction, fatal 

or nonfatal ischemic stroke, or unstable angina requiring hospitalization, over a gradient 

of glycemic categories, but a greater absolute reduction was experienced in patients with 

T2DM than in those with prediabetes or normoglycemia (Ray et al., 2019). Considering 

T2DM as a major ASCVD risk factor, analysis of CVOTs by absolute risk rather than 

relative risk reduction is best; thus, LDL-C lowering improves outcomes more in patients 

with T2DM than in patients without T2DM.

Although the contribution of plasma lipids to the increased risk of ASCVD in patients 

with T1DM is likely, this hypothesis remains unproven by RCTs (de Ferranti et al., 

2014). Differences in CVD rates among countries, however, support a role for lifestyle 

and circulating lipids and CVD risk in T1DM. The modification of LDL-C with lifestyle and 

medication is consistent with many current standards of medical care for patients living with 

T1DM (American Diabetes Association, 2021).

LDL-lowering in animal models of diabetes consistently reduces atherosclerosis, but 
residual risk remains.

In the absence of increases in LDL, hyperglycemia is not sufficient to induce atherosclerosis, 

as is the case e.g., in C57BL/6 mice, which have very low LDL-C levels and carry most of 

their cholesterol in HDL. Also, in swine, which exhibit a human-like LDL-rich lipoprotein 

profile, diabetes does not enhance atherosclerosis in the absence of fat-feeding, which 

increases LDL-C levels (Gerrity et al., 2001).

Studies of atherosclerosis regression in rodents, all by reduced circulating LDL-C, permit 

investigators to assess effects of diabetes on arteries exclusive of effects on circulating 

lipoproteins. Defective regression due to diabetes, i.e., the reduction in vascular macrophage 

content after marked cholesterol reduction, is readily demonstrable in atherosclerotic arteries 

transplanted into mice with diabetes with low LDL-C levels (Nagareddy et al., 2013; 

Parathath et al., 2011), or by restoration of apoE in apoE-deficient mice (Gaudreault et 

al., 2013). Glucose reduction via treatment with an SGLT-2i improves lesion regression 

(Nagareddy et al., 2013), as does an increase in HDL-C (Barrett et al., 2019). In contrast, 
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the diabetes-mediated defect in regression is exacerbated by increasing aberrant glucose 

metabolism via genetic expression of human aldose reductase (Vedantham et al., 2011; 

Vikramadithyan et al., 2005; Yuan et al., 2018). Analysis of lesion macrophages in these 

models shows that diabetes increases the population of inflammatory cells and decreases the 

number of less inflammatory/reparative macrophages within plaques (Barrett et al., 2019). 

Loss of RAGE signaling also improves regression (Senatus et al., 2020), whereas high-fat 

diet alone does not affect regression (Willecke et al., 2015). Whether this process mimics 

human lesion biology (postulated to involve vascular injury followed by repair), and whether 

arteries, like other wounds, do not heal as well under the condition of diabetes remain to be 

determined.

Together, these results indicate that diabetes does not accelerate atherosclerosis under 

conditions in which LDL-C levels are very low. This is consistent with the marked 

effectiveness of LDL-lowering drugs to prevent CVD in human subjects with diabetes 

(Figure 1, upper right). However, the lesion regression studies in mouse models also 

shows that diabetes impedes lesion regression induced by aggressive lipid lowering, perhaps 

mirroring the residual CVD risk in statin-treated human subjects with diabetes.

Triglycerides and CVD in diabetes

Limited human data support a role for reduction of circulating TG levels in CVD prevention 

in patients with T2DM (Figure 1, lower left). However, population studies strongly support a 

relationship between genes that regulate TG levels and the lipolysis reaction via lipoprotein 

lipase (LPL) and CVD risk (Chait et al., 2020; Ference et al., 2019). CVOTs in patients 

with T2DM have utilized fibrates (fibric acid derivatives), niacin and high doses of omega-3 

fatty acids to lower plasma TGs. Fibric acid drugs lower plasma TG levels by activating 

PPARs (Staels et al., 1998). Although the overall effect of fibrates on CVD risk in T2DM 

has so far been largely negative, subgroup analysis of several fibric acid trials, including 

ACCORD (Elam et al., 2017), suggest benefit in patients with diabetes and increased TGs 

(>200 mg/dL) and reduced HDL-C (<35 mg/dL). Another trial to address this subgroup 

is PROMINENT, which has randomized hypertriglyceridemic patients with T2DM and 

reduced levels of HDL-C to the selective PPARα modulator (SPPARM-α), pemafibrate vs. 

placebo (Pradhan et al., 2018). This trial should report in 2022. After a number of studies 

using a combination of low doses of omega-3 fatty acids failed to show benefit of TG 

lowering, the REDUCE-IT study performed in a T2DM-enriched population with increased 

TG levels demonstrated that 4 grams daily of icosapent ethyl (eicosapentaenoic acid; EPA) 

reduced CVD events by ~25% (Bhatt et al., 2019). The reasons for this benefit are debated, 

however, larger doses of EPA only were utilized, and higher levels of plasma EPA were 

achieved (Jo et al., 2021) as compared to previous negative omega-3 fatty acid trials. 

Because reductions in clinical events did not track with TG reductions and plasma levels 

of TGs are not directly pro-atherogenic, it may be that the primary actions of this therapy 

were on inflammation or thrombosis (Mason and Eckel, 2021). Similarly, despite only a 

9% reduction in TGs, the Japanese Eicosapentaenoic Acid (EPA) Lipid Intervention Trial 

(JELIS) also noted reduced CVD events in an EPA-treated Japanese population (Yokoyama 

et al., 2007). More recently the STRENGTH trial, which included 70% of patients with 

T2DM, showed that carboxylic omega-3 fatty acids (EPA + DHA; docosahexaenoic acid) 
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failed to demonstrate any CVD benefit despite a 19% reduction in TGs (Nicholls et al., 

2020). In analyzing omega-3-fatty acid CVOTs it is important to assess outcomes based on 

the dose of omega-3-fatty acid used. Most studies used low doses (1 gram or less) and this 

level has minimal or no effect on triglyceride levels. The REDUCE-IT and STRENGTH 

trials used high doses (4 grams). Another explanation for this discrepancy has been the 

placebo chosen in REDUCE-IT. In REDUCE-IT, LDL-C and hsCRP levels increased 

in the placebo group treated with mineral oil, however, evidence to support this effect 

appears somewhat weak (Olshansky et al., 2020). Therefore, either the trial designs, patient 

populations, the amount of EPA, or an adverse effect of combining EPA with DHA led to 

dissimilar outcomes in REDUCE-IT and STRENGTH (Jo et al., 2021). The disappointing 

results of STRENGTH are consistent with previous trials using TG-lowering fibric acid 

derivatives (fibrates) and niacin in statin treated patients (Ganda et al., 2018). Therefore, 

definitive CVOTs showing that TG reduction benefits patients with diabetes are required.

Fasting TG levels correlate with the elevation of TG after a meal - postprandial lipemia. 

Chylomicrons and their partially digested products termed remnants comprise much of this 

increase (Figure 3). Remnants, likely not chylomicrons, are atherogenic. Although increased 

non-fasting TG levels track with atherosclerosis risk in several studies (Jackson et al., 

2012), assessment of postprandial lipemia does not always predict risk (Kats et al., 2017). 

In this regard, one study of postprandial lipemia did not correlate with CVD in patients 

with diabetes, all of whom had greater lipemia than the control group (Reyes-Soffer et 

al., 2009). The reason for greater postprandial lipemia in patients with diabetes appears 

to be defective lipolysis, leading to more non-TG-hydrolyzed chylomicrons and VLDL 

(Sondergaard et al., 2017). The cholesterol content of TG-rich lipoprotein remnants might 

explain why hypertriglyceridemia in patients with diabetes is associated with increased 

ASCVD (Tannock and Chait, 2004). If remnants do indeed contribute to the increased CVD 

risk in diabetes, this could also explain the lack of benefit of plasma TG lowering and CVD 

risk; because the much larger chylomicrons and VLDL contain more TG/particle than do 

remnants. Of interest, patients with dysbetalipoproteinemia, a condition due to increased 

circulating remnant lipoproteins, develop peripheral vascular disease (PVD) in addition to 

coronary artery disease (Feussner et al., 1993). PVD is markedly increased in patients with 

diabetes. Perhaps remnants are especially toxic to vessels other than the coronaries.

The composition of circulating lipoproteins may also define their atherogenicity. Following 

the observation that genetic defects in APOC3 were associated with lower TG levels and 

apparent CVD protection (Pollin et al., 2008), two recent studies explored the relationship 

of this protein to incident ASCVD in two different cohorts of humans with T1DM (Basu 

et al., 2019; Kanter et al., 2019). In both studies, even without overt hypertriglyceridemia, 

serum apoC3 levels predicted an increased risk of ASCVD. ApoC3 is a small apolipoprotein 

associated with TG-rich lipoproteins (chylomicrons, VLDL and their remnants), HDL and 

some forms of LDL. ApoC3 prevents clearance of TG-rich lipoproteins and their remnants. 

Importantly, apoC3 levels are suppressed by insulin (Chen et al., 1994), and increased serum 

apoC3 levels associate with insulin resistance in subjects with T1DM (Buckner et al., 2021). 

Apoc3 therefore appears to be particularly relevant as a CVD risk factor in diabetes and 

insulin resistant states.
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Together, these studies suggest that increased TG-rich lipoproteins associate with CVD 

risk in people with diabetes, but the atherosclerotic lipoprotein particle is likely to be the 

lipoprotein remnant.

Animal models support an important role for lipoprotein remnants in diabetes-accelerated 
atherosclerosis, whereas large TG-rich lipoproteins are not overtly pro-atherogenic:

While more recent studies have focused on mice due to the development of genetic 

modification technology, early investigators utilized the cholesterol-fed rabbit as a model 

of atherosclerosis (Table 2). Alloxan treatment to create insulin deficiency in rabbits 

led to marked hyperlipidemia with increases in both TG and cholesterol. Surprisingly, 

atherosclerosis decreased in diabetic dyslipidemic rabbits, as compared to non-diabetic 

controls (Duff and McMillan, 1948). Rabbit dyslipidemia with diabetes appears to be due 

to an exaggeration of the reduction in LPL activity that occurs with diabetes (Nordestgaard 

and Zilversmit, 1988) and which prevents the conversion of nascent TG-rich chylomicrons 

and VLDL into remnants. These very large chylomicron-like particles are believed to be 

too large to enter the arterial wall (Nordestgaard et al., 1988). Thus, it is likely that both 

lipoprotein size and its apoprotein complement modulate the ability to interact with and 

eventually cross the endothelial wall barrier. Aside from illustrating the importance of 

lipoprotein size, this study showed that despite the greater inflammatory milieu due to 

diabetes, atherosclerosis does not develop without excess circulating levels of lipoproteins 

that have the potential to enter the artery and lead to lipid deposition.

Mouse models of marked hypertriglyceridemia have thus far failed to show major effects 

of hypertriglyceridemia on vascular lesions (Basu and Bornfeldt, 2020), consistent with 

human studies. Loss of LPL and its binding protein glycosylphosphatidylinositol-anchored 

high-density lipoprotein-binding protein 1 (GPIHBP1) lead to marked hypertriglyceridemia 

and small plaques in older mice (Weinstein et al., 2010; Zhang et al., 2008); however, 

atherosclerosis was far less severe than that seen with hypercholesterolemic models, 

supporting the hypothesis that large TG-rich lipoprotein particles, without generation of 

remnants, are not particularly atherogenic. More recently, hypertriglyceridemia induced 

by LPL-deficiency was shown to not affect lesion regression in non-diabetic mice. In 

these LPL-deficient mice, lesion regression proceeded normally despite the resultant 

hypertriglyceridemia and reduced HDL-C (Josefs et al., 2021). Importantly, in this model 

as well as in the GPIHBP1-deficient model, hypertriglyceridemia is due to loss of LPL 

activity, which results in increased circulating levels of nascent TG-rich lipoproteins, but 

not remnants. Conversely, increased clearance of TG-rich lipoproteins and their remnants 

results in improved atherosclerosis in mice with diabetes. In one study, treatment of mice 

with diabetes by overexpression of the VLDL receptor to lower plasma TGs reduced arterial 

hemorrhages (Johansson et al., 2008); a reduction in a pathology associated with disrupted 

plaques which might have resulted from TG reduction. Furthermore, the composition of 

lipoproteins appears to markedly affect their atherogenicity. ApoC3 silencing completely 

prevented the effects of diabetes on both early and more advanced lesions, despite the fact 

that the mice were severely hyperglycemic (Kanter et al., 2019), demonstrating that apoC3 is 

a causal mediator of diabetes-accelerated atherosclerosis, consistent with its role as a CVD 

predictor in humans with T1DM (Basu et al., 2019; Kanter et al., 2019). The mechanism 
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whereby apoC3 increases atherosclerosis in mice with diabetes is likely related to the slower 

clearance of remnant lipoproteins and increased trapping of these particles in the arterial 

wall at sites susceptible to lesion formation (Kanter and Bornfeldt, 2020). Consistently, a 

transgenic mouse carrying human apoC3 show increased atherosclerosis concomitant with 

increased levels of VLDL and LDL (Masucci-Magoulas et al., 1997). Whether the apoC3 

affects lipoprotein interaction with the vessel wall or other factors remains to be determined.

Together, the findings in animal models are consistent with human studies and suggest that 

remnants of TG-rich lipoprotein particles which are enriched in cholesterol, rather than 

plasma TGs, are likely to contribute to the increased CVD risk in diabetes. Therapies that 

target clearance of remnants, such as apoC3 inhibition might therefore be more effective 

than drugs that target TGs. Future CVOTs are needed to address this possibility.

HDL and CVD in diabetes

The failure of clinical interventions along with the lack of a direct correlation of HDL­

regulating genes with CVD has led to a reassessment of the relationship of HDL and 

atherosclerosis. Thus, while HDL-C levels indicate CVD risk, whether HDL itself plays a 

biological role in changing atherogenesis remains uncertain. HDL-C levels are reduced by 

parameters such as hypertriglyceridemia, obesity, and insulin resistance that also associate 

with CVD risk. This literature is very extensive, and readers can consult several recent 

reviews for more detail (Madsen et al., 2021; Ouimet et al., 2019).

HDL levels and composition have been cataloged in patients with diabetes. HDL-C levels 

are often reduced in patients with T2DM and are a criteria for diagnosis of the metabolic 

syndrome (reviewed in (Bjornstad and Eckel, 2018)). This reduction might result from 

insulin resistance, as insulin treated T1DM patients tend to have greater HDL-C levels 

(Eckel et al., 1981). In contrast to the usual reduced CVD risk associated with increased 

HDL-C, dramatic increases in HDL-C (>80 mg/dL) in women with T1DM were associated 

with greater CVD (Costacou et al., 2011). Could this reflect a defect in HDL actions?

HDL function, rather than HDL-C levels, has been associated with better prediction of 

CVD risk in some but not all studies (reviewed in (Soria-Florido et al., 2020)). The 

most widely promoted benefit of HDL is that it mediates reverse cholesterol transport, 

which allows return of excess cholesterol from tissues, including arterial tissue, to the 

liver. Processes responsible for reverse cholesterol transport have all been studied in the 

setting of diabetes. The ability of HDL to promote transfer of intracellular cholesterol out 

of cultured macrophages, termed cholesterol efflux capacity (CEC), is used as a surrogate 

for in vivo reverse cholesterol transport. A number of studies suggest that both T2DM 

(He et al., 2020) and T1DM (Ganjali et al., 2017) lead to HDL with a reduced ability to 

mediated CEC. Defective CEC could also result from defective expression of the primary 

cholesterol transporters, ABCA1 and ABCG1. Indeed, diabetes reduces ABCA1 expression 

in macrophages from mice with diabetes (Tang et al., 2010). ABCG1 also is reduced in 

macrophages from patients with T2DM (Mauldin et al., 2008). Furthermore, HDL might 

affect immune regulation (Gaddis et al., 2018), bone marrow proliferation (Yvan-Charvet 

et al., 2010), macrophage inflammatory phenotypes (Fotakis et al., 2019), compensation for 
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oxidized lipids (Rosenson et al., 2016), and response to infections (Guo et al., 2013). One 

study showed that T2DM impaired the anti-oxidant effects of HDL and its ability to prevent 

the stimulatory effect of LDL on monocyte migration (Morgantini et al., 2011). Whether 

diabetes alters some of these other HDL functions and whether such effects are responsible 

for greater vascular disease risk is unknown.

Mouse models have used overexpression and knockout of apoAI, the major protein of 

HDL, to investigate the role of HDL in atherosclerosis. Overexpression of apoAI reduces 

atherosclerosis in mice (Rubin et al., 1991). Ectopic expression of apoAI in transplanted 

bone marrow also reduced atherosclerosis in mice (Tavori et al., 2015). Moreover, apoAI and 

increased HDL levels improve lesion regression (Feig et al., 2011) and mitigate the defect in 

atherosclerosis regression in diabetic mice (Barrett et al., 2019). In contrast, low HDL fails 

to alter repair of vascular lesions (Josefs et al., 2021). Moreover, apoAI knockout effects on 

atherosclerosis were shown to be strain specific (Sontag et al., 2014). Overall, the role HDL 

contributes to atherosclerosis in diabetes remains uncertain.

Diabetes, CVD risk and inflammation

Inflammation is an unlisted component of the metabolic (insulin resistant) syndrome 

(Dandona et al., 2004; Grandl and Wolfrum, 2018) and its relationship to insulin resistance 

is considered central to T2DM pathophysiology. There may be a role in T1DM also 

(Buckner et al., 2021; Schram et al., 2005; Snell-Bergeon et al., 2010b). One study of 

obese subjects noted that the persistent elevation of circulating levels of hsCRP accompanied 

sustained T2DM after weight loss (McLaughlin et al., 2002). In T2DM, markers of 

inflammation have been linked to CVD (Jager et al., 2000) and CVD death (Sanchez et 

al., 2004; Soinio et al., 2006). Patients with T1DM in the intensive arm of the DCCT 

demonstrated increased hsCRP levels along with weight gain (Schaumberg et al., 2005). 

Thus, the benefits of intensive glycemic control may not be uniform. In addition, in 

adolescents with T1DM inflammation is related to the progression of arterial stiffness 

(Alman et al., 2018).

Extracellular matrix metalloproteinases (MMPs) are proteases that degrade extracellular 

matrix and are increased by diabetes and pro-inflammatory mediators, however their 

contribution to increased ASCVD in patients with diabetes remains uncertain. In a 

prospective study of patients with T1DM (n=337), increased plasma levels of MMP-1, 

MMP-2 and MMP-3 associated with CVD events and all-cause mortality (Peeters et al., 

2017). But, in another study (EURODIAB) higher plasma levels of MMP-2, MMP-3 and 

MMP-10 were not associated with CVD (Peeters et al., 2015). Another line of evidence 

that links inflammation in T1DM to CVD are levels of HMGB1, released by necrotic or 

immune cells, that elicit a pro-inflammatory response. Over a median follow-up of 12.3 

years in patients with T1DM, higher levels of HMGB1 independently associated with CVD 

and all-cause mortality (Nin et al., 2012a), but not in the EURODIAB population (Nin et al., 

2012b).

As discussed above, hsCRP has been used an indicator of inflammatory risk exclusive of 

hyperlipidemia. Patients with obesity, metabolic syndrome and T2DM have elevated hsCRP. 
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The JUPITER study (Ridker et al., 2008), which showed that rosuvastatin reduced CVD 

events in subjects with hsCRP >2 mg/L, was enriched in subjects with metabolic syndrome 

so that >40% of participants were classified as having metabolic syndrome. The benefits of 

statin therapy in these subjects were most dramatic when associated with hsCRP reduction. 

These findings raise some interesting questions. Did cholesterol reduction alone reduce 

inflammation, did the statin have anti-inflammatory effects, or did the hsCRP indicate 

reduced vascular disease? Of note, the more potent cholesterol reduction with PCSK9 

inhibition has limited effects on hsCRP (Ruscica et al., 2019). Several reasons could account 

for this failure: 1) in most trials PCSK9 reduction was on top of statin therapy, 2) hsCRP 

reductions might primarily occur at higher LDL-C levels, 3) statins might have non-LDL 

reducing “pleiotropic” actions.

Two agents that reduce inflammation have been shown to reduce CVD events in subjects 

with a history of CVD (Figure 1, lower right). Colchicine, a drug used for decades to 

treat arthritic conditions, reduced recurrent CVD events in the Low-Dose Colchicine for 

Secondary Prevention of Cardiovascular Disease (LoDoCo) (Nidorf et al., 2020) and the 

Cardiovascular Outcomes Trial (COLCOT) (Tardif et al., 2019) trials. Both trials had a 

relatively low number of subjects with diabetes, <20%. A second successful method to 

reduce CVD events used canakinumab, a monoclonal antibody that blocks IL-1β from 

activating its receptors (Ridker et al., 2017). Trial inclusion in the Canakinumab Anti­

inflammatory Thrombosis Outcome Study (CANTOS) required an increased hsCRP > 2 

mg/L. Although ~40% of the subjects had T2DM and 49% had prediabetes, the benefits of 

treatment were similar to those in the normoglycemic group with increased hsCRP (Everett 

et al., 2018). One might conclude that CANTOS does not support a greater benefit for 

reducing inflammation in patients with diabetes and CVD. However, an explanation for the 

increased hsCRP in the CANTOS subjects without T2DM is unclear but suggests other 

etiologies. Before prescribing anti-inflammatory agents for all patients with diabetes and 

CVD, we should note that a number of studies using other presumed anti-inflammatory 

agents, including methotrexate (Ridker et al., 2019), inhibitors of lipoprotein-associated 

phospholipase A2 (O’Donoghue et al., 2014), and salsalate (Hauser et al., 2016) have not 

shown benefit. Moreover, in CANTOS, the downside of suppressing inflammation was an 

increase in infectious complications. We should also note that inflammation is a broad term, 

which encompasses many different inflammatory pathways. It is possible that if specific 

inflammatory mediators associated with CVD in diabetes could be identified, more effective 

strategies for CVD prevention could be developed.

Suppression of inflammatory processes is beneficial in animal models of diabetes­
exacerbated atherosclerosis:

Many studies have investigated the role of different inflammatory pathways in mouse 

models of diabetes and atherosclerosis progression and regression (Figure 2). A particularly 

important mediator of inflammatory activation in diabetes appears to be the damage­

associated molecular pattern protein S100A9 and its binding partner S100A8 (Averill et 

al., 2012). S100A9 levels are increased in myeloid cells in mouse models of diabetes 

(Johansson et al., 2008; Nagareddy et al., 2013) and has been shown to interact with 

both toll-like receptor 4 (TLR4) and RAGE to promote inflammatory effects in the 
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setting of diabetes (Figure 2). Lesion macrophages in mice with diabetes are characterized 

by increased S100A9 immunoreactivity (Johansson et al., 2008), and in diabetic lesion 

regression models lesion macrophages express elevated levels of S100a8 mRNA as well as 

iNOS and IL-1 and CHOP, a marker of ER stress (Parathath et al., 2011). Interaction of 

S100A8/A9 with RAGE results in increased myelopoiesis and thrombocytosis associated 

with worsened atherosclerosis in mice with diabetes (Kraakman et al., 2017; Nagareddy 

et al., 2013) as well as increased microcalcification of lesions (Kawakami et al., 2020). 

S100A8/A9 interaction with TLR4 has been shown to contribute to granulopoiesis (Sreejit et 

al., 2020). Whereas elevated lipid levels and cholesterol accumulation in myeloid progenitor 

cells promote myelopoiesis (Tall et al., 2012), hyperglycemia also appears to play a role 

because myelopoiesis can be suppressed by an SGLT-2i (Nagareddy et al., 2013) and 

intermittent hyperglycemia increases S100A9 levels in neutrophils (Flynn et al., 2020). 

Other studies have implicated changes in bone marrow endothelial cells in mediating 

diabetes-induced myelopoiesis (Hoyer et al., 2020). Intriguingly, the effects of diabetes 

on myelopoiesis are prevented by elevating HDL levels, suggesting that the mechanism 

whereby diabetes increases myelopoiesis can be blunted by cholesterol efflux (Barrett et al., 

2019) and therefore is dependent on lipid alterations. Other studies have placed NETosis 

upstream of release of S100A9 from neutrophils and subsequent granulopoiesis (Nagareddy 

et al., 2020) (Figure 2). NETosis is a form of neutrophil death characterized by release 

of decondensed chromatin and granular materials to aid in the trapping and killing of 

pathogens. Indeed, neutrophil extracellular traps are now known to promote macrophage 

inflammatory phenotypes and impair lesion regression in mice with diabetes (Josefs et al., 

2020).

However, diabetes promotes atherosclerosis also in the absence of myelopoiesis (Kanter 

et al., 2019), indicating that whereas increased myelopoiesis can worsen atherosclerosis 

in the setting of diabetes in mouse models, it does not fully explain the increased 

atherosclerosis. In part, this might be explained by the ability of S100A8/A9 to induce 

TLR4-dependent NLRP3 inflammasome activation and IL-1β release by neutrophils (Sreejit 

et al., 2020). Systemic inhibition of the NLRP3 inflammasome was recently described 

to prevent increased atherosclerosis in mice with diabetes (Sharma et al., 2020). In this 

context, it is interesting that another modulator of diabetes-induced inflammatory processes 

in myeloid cells, long chain acyl-CoA synthetase 1 (ACSL1), has been shown to be required 

for diabetes-accelerated atherosclerosis (Kanter et al., 2012). ACSL1 is induced by TLR4 

activation and acts to synthesize acyl-CoAs from free fatty acids in myeloid cells. Deletion 

of ACSL1 in myeloid cells also prevents NLRP3 inflammasome activation (Kalugotla et 

al., 2019), raising the possibility that NETosis, S100A8/A9, ACSL1 induction and NLRP3 

inflammasome activation act along the same pathway to worsen atherosclerosis in diabetes, 

at least in mouse models.

The role of myelopoiesis in CVD risk associated with diabetes in humans is so far unclear, 

although CVD has been shown to associate with elevated levels of circulating neutrophils 

and plasma S100A9 levels in humans with T1DM (Nagareddy et al., 2013). Together with 

the positive effects of IL-1β blockade in humans with diabetes shown by CANTOS, these 

results suggest a treatable inflammatory component to CVD in both humans and animal 

models.
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Other possible atherogenic associations of diabetes and ASCVD

Lifestyle:

A heart-healthy lifestyle including nutrition, physical activity and absence of tobacco 

products is associated with reduced CVD risk in individuals with and without diabetes 

(Van Horn et al., 2016; Young et al., 2016). There are several aspects to consider for 

both nutrition and physical activity. For nutrition, these aspects relate to dietary quality 

and quantity, for physical activity, to duration and intensity. Dietary patterns include very 

low fat, very low carbohydrate, Mediterranean-style, DASH (Dietary Approaches to Stop 

Hypertension), low glycemic index and many more. Data exist only showing effects of 

the Mediterranean-style diet on CVD outcomes in patients with T2DM. A meta-analysis 

including 41 reports (3 RCTs + 38 cohorts) showed a beneficial effect of the Mediterranean 

diet on total CVD incidence and total myocardial infarction incidence (Becerra-Tomás et 

al., 2020). Moreover, in those prospective studies adherences to the dietary pattern reduced 

CVD mortality, coronary artery disease (CAD) incidence and mortality, stroke incidence, 

stroke mortality and myocardial infarction incidence in patients with T2DM. Although 

to be addressed more thoroughly, the Look AHEAD study examined the importance of 

excess body fat in patients with T2DM by randomizing overweight and obese patients to 

an intensive lifestyle intervention that promoted weight loss or to obtaining diabetes support 

and education only. Although many biomarkers for CVD and quality of life were improved 

in the intervention group, weight loss failed to reduce the rate of CVD events (Wing et al., 

2013). Thus, the composition of the diet and its effects on circulating lipoproteins may be 

more important than effects on overall body weight and insulin resistance.

Dietary patterns may also affect CVD risk in T1DM. In 136 youth with T1DM enrolled 

in an 18-month behavioral nutrition intervention trial, the Healthy Eating Index-2015 scale 

failed to associate with CVD markers but whole grain intake was inversely associated with 

total cholesterol and diastolic blood pressure, and a greater increase in whole fruit intake 

was associated with lower diastolic blood pressure (Sanjeevi et al., 2018). Without surprise, 

added sugar was associated with higher TG, and saturated fat with higher levels of HDL-C. 

Of important note, the DCCT/EDIC trial demonstrated that with more intensive glycemic 

management in patients with T1DM, weight gain was accompanied by a modest increase in 

CVD risk factors (Purnell et al., 2013). However, although CVD events over a median of 

26 years were reduced in the patients randomized to intensive glycemic control (Sousa et 

al., 2019), total CVD events increased in the intensive group that gained the most weight, 

becoming equivalent to events in those in the conventional group (Purnell et al., 2017).

Randomized trials examining the impact of sedentary behavior and higher levels of physical 

activity on CVD events are lacking in T2DM. Unequivocally, sedentary behavior is a risk 

factor for new onset T2DM (Patterson et al., 2018), however, the benefit of increasing 

amounts of aerobic physical activity and cardiorespiratory fitness on CVD events in patients 

with T2DM is only suggested by changes in CVD risk factors including glycemia, lipids, 

endothelial function, oxidative stress, myocardial function and adiposity but not outcomes 

(Boulé et al., 2003; Miele and Headley, 2017).
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Randomized trials are also lacking for physical activity and CVD in T1DM, but several 

lines of evidence indicate beneficial effects of activity in patients with T1DM. Greater 

exercise predicted fewer CVD events in adult patients with T1DM (n=4,306) (Vistisen et 

al., 2016). In T1DM patients from FinnDiane (n=2,180), a 10-year follow-up demonstrated 

that patients with higher levels of total and higher intensity physical activity had fewer 

CVD events, an effect that remained significant after adjusting for classic CVD risk factors 

(Tikkanen-Dolenc et al., 2017). In EURODIAB (n=1,880), a longitudinal analysis revealed a 

borderline inverse relationship between moderate or vigorous physical activity and all-cause 

mortality (men and women combined) and incident CVD (women only).

Overall, it stands to reason that a heart-healthy lifestyle is beneficial to reduce CVD risk in 

people living with T1DM or T2DM (as well as in those without diabetes).

Smoking:

It has been known for years that smoking is a risk factor for coronary heart disease in 

patients with diabetes (Fagard and Nilsson, 2009). However, the relative risk has not been 

shown to be greater in people with diabetes than in subjects without diabetes. Because of 

underlying added risk for CVD related events and mortality in patients with diabetes, the 

absolute risk of smoking is typically higher.

Obesity:

Excess body fat, and in particular its distribution, relates to risk for T2DM and CVD 

(Bjorntorp, 1992). Well-accepted is the added CVD risk of increased central/abdominal/

visceral obesity with or without T2DM (Albu et al., 2010; Neeland et al., 2019). Sarcopenic 

obesity also predicts CVD in patients with T2DM (Fukuda et al., 2018). To some extent, this 

may relate to the protective effect of greater subcutaneous adipose tissue in the lower body 

on CVD risk relative to greater central or visceral adipose tissue distribution in patients with 

T2DM (Vasan et al., 2018). In an Asian T2DM cohort (n=13,278), when adjusting for BMI, 

patients with the highest quintiles of waist circumference experienced the highest all-cause 

and CVD mortality versus those with the lowest quintiles (Vasan et al., 2018).

Look AHEAD was the only major RCT to examine the impact of an intensive lifestyle 

approach on reducing CVD events in patients with T2DM (Look AHEAD Research Group 

et al., 2013). The trial included 5,145 overweight or obese patients with T2DM with a 

lifestyle intervention noted above. The primary outcome was a composite of death from 

cardiovascular causes, nonfatal myocardial infarction, non-fatal stroke, or hospitalization for 

angina. Although the maximum follow-up was 13.5 years, the trial was stopped at 9.6 years 

by the data and safety monitoring board based on futility. Importantly, the outcome was 

accompanied by many favorable results including more reductions in weight (6.9 vs. 3.6 

%), glycated hemoglobin and most CVD risk factors, except for LDL-C. Thus, despite the 

metabolic benefit of this small amount of sustained weight loss, reduced CVD events were 

not seen. Other approaches wherein there is greater weight loss may result in CVD benefit.

Presently there are no RCTs that have demonstrated a benefit of bariatric/metabolic 

surgery on CVD events in patients with T2DM. However, a few observational studies have 

demonstrated an association between metabolic surgery and reduction in MACE (Sjöström 
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et al., 2014). Recently, in an extensive experience in 287,438 patients with diabetes and 

obesity at the Cleveland Clinic between 1998 and 2017, 2,287 patients who underwent 

metabolic surgery were matched retrospectively 1:5 to nonsurgical patients with a similar 

history, diabetes, and obesity (BMI ≥30) (Aminian et al., 2019). Over a median follow-up 

of 3.9 years, 385 patients in the surgical group and 3,243 patients in the nonsurgical 

group experienced a primary end point defined as extended MACE (i.e., a rate of 30.8% 

in the surgical group and 47.7% in the nonsurgical group). Yet, because these data were 

observational, they remain hypothesis-generating only. A RCT is desperately needed to 

confirm this favorable outcome.

Chronic kidney disease:

Abnormalities such as renal failure and hypertension associate with diabetes CVD risk. 

Chronic kidney disease (CKD) defined here as Stage 3 or a GFR ≤60 mL/min per 1.73 m2 

is present in ~25% of patients with T2DM and has been known for decades to contribute 

to CVD risk in patients with diabetes (Go et al., 2004; Kannel and McGee, 1979a; Noth 

et al., 1989). An uncertainty remains as to whether CVD risk factors, e.g. hypertension, 

dyslipidemia, inflammation and the pro-thrombotic state that are associated with CKD 

provide the link to CVD or whether there is more to this relationship than risk factors 

(Kosmas et al., 2018). And, in general, macroalbuminuria is a major contributor to these 

CVD risk factors. In the Action in Diabetes and Vascular disease, preterAx and diamicroN­

MR Controlled Evaluation (ADVANCE) study, T2DM patients with both urinary albumin 

>300 mg/g and eGFR <60 ml/min per 1.73 m2 at baseline had a 3.2-fold higher risk for 

CVD events compared with patients with neither of these risk factors (Ninomiya et al., 

2009). However, increasingly appreciated is that non-albuminuric renal impairment is an 

important phenotype, particularly in women with T2DM (Pugliese et al., 2014). CKD in 

patients with T1DM is also changing in terms of clinical phenotype, i.e., progressive decline 

and in many patients in the absence of albuminuria (Krolewski, 2015; Penno et al., 2017). 

The Joslin 50-Year Medalist study of patients with longstanding T1DM (n=752) and a 

replication cohort (n=675) from FinnDiane was used to examine the association of CKD and 

proliferative retinopathy with CVD (Gordin et al., 2018). A strong association of CKD with 

CVD was noted; however, the absence of retinopathy in people with T1DM and CKD was 

associated with a decreased prevalence of CVD, suggesting that common protective factors 

for retinopathy and CVD may exist.

Blood pressure:

Hypertension and increases in pulse pressure are common in patients with T2DM and 

T1DM with increasing BMI, and central adiposity. In T2DM, the prevalence of hypertension 

is nearly 70% (Ferrannini and Cushman, 2012); in adults with T1DM, EURODIAB found 

24% were hypertensive (Collado-Mesa et al., 1999) whereas the CACTI Study found a 

prevalence of 43% (Maahs et al., 2005). In T2DM patients studied in the UKPDS, the 

risk of CVD was strongly associated with increased systolic blood pressure (Adler et al., 

2000). In T1DM, hypertension in the absence of nephropathy correlated with carotid artery 

plaque (Distiller et al., 2006) and was the only metabolic syndrome component associated 

with coronary artery calcification (Rodrigues et al., 2011). Moreover, in the Pittsburgh 

Epidemiology of Diabetes Complications study, hypertension was a major contributor to 
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coronary heart disease mortality, morbidity, and lower extremity arterial disease (Forrest et 

al., 2000). Together, these studies show that hypertension contributes to CVD risk in the 

presence of diabetes, as it does in individuals without diabetes.

As of 2017, 38 blood pressure-lowering RCTs in 61,038 patients with T2DM had been 

reviewed by Thomopoulos et al. (Thomopoulos et al., 2017). Although blood pressure 

lowering is capable of reducing all types of cardiovascular outcomes in hypertensive patients 

with and without diabetes, relative risk reductions of coronary heart disease events and 

all-cause death are significantly greater in patients with than without diabetes and absolute 

risk reduction is about twice as large in patients with diabetes as in those without (Blood 

Pressure Lowering Treatment Trialists Collaboration, 2014; Thomopoulos et al., 2014). 

However, in this review, we chose to select 15 trials that each included >1,000 T2DM 

patients with hypertension, most of whom had ASCVD or were at high risk for CVD 

events at baseline, a strategy consistent with treatment of CVD risk factors in patients 

with diabetes only, without comparisons to patients without diabetes. Pharmaceuticals used 

for blood pressure lowering included diuretics, ACE inhibitors or angiotensin II receptor 

blockers, calcium channel blockers and/or beta blockers. Typically, one drug was tested, 

and results were compared with existing therapy with or without a targeted blood pressure 

reduction established. In general, the amount of blood pressure lowering by drug(s) related 

to the baseline extent of elevation in systolic blood pressure. For the most part the primary 

outcome was a standard 3-point MACE of myocardial infarction (fatal or non-fatal), stroke 

(fatal or non-fatal) and CVD death. A minority of studies included heart failure and/or 

progression of chronic kidney disease in the primary outcome.

As shown in Figure 1 (lower center), only 2 trials successfully achieved a positive outcome, 

Heart Outcomes Prevention Evaluation (HOPE) (Heart Outcomes Prevention Evaluation 

Study Investigators, 2000) and Hypertension Optimal Treatment (HOT) (Zanchetti et al., 

2003) with UKPDS demonstrating a reduction in stroke but not myocardial infarction (UK 

Prospective Diabetes Study Group, 1998b). For all trials, the average reduction in systolic 

blood pressure in the intervention vs. control group was a difference of 7.7 mm with a high 

variance of 6.9 mm (SD).

Data analyzed from 25 RCTs wherein 174,235 individuals with T2DM were randomized 

to a variety of more recently approved glucose lowering medications including DPP-4 

inhibitors, GLP-1 receptor agonists and SGLT2 inhibitors, showed a modest average 

systolic/diastolic blood pressure difference of −1.4/−0.4 mm and there was no difference 

in the CVD outcomes before and after adjustment for this very small difference in blood 

pressure (Thomopoulos et al., 2019).

Recently, the Antihypertensive Long-term Use Evaluation (VALUE) trial compared 

cardiovascular outcomes in hypertensive patients with T2DM to all high-risk hypertensive 

patients (Olsen et al., 2021). In the high-risk hypertensive patients more frequently achieving 

BP <140/90 mm, but not <130/80 mm, a beneficial effect on overall and cause-specific 

cardiovascular outcomes was experienced in T2DM patients; this was similar to that seen 

in the general high-risk hypertensive population. Intensive systolic blood pressure lowering 

compared with a systolic blood pressure control goal <120 vs. <140 mm was beneficial 
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in patients without T2DM in SPRINT (Systolic Blood Pressure Intervention Trial), similar 

reduction did not benefit subjects with T2DM in ACCORD BP (Action to Control Cardio­

vascular Risk in Diabetes Blood Pressure). Additional analyses revealed that intensive 

systolic blood pressure lowering decreased the risk of CVD events and all-cause mortality 

similarly in SPRINT and ACCORD BP but only in participants randomized to standard 

glycemic control. Why subjects in the intensive glycemic control did not benefit is unclear 

(Beddhu et al., 2018). These findings support the current ACC/AHA guidelines of a systolic 

blood pressure goal of <130 mm in patients both with and without T2DM.

Hypercoagulability:

Diabetes is a pro-thrombotic state (Biondi-Zoccai et al., 2003; Rollini et al., 2013; Sobel et 

al., 2003). Reviewing the many CVOTs addressing coagulation in patients with T2DM is 

beyond the scope of this review article, but we list recommendations resulting from these 

trials based on current guidelines. Current guidelines from the American Heart Association 

(Arnett et al., 2019) recommend aspirin therapy in patients with diabetes and existing 

ASCVD and for patients with diabetes who have multiple CVD risk factors (Lin et al., 2019; 

Majithia and Bhatt, 2018; Zhao et al., 2020). The American Diabetes Association (ADA) 

also states that dual antiplatelet therapy with low-dose aspirin and a P2Y12 inhibitor is 

reasonable for a year after an acute coronary syndrome with possible benefit beyond this 

period (American Diabetes Association, 2021). The ADA states that combination therapy 

with aspirin plus low dose rivaroxaban (Factor Xa inhibitor) should be considered for stable 

coronary and/or peripheral vascular disease and in patients with low bleeding risk.

Genetic markers:

It remains uncertain whether genetic markers for atherosclerosis predict ASCVD 

development in patients with diabetes. In an eight-year cohort study, subclinical 

atherosclerosis measured by coronary artery or abdominal aortic calcium score, common 

and internal carotid artery intima-media thickness, and ankle-brachial index failed to 

demonstrate any relationship between a 62 loci-based T2DM risk score and subclinical 

atherosclerosis (Younis et al., 2013). However, other lines of evidence have been more 

informative. Using a genetic predisposition risk score (GPS) based on 36 established 

independent diabetes-predisposing variants, each additional variant increased risk for CVD 

by 3% with a maximum odds ratio of 1.47 comparing the fourth with the first quartile of 

GPS (Qi et al., 2013). Genome-wide association study (GWAS) data were used to examine 

genetic correlations between a number of phenotypes and showed a modest correlation 

between T2DM and CAD (Qi et al., 2013). Of additional interest is that variation in 

the GLP-1 receptor influences CAD risk, supporting the use of GLP-1 receptor agonists 

for CAD prevention (Scott et al., 2016). Moreover, GPS data from the ACCORD trial 

demonstrated that the CC rs57922 variant predicted a 22% increase in plasma levels of 

active GLP-1 in the intensive glycemic management arm and was associated with significant 

reduction in CVD mortality (Shah et al., 2018). A similar effect of this variant was not seen 

in the standard treatment group. Using a 201-variant polygenic risk score for coronary artery 

disease in DPP participants, investigators found that although subjects in both lifestyle and 

metformin groups had greater improvement in the majority of recognized CVD risk factors 

compared with placebo, the benefit of the interventions was unrelated to the polygenic risk 
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score. Thus, at the present time diabetes-related preventive interventions improve CVD risk 

regardless of genetic risk for CVD.

Lipoprotein(a) [Lp(a)] is a well-established genetic marker for ASCVD in the general 

population and in patients with diabetes (Wilson et al., 2019). Its relationship to ASCVD 

in patients with diabetes, however, appears to be confounded because lower Lp(a) levels 

associate with greater risk of diabetes (Schwartz et al., 2021; Ward et al., 2021).

Sex:

The relative risk of CVD in female patients with diabetes is higher because women without 

diabetes are the comparator. However, absolute CVD remains higher for men with diabetes 

versus men without diabetes. A series of studies document this higher relative risk for 

women with diabetes (predominantly T2DM) including Evans County, Framingham, and 

Rancho Bernardo (Heyden et al., 1980; Kannel and McGee, 1979b; Wingard et al., 1983). A 

more recent meta-analysis including data from 64 cohorts (n=858,507) and 28,203 incident 

CAD events demonstrated the relative risk for CVD in women with diabetes was 2.82 and 

in men with diabetes 2.16 (Peters et al., 2014). This approximate 40% increased relative 

CVD and related-death in women vs. men with T2DM remains unexplained, yet again, the 

absolute risk of CVD and related death was still higher in men with T2DM (Peters et al., 

2014).

In T1DM the incident risk ratios for CVD events in women and men range from 3.0–7.7 

and 2.3–3.6, respectively (Peters et al., 2014; Soedamah-Muthu et al., 2006). However, in 

general, these differences in CVD incidence and mortality between genders dissipate with 

age (Lee et al., 2015). Importantly, the increased relative risk in women vs. men with 

T1DM was associated with less favorable CVD risk factors in adolescent girls than boys 

with T1DM (Brown et al., 2016), an association also manifested in women with T1DM 

(Cree-Green et al., 2016; Millstein et al., 2018).

An interesting comparison of preclinical CVD (common carotid and femoral intimal media 

thickness) demonstrated that atherosclerotic burden was greater in women with T1DM with 

greater body fat and central distribution whereas biomarkers reflecting glucose and lipid 

metabolism were more associated with CVD in women with T2DM (Pithova et al., 2016). 

Overall, the sex-based differences in CVD risk in women with diabetes appear to be largely 

dependent on expressing data as relative risk versus absolute risk.

Race:

Race/ethnicity has a major influence on CVD risk in patients with diabetes. The increased 

prevalence of CVD in African Americans versus Caucasians relates to both conventional and 

non-traditional risk factors including disparities in health care (Conway et al., 2012). Blacks 

have more insulin resistance, which includes components of the metabolic syndrome - 

obesity, glucose intolerance, T2DM and hypertension, with hypertension alone contributing 

to more CVD risk, including stroke, heart failure and kidney failure (Osei and Gaillard, 

2017). In addition, markers of inflammation, e.g., hsCRP, oxidized LDL, Lp(a) and 

plasminogen activator-1 are increased in Blacks (or African Americans).
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Native Americans such as Alaskan Natives not only have a higher prevalence of T2DM, 

but T2DM is a leading cause of death in this population, mostly from CVD (Espey et 

al., 2014). In Hispanics, the prevalence of T2DM is also higher than the national average 

(Aguayo-Mazzucato et al., 2019). Although the prevalence of obesity and related CVD risk 

factors is higher in these populations, genetics, in addition to cultural factors and disparities 

in health care delivery, contribute to the higher CVD risk (Lee et al., 2020; Poudel et al., 

2018; Rodriguez et al., 2014). T2DM associated with CVD risk is also common among 

Asian Indians with both genetic predisposition and modifiable risk factors such as diet, 

physical activity, obesity, and smoking (O’Keefe et al., 2016).

Inflammation appears to contribute to CVD mortality in Blacks with T1DM (Roy et 

al., 2016). Although T1DM is less prevalent in Blacks than in Caucasians, following 

hospitalization in one study Blacks experienced an 11.4% readmission rate for CVD events 

within 6 years, with older age, increased BMI, higher diastolic BP, proteinuria, retinopathy 

and depression as predictors (Roy et al., 2007). African Americans with T1DM also have 

reduced levels of adiponectin, which likely contribute to their increased insulin resistance 

(Osei et al., 2005). Little is known about the relationship between T1DM and CVD in other 

populations.

CONCLUSIONS AND FUTURE AREAS OF RESEARCH

Observations in human populations and the effects of treatments have guided experimental 

approaches to understanding the effects of diabetes on CVD. Diabetes accelerates 

progression of atherosclerotic lesions and leads to defects in remodeling of plaques after 

cholesterol reduction. Newer classes of drugs approved for glucose lowering in diabetes 

reduce CVD, but the mechanisms of this benefit do not appear to be explained by glucose 

lowering. Whereas the effects of glucose lowering on CVD outcomes is unclear, LDL-C 

lowering convincingly reduces CVD risk associated with diabetes. Both T1DM and T2DM 

associate with greater vascular inflammation. This could result from defective insulin 

action or other factors associated with the metabolic environment surrounding diabetes. 

It is still unclear if strategies to target inflammatory pathways will provide sufficient long­

term cardioprotection without adverse effects in subjects with diabetes. Abnormalities in 

circulating lipoproteins, including an increase in VLDL and lipoprotein remnants during 

fasting and after a meal, and greater amounts of apoC3, which slows clearance of such 

lipoproteins, likely increase pathology.

Because diabetes, especially T2DM but increasingly also T1DM, associates with 

dyslipidemia, hypertension, and obesity, in the clinic the benefits of better glycemic 

control can be obscured by the continuing detrimental effects of CVD risk factors. Animal 

models provide a route to isolate the pathology and elucidate mechanisms. We can and 

should answer the following questions: 1) Is glycemic control more important in CVD 

risk associated with T1DM than T2DM, and if so, why? 2) What is the importance of 

obesity and insulin resistance and associated apolipoprotein and lipoprotein changes versus 

glycemic control? 3) Will inhibiting apoC3 prevent CVD risk associated with T1DM or 

T2DM in humans and if so, does the mechanism involve reduced remnant lipoproteins? 4) 

How important is inflammation and defective tissue repair in diabetic vascular disease in 
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humans, and which specific inflammatory processes are most likely to contribute to CVD 

risk? 5) What are the effects of glycemic variability versus sustained less favorable glycemic 

control on CVD risk factors and incident CVD? 6) What are the roles of underlying genetic 

and environmental factors?

To answer these questions, we need more CVOTs approaching specific pathological 

pathways to segregate the effects of obesity, defective insulin actions, hyperglycemia, 

dyslipidemia, and inflammation. Unbiased analysis of human tissues and circulating proteins 

and metabolites could uncover novel pathological processes leading to greater CVD 

risk with diabetes. The natural history and pathophysiology of ASCVD in patients with 

T1DM needs more attention. Moreover, RCTs to examine the impact of CVD risk factor 

modification on ASCVD events are desperately needed in T1DM. Better models to isolate 

the major components of diabetes need to be developed that allow investigators to assess 

the importance of defective insulin actions in specific cells/tissues, poor glycemic control, 

and obesity in models of atherosclerosis and its repair. In particular, better animal models of 

atherosclerosis associated with T2DM are needed.

Because the goal is to predict and then treat diabetes-associated processes affecting the 

vasculature, approaches likely will differ in individual patients. This will require a method to 

identify the most relevant causes of disease in each person by looking for individual CVD 

risk beyond glucose.
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Figure 1. Cardiovascular outcome trials (CVOTs) and relative risk modification by changes in 
CVD risk factors in patients with T1DM or T2DM.
This review will consider in more depth four factors associated with diabetes and CVD 

risk: glucose reduction (upper left), LDL-cholesterol reduction (upper right), triglycerides 

(lower left) and inflammatory factors (lower right). Major clinical trials are indicated: 

Glycemic control: ACCORD (Gerstein et al., 2011); ADVANCE (Ninomiya et al., 2009); 

VADT (Duckworth et al., 2009); DCCT/EDIC; (Diabetes Control Complications Trial/

Epidemiology of Diabetes, 2016)UKPDS, (Holman et al., 2008); “Elevated” LDL-C: 
4S (Pyörälä et al., 2004); CARDS (Colhoun et al., 2004); MEGA (Tajima et al., 2008); 

HPS (Heart Protection Study Collaborative Group, 2002); LIPID (Keech et al., 2003); 

IMPROVE-IT (Giugliano et al., 2018); FOURIER (Sabatine et al., 2017); ODYSSEY 

OUTCOMES (Ray et al., 2019); Elevated TGs: FIELD (Scott et al., 2009); ACCORD 

(Ginsberg et al., 2010); VA-HIT, (Rubins et al., 1999); STRENGTH (Nicholls et al., 2020); 

JELIS (Yokoyama et al., 2007); REDUCE-IT (Bhatt et al., 2019); Inflammation: CIRT 

(Ridker et al., 2019); CANTOS (Everett et al., 2018); COLCOT (Nidorf et al., 2020). 
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Hypertension: HOPE (Heart Outcomes Prevention Evaluation Study Investigators, 2000); 

HOT (Zanchetti et al., 2003); UKPDS (UK Prospective Diabetes Study Group, 1998b); 

ACCORD (Accord Study Group et al., 2010); ACTION (Elliott et al., 2011); ADVANCE 

(Patel et al., 2007); EUROPA (Daly et al., 2005); FEVER (Zhang et al., 2011); PRoFESS 

(Yusuf et al., 2008); RENAAL (Brenner et al., 2001); ROADMAP (Haller et al., 2011); 

TRANSCEND (Telmisartan Randomised AssessmeNt Study in ACE iNtolerant subjects 

with cardiovascular Disease Investigators et al., 2008); IDNT (Lewis et al., 2001); INVEST 

(Bakris et al., 2004); INSIGHT (Mancia et al., 2003). Created with BioRender.com.
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Figure 2. Morphological features of lesions of atherosclerosis are similar in the presence and 
absence of diabetes, but diabetes enhances lesion progression and slows regression.
This schematic representation shows an intermediate lesion in the absence of diabetes (left) 

and a more advanced lesion in the presence of diabetes (right). The more advanced lesion 

in the setting of diabetes is characterized by an increased abundance of macrophages and 

lymphocytes (T cells), and an increased prevalence of necrotic cores, which can make the 

lesion more unstable and prone to rupturing or fissuring, and subsequent platelet activation 

and thrombus formation. The increased inflammatory state of the lesion in diabetes has been 

attributed, in part, to monocytosis and neutrophilia, leading to increased levels of monocytes 
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and neutrophils in circulation and in the lesion, as well as activation of neutrophils and 

release of the damage-associated molecular pattern proteins S100A8 and S100A9 and 

neutrophil extracellular traps (NETs) through NETosis. Moreover, T2DM is often associated 

with increased medial calcification. The boxes on the right show mechanisms of worsened 

atherosclerosis and impaired lesion regression based on data from mouse models of diabetes. 

These mechanisms, which may include increased trapping of remnant lipoproteins in 

the artery wall (top) and increased neutrophil activation, toll-like receptor 4 and RAGE 

activation (bottom), are discussed in the text. Created with BioRender.com.
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Figure 3. Effects of diabetes on lipoprotein metabolism.
Insufficient insulin action in adipose tissue results in increased adipose tissue lipolysis 

and reduced fatty acid uptake, which in turn increases fatty acid delivery to the liver and 

hepatic VLDL production. Hepatic uptake of remnants as well as de novo lipogenesis 

also contribute to increased hepatic TG levels and VLDL production. Insufficient hepatic 

insulin action causes an elevation of APOC3 levels, which reduce lipolysis and hepatic 

clearance of VLDL and chylomicrons, derived from the intestine after a meal, and their 

remnant lipoprotein particles (RLPs). Together, these effects result in a reduced clearance 

rate of triglyceride-rich lipoproteins (VLDL and chylomicrons) and RLPs, including their 

cholesterol content (indicated by a clock). Furthermore, diabetes is associated with reduced 

lipoprotein lipase (LPL) activity, primarily in adipose tissue and heart, further contributing 

to the slowed clearance of triglyceride-rich lipoproteins. When LPL activity is severely 

inhibited, which is observed primarily in T2DM, HDL levels are reduced as a result. 

Moreover, human studies demonstrate that chylomicron secretion is increased in T2DM. 

Together, the overproduction and reduced clearance of triglyceride-rich lipoproteins and 
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their remnants are features of both T2DM and poorly controlled T1DM, although the 

relative extent of these processes differ with glycemic control and type of diabetes. Created 

with BioRender.com.
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Table 1.

SGLT-2 inhibitor and GLP-1 receptor agonist glucose lowering CVOTs in diabetes

Trial Primary 
outcome

CVD 
death

Myocardial 
infarction Stroke All-cause 

mortality HHF
Mean 
reduction in 
HbA1c (%)

Effect of 
reduced 
glycemia on 
MACE

GLP-1 RAs

LEADER P=0.01 P=0.007 P=0.046 NS P=0.02 NS −0.40 NA or NS

SUSTAIN-6 P=0.02 NS NS P=0.04 NS NS −1.3 NS

ELIXA NS NS NS NS NS NS −0.27 NS

EXSCEL P=0.06 NS NS NS NS NS −0.53 NA or NS

REWIND P=0.02 NS NS P=0.01 NS NS −0.61 NA or NS

SGLT2 
Inhibitors

EMPA-REG P=0.04 P<0.001 NS HS P<0.001 P<0.001 −0.42 NS

CANVAS P=0.02 NS NS NS NS P=0.002 −0.58 NS

CREDENCE P=0.01 NS NS NS NS P=0.001 −0.25 NA

DECLARE-58 NS NS NS NS NS P=0.005 −0.42 NA or NS

VERTIS NS NS NS NS NS P=0.006 −0.50 NA or NS

HHF, hospitalization for heart failure; NS, not significant; NA, not assessed or published

LEADER (Marso et al., 2016b); SUSTAIN-6 (Marso et al., 2016a); ELIXA (Pfeffer et al., 2015); EXSCEL (Holman et al., 2017); REWIND 
(Gerstein et al., 2019); EMPA-REG (Inzucchi et al., 2018; Zinman et al., 2015); CANVAS (Neal et al., 2017); CREDENCE (Cannon et al., 2020a; 
Mahaffey et al., 2019; Perkovic et al., 2019); DECLARE-58 (Wiviott et al., 2019); VERTIS (Cannon et al., 2020b)
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Table 2.

Animal models of diabetes and atherosclerosis

Mouse models (Hsueh et al., 2007; Wu and Huan, 2007)

Insulin Deficiency

 Streptozotocin

 Akita

 T cell-mediated destruction of islets

Insulin Resistance

 Leptin deficiency

 Leptin receptor deficiency

 Tissue specific insulin receptor deficiency (esp. liver-specific insulin receptor-deficiency)

 High fat diets

 High fructose diets

 Diet-induced obesity and insulin deficiency

Eliminating hyperglycemia

 SGLT-2 inhibitors

Rat models (Islam and Wilson, 2012)

Partial pancreatectomy

 High-fat diet combined with low dose streptozotocin (Azemi et al., 2020)

 Sucrose diet leads to insulin resistance (Plazas Guerrero et al., 2019)

 Goto-Kakizaki (GK) model (Movassat et al., 2007)

Rabbit models

 Alloxan (Bacevic et al., 2020)

Swine models (Sturek et al., 2020)

 Alloxan (Badin et al., 2018)

 Streptozotocin (Shim et al., 2016) no effect on atherosclerosis (Al-Mashhadi et al., 2015)

 Metabolic syndrome high-fat diet increased CAD but in only some strains (Neeb et al., 2010)

Non-human primate models (Clarkson et al., 1985; Pound et al., 2014)

 Streptozotocin (Kim et al., 2016)

 T2DM – Insulin resistance spontaneous in some male rhesus monkeys (Qian et al., 2015)

 High-fat and sucrose and streptozotocin (Lu et al., 2015)
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