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Abstract

Persistent homology (PH) is one of the most popular tools in topological data analysis (TDA),

while graph theory has had a significant impact on data science. Our earlier work introduced the

persistent spectral graph (PSG) theory as a unified multiscale paradigm to encompass TDA and

geometric analysis. In PSG theory, families of persistent Laplacian matrices (PLMs)

corresponding to various topological dimensions are constructed via a filtration to sample a given

dataset at multiple scales. The harmonic spectra from the null spaces of PLMs offer the same

topological invariants, namely persistent Betti numbers, at various dimensions as those provided

by PH, while the non-harmonic spectra of PLMs give rise to additional geometric analysis of the

shape of the data. In this work, we develop an open-source software package, called highly

efficient robust multidimensional evolutionary spectra (HERMES), to enable broad applications of

PSGs in science, engineering, and technology. To ensure the reliability and robustness of

HERMES, we have validated the software with simple geometric shapes and complex datasets

from three-dimensional (3D) protein structures. We found that the smallest non-zero eigenvalues

are very sensitive to data abnormality.
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1. Introduction.

As a branch of discrete mathematics, graph theory focuses on the relations among vertices or

nodes (0-simplices), edges (1-simplices), faces (2-simplices), and their high-dimensional

extensions. Benefiting from the capability of graph formulations that encode inter-

dependencies among constituents of versatile data into simple representations, graph theory

has been regarded as the mathematical scaffold in the study of various complex systems in

biology, material science, physical infrastructure, and network science. However, traditional

graphs only represent the pairwise relationships between entries. Therefore, hypergraphs, a

generalization of graphs that describe the multi-way relationships of mathematical structures

have been developed to capture the high-level complexity of data [2, 6]. Mathematically,

graphs and hypergraphs are intrinsically related to the simplicial complexes, which have

broader use in computational topology. Moreover, many other areas such as algebra, group

theory, knot theory, spectral graph theory (SGT), algebraic topology (AT), and

combinatorics are closely related to graph theory. Among them, the applications of SGT

have been driven by various real-life problems in chemistry, physics, and life science in the

past few decades [37, 41].

In its early days, the spectral graph theory studied the properties of a graph by its graph

Laplacian matrix and adjacency matrix. Later on, developments in the spectral graph theory

involve some geometric flavor. The explicit constructions of expander graphs rely on

studying the eigenvalues and isoperimetric properties of graphs. The discrete analog of

Cheeger’s inequality for graphs in Riemannian geometry is related to the study of manifolds

[11]. Specifically, an eigenvalue of the Laplacian of a manifold is related to the isoperimetric

constant of the manifold, which motivates the study of graphs by employing manifolds.

Benefiting from the increasingly rich connections with differential geometry, the spectral

graph theory has entered a new era [13]. One of the critical developments is the Laplacian on

a compact Riemannian manifold in the context of the de Rham-Hodge theory [26, 48]. The

harmonic part of the Hodge Laplacian spectrum contains the topological information,

whereas the non-harmonic part of the Hodge Laplacian spectrum offers additional geometric

information for shape analysis [12]. Indeed, the connectivity of a graph/topological space

can be revealed from topological invariants. It is well-known that the number of the

eigenvalues in the harmonic spectra of qth-order persistent Laplacian represents the

dimension of persistent q-cohomology of a graph [22, 24, 44], which builds the connection

between spectral graph theory and algebraic topology.

Homology and cohomology are key concepts in the algebraic topology, which were

developed to analyze and classify manifolds according to their cycles. The traditional

homology is genuinely metric-independent, indicating that the geometric information is

barely considered [25]. Therefore, for practical computation, a new branch of algebraic
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topology named persistent homology (PH) [9, 20, 49] is implemented to create a sequence

of topological spaces characterized by a filtration parameter, such as the radius of a ball or

the level set of a real-valued function. As the most important realization of topological data

analysis (TDA) [7, 15, 17], topological persistence has had great success in computational

chemistry [28, 42] and biology [8, 14, 29, 40, 46]. For instance, the superior performance of

using PH features of protein-drug complexes in the free energy prediction and ranking at

D3R Grand Challenges, a worldwide competition series in computer-aided drug design [38],

was a remarkable success for TDA. Additionally, a weighted persistent homology is

proposed as a unified paradigm for the analysis of the biomolecular data system [32].

Recently, we have introduced persistent spectral graph (PSG) theory to bridge persistent

homology and spectral graph theory [44, 44]. The PSG theory extends the persistence notion

or multiscale analysis to algebraic graph theory. A family of spectral graphs induced by a

filtration overcome the difficulty of using traditional spectral graph theory in analyzing

graph structures with a single geometry, giving rise to persistent spectral analysis (PSA).

Additionally, the evolution of the null space dimension of the persistent Laplacian matrix

(PLM) over the filtration offers the topological persistence. Therefore, PSG theory provides

simultaneous TDA and PSA. Specifically, by varying a filtration parameter, a series of qth-

order persistent Laplacians (or q-persistent Laplacian) provide persistent spectra. Notably,

the persistent harmonic spectra of 0-eigenvalues span the null space of the q-th order

persistent Laplacian and fully recover the persistent q-th Betti numbers or persistent

barcodes [10] of the associated persistent homology. Specifically, the number of 0-

eigenvalues of qth-order persistent Laplacian reveals the number of q-cocycles for a given

point-cloud dataset. Moreover, the additional geometric shape information of the data will

be unveiled in the non-harmonic spectra. For example, the spectral gap (the difference

between the moduli of the first two smallest eigenvalues of a Laplacian) reveals the energy

difference/density changes between the ground state and first excited state of a system/

dataset. Additionally, the B-factor prediction performance can be significantly improved by

using the non-harmonic spectra involved in the prediction model, as discussed in [44].

Recently, the theoretical properties and algorithms of PSGs have been further studied [31]

and the application of PSG methods to drug discovery has been reported [33]. The de Rham-

Hodge theory counterpart, called evolutionary de Rham-Hodge theory, has also been

formulated [12].

Currently, many open-source packages have been developed for the applications of

persistent homology, including Ripser [4], Dionysus [35], Gudhi [39], Perseus [34], DIPHA

[5], Javaplex [1], CliqueTop [23], DioDe [36], Hera, Eirene, and “TDA” package in R [21].

These packages are able to construct a family of complexes with the point clouds data as

input and calculate its corresponding Betti numbers, which are equivalent to the harmonic

spectra of the persistent Laplacian. However, there is no software package for simultaneous

TDA and PSA. While we developed the theoretical part of the persistent spectral graph in

2019, we have not constructed an efficient and robust software yet.

The objective of the present work is to provide the first open-source package, dubbed highly

efficient robust multidimensional evolutionary spectra (HERMES), for evaluating both the

harmonic and non-harmonic spectra of persistent Laplacian matrices, which enable broad
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and convenient applications of the PSG method. In the present release, we consider an

implementation in both alpha complexes [19] and Vietoris–Rips complexes. To verify the

reliability of HERMES, 15 complicated 3D structures of proteins as well as two fullerene

structures are used to calculate the spectra of qth-order persistent Laplacians for q = 0, 1, 2.

Moreover, as a validation, the persistent harmonic spectra generated by HERMES are

compared with those obtained from Gudhi and DioDe. Furthermore, with the use of the

spectra of PLMs, molecular data abnormality detection is also discussed. In a nutshell,

HERMES provides a powerful tool in various applications such as drug discovery, protein

flexibility analysis, and complex protein structures analysis. It can be potentially applied to

various fields where persistent homology has had success.

2. Method.

As a powerful and versatile data representation that encodes inter-dependencies among

constituents, graph theory has widely spread applications in various fields such as molecular

sciences, engineering, physics, biology, algebra, topology, and combinatorics. In this section,

we first briefly review the concepts of simplex, simplicial complex, chain complex,

Delaunay complex, and alpha complex in topology, which can be regarded as

generalizations of a graph into its higher-dimensional topological counterparts. Then, we

review the qth-order Laplacian for simplicial complexes, which is a generalization of the

graph Laplacian in graph theory. The topological and geometric information of a single

configuration can be evaluated from the spectra of the qth-order Laplacian. Moreover, built

upon these concepts, we will discuss persistent spectral graph [44, 44] for the analysis of

topological invariants and geometric measurements of high-dimensional datasets. Instead of

analyzing the spectra for only one configuration, the persistent spectral graphs can analyze a

series of topological and geometric changes, which enriches the set of available

representations for high-dimensional datasets.

2.1. Topological concepts.

In this section, we give a concise review of simplex, simplicial complex, and chain complex

to provide essential background for persistent spectral graphs. More details can be found in

the literature [9, 20, 49].

Simplex.—A q-simplex denoted as σq is the convex hull of q+1 affinely independent points

in ℝn, having dimension dim(σq) = q. For example, a vertex is a 0-simplex, an edge is a 1-

simplex, a triangle is a 2-simplex, and a tetrahedron is a 3-simplex. We call the convex hull

of each non-empty subset of q + 1 points a face of σq, and each of its corner points is also

called one of its vertices.

Simplicial complex.—A set of simplices is a simplicial complex denoted as K if the

following conditions are satisfied:

1. If all faces of any simplex in K are also in K, and

2. The non-empty intersection of any two simplices in K is a common face of the

two simplices.
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The dimension of simplicial complex K is defined as dim(K) = max{dimσq : σq ∈ K}.

Chain complex.—A q-chain is a formal sum of q-simplices in simplicial complex K with

ℤ2 coefficients. The set of all q-chains has a basis which the set of q-simplices in K, thus

forming a finitely generated free abelian group denoted as Cq(K). The boundary operator is a

group homomorphism defined by ∂q : Cq(K) → Cq−1(K) to relate the chain groups. More

specifically, denoting q-simplex as ∂q :Cq K Cq − 1 K  by its vertices vi, the boundary

operator is defined through its action on the basis,

∂qσq = ∑
i = 0

q

−1 iσq − 1
i . (1)

Here, σq − 1
i = v0, ⋯, v i, ⋯, vq  is the (q−1)-simplex with vi omitted. The following sequence

of chain groups connected by boundary operators is a chain complex (defined as a set of

abelian groups connected by homomorphisms such that the composite of any two

consecutive homomorphisms is zero, ∂q∂q+1 = 0.)

⋯
∂q + 2

Cq + 1 K
∂q + 1

Cq K
∂q

Cq − 1 K
∂q − 1

⋯

2.2. Combinatorial Laplacians.

Combinatorial Laplacians [18] offer both spectral analysis and topological analysis [24].

One central role played by the chain complex associated with a simplicial complex is to

define its q-th homology group (Hq = ker∂q / im∂q+1), which is a topological invariant of the

simplicial complex. The dimension of Hq is denoted by βq = dim Hq, the q-th Betti number,

which, roughly speaking, measures the number of q-dimensional holes in the simplicial

complex, or the geometric object tessellated into the simplicial complex.

A dual chain complex can be defined on any chain complex through the adjoint operator of

∂q defined on the dual spaces Cq K = Cq
∗ K . The q-coboundary operator

∂q
∗ :Cq − 1 K Cq K  is defined as:

∂∗ωq − 1 cq ≡ ωq − 1 ∂cq , (2)

where ωq−1 ∈ Cq−1(K) is a (q−1)-cochain, which is a homomorphism mapping a chain to the

coefficient group, and cq ∈ Cq(K) is a q-chain. The homology of the dual chain complex is

often called cohomology.

If we denote by ℬq the matrix representation of a q-boundary operator with respect to the

standard basis for Cq(K) and Cq−1(K), the number of rows and the number of columns in ℬq

correspond to the number of (q – 1)-simplices and that of q-simplices in K, respectively.

Moreover, the matrix representation of q-coboundary operator is denoted ℬq
T.
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In de Rham-Hodge theory, homology and cohomology are often studied through their

correspondences to the q-combinatorial Laplacian operator, defined as the linear operator

∆q : Cq(K) → Cq(K) as follows,

Δq: = ∂q + 1 ∂q + 1
∗ + ∂q

∗ ∂q, (3)

where the isomorphism Cq K ≅ Cq K  is assumed, where each q-simplex is mapped to its

own dual, i.e., the isomorphism keeps the coefficients of chains and cochains in the standard

simplicial basis. Correspondingly, the matrix representation of ∆q is the qth-order Laplacian,

which is denoted ℒq K ,

ℒq K = ℬq + 1ℬq + 1
T + ℬq

Tℬq . (4)

Assume the number of q-simplices existing in K to be Nq, then ℒq K  is an Nq×Nq-matrix.

Since the qth-order Laplacian ℒq K  is symmetric and positive semi-definite, its spectrum

consists of only real and non-negative eigenvalues. We denote the spectrum of ℒq K  as

Spec ℒq K = λ1, q, λ2, q, ⋯, λNq, q .

The multiplicity of zero in the spectrum (also called the harmonic spectrum) reveals the

topological information βq, whereas the non-harmonic spectrum encodes further geometric

information. The correspondence between the multiplicity of zero spectra of ℒq K  and the

qth Betti number defined in the homology is an important result in de Rham-Hodge theory,

[12, 26, 48]

βq = dimker∂q − dim im ∂q + 1 = dimkerℒq K = # 0 eigenvalues of ℒq K . (5)

Intuitively, β0 represents the number of connected components in K, β1 reveals the number

of 1D noncontractible loops or circles in K, and β2 shows the number of 2D voids or cavities

in K.

2.3. Persistent spectral graphs.

Both topological and geometric information can be derived from analyzing the spectra of

qth-order Laplacian. However, the information is restricted to those pieces contained in the

connectivity of the simplicial complex. A single simplicial complex produces insufficient

information for practical problems such as feature extraction for machine learning analysis.

To enrich the spectral information, persistent spectral graph (PSG) is proposed by creating a

sequence of simplicial complexes induced by varying a filtration parameter, which is

inspired by persistent homology as well as our earlier multiscale graph Laplacians [45].
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First, we consider a filtration of simplicial complex K which is a nested sequence of

subcomplexes Kt t = 0
m  of the final complex K:

∅ = K0 ⊆ K1 ⊆ K2 ⊆ ⋯ ⊆ Km = K . (6)

For each subcomplex Kt, we denote its corresponding chain group to be Cq(Kt), and the q-

boundary operator will be denoted by ∂q
t :Cq Kt Cq − 1 Kt . As conventionally done, we

define Cq(Kt) for q < 0 as the zero group {0} and ∂q
t  as a zero map. 1 If 0 < q ≤ dim Kt, then

∂q
t σq = ∑

i

q

−1 iσq − 1
i , ∀σq ∈ Kt, (7)

with σq = v0, ⋯, vq  being any q-simplex, and σq − 1
i = v0, ⋯, v i, ⋯, vq  being the (q − 1)-

simplex constructed by removing υi. The adjoint operator of ∂q
t  is the coboundary operator

∂q
t ∗ :Cq − 1 Kt Cq Kt , which can be regarded as a map from Cq−1(Kt) to Cq(Kt) through

the isomorphisms Cq Kt ≅ Cq Kt  between cochain groups and chain groups.

Similar to the persistent homology, a sequence of chain complexes can be defined as below:

⋯ Cq + 1
1

∂q + 1
1 ∗

∂q + 1
1

Cq
1

∂q
1 ∗

∂q
1

⋯
∂2
1 ∗

∂2
1

C1
1

∂1
1 ∗

∂1
1

C0
1

∂0
1 ∗

∂0
1

C−1
1 = 0

∩ ∩ ∩ ∩

⋯ Cq + 1
2

∂q + 1
2 ∗

∂q + 1
2

Cq
2

∂q
2 ∗

∂q
2

⋯
∂2
2 ∗

∂2
2

C1
2

∂1
2 ∗

∂1
2

C0
2

∂9
2 ∗

∂0
2

C−1
2 = 0

⋮ ⋮ ⋮ ⋮ ⋮
∩ ∩ ∩ ∩

⋯ Cq + 1
m

∂q + 1
m ∗

∂q + 1
m

Cq
m

∂q
m ∗

∂q
m

⋯
∂2
m ∗

∂2
m

C1
m

∂1
m ∗

∂1
m

C0
m

∂0
m ∗

∂0
m

C−1
m = 0

(8)

For simplicity, we use Cq
t  to denote the chain group Cq(Kt).

Next, we introduce persistence to the Laplacian spectra. We define the subset of Cq
t + p

whose boundary is in Cq − 1
t  as ℂq

t, p, assuming the natural inclusion map from Cq − 1
t  to Cq − 1

t + p

1We define the boundary matrix ℬ0
t  for the boundary operator ∂0

t  as a zero matrix. The number of columns of ℬ0
t  is the number of 0-

simplices in Kt, the number of rows will be 1.
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ℂq
t, p: = β ∈ Cq

t + p ∂q
t + p β ∈ Cq − 1

t . (9)

On this subset, one may define the p-persistent q-boundary operator denoted by

ðq
t, p:ℂq

t, p Cq − 1
t . Its corresponding adjoint operator is ðq

t, p ∗:Cq − 1
t ℂq

t, p, again through

the identification of cochains with chains. We then define the q-order p-persistent Laplacian

operator Δq
t, p:Cq

t Cq
t  associated with the filtration as

Δq
t, p = ðq + 1

t, p ðq + 1
t, p ∗ + ∂q

t∗ ∂q
t . (10)

The matrix representation of Δq
t, p in the simplicial basis is

ℒq
t, p = ℬq + 1

t, p ℬq + 1
t, p T + ℬq

t Tℬq
t , (11)

where ℬq + 1
t, p  is the matrix representation of ðq + 1

t, p .

We denote the spectrum of ℒq
t, p as

Spec ℒq
t, p = λ1, q

t, p , λ2, q
t, p , ⋯, λ

Nq
t , q

t, p ,

where Nq
t = dimCq

t  is the number of q-simplices in Kt, and the eigenvalues are listed in the

ascending order. Thus, the smallest non-zero eigenvalue of ℒq
t, p is denoted as λ2, q

t, p . We may

recognize the multiplicity of zero in the spectrum of ℒq
t, p as the qth order p-persistent Betti

number βq
t, p, which counts the number of (independent) q-dimensional holes in Kt that still

exists in Kt+p. The relation can be observed in

βq
t, p = dimker∂q

t − dim im ðq + 1
t, p = dimkerℒq

t, p = # 0 eigenvalues of ℒq
t, p . (12)

In this paper, we focus on the 0, 1, 2th-order persistent Laplacians, which depict the

relations among vertices, edges, triangles, and tetrahedra, as we target 3D real-world

applications.

For instance, given a set of vertices V = v0, v1, ⋯, vN0 − 1 , N0 embedded in ℝ3, we consider

a nested family of simplicial complexes that may be created for a positive real number α.

Denoting the simplicial complex generated for α by Kα, the traditional qth-order Laplacian

is just a special case of qth-order 0-persistent Laplacian at Kα
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ℒq
α, 0 = ℬq + 1

α, 0 ℬq + 1
α, 0 T + ℬq

α Tℬq
α . (13)

The spectrum of ℒq
α, 0 is simply associated with a snapshot of the filtration,

Spec ℒq
α, 0 = λ1, q

α, 0, λ2, q
α, 0, ⋯, λ

Nq
α, q

α, 0 . (14)

Correspondingly, the q-th 0-persistent Betti number βq
α, 0 = βq

α. In addition to the traditional

homology information, and persistent homology information, our proposed persistent

spectral graph theory, through the nonzero eigenvalues in the spectrum of the persistent

Laplacian operator, provide richer spatial information induced by varying the filtration

parameters. Thus it provides a powerful tool to encode high-dimensional datasets into

various topological and geometric features in a coherent fashion.2

2.4. Delaunay triangulation and alpha shape.

In this section, we provide the details on a practical construction of filtration for persistent

spectral graph theory based on the alpha complex. The alpha complex can be regarded as a

simplicial complex, which is a homotopy equivalent to the nerve of balls around data points.

Its geometric realization built as the union of convex hulls of points in each simplex is called

the alpha shape. The alpha shape was first proposed in 1983, which defined the shape

associated with a finite set of points in the plane controlled by one parameter [19].

In the following, we first describe how to construct the alpha shape, and then provide some

necessary concepts for the implementation of the alpha complex in PSG theory. Let P be a

finite set of points in qD Euclidean space ℝq (q = 2 or 3 in most applications), and α be a

positive real number. Denote an open ball with radius α as an alpha ball (α-ball). We say

that an α-ball is empty if it contains no point of P, and the alpha hull (α-hull) of P is the set

of points that do not belong to any empty α-ball. For any subset T ⊆ P with size |T| = k + 1,

0 ≤ k ≤ q, the geometric realization of k-simplex σT is the convex hull of T. We say that a k-

simplex σT is α-exposed if there exists an empty α-ball b such that T = ∂b ∩ P for 0 ≤ k ≤ q
− 1. Denoting the collection of α-exposed k-simplices as Fk,α for 0 ≤ k ≤ q − 1, the alpha

shape (α-shape) of P is the polytope whose boundary consists of the k-simplices in Fk,α. The

alpha complex is just the simplicial complex that is the collection of the simplices in the

alpha shape.

There are two structures that are closely related to the alpha shape and helpful in efficient

implementation of alpha shape and alpha complex. One is the Voronoi diagram [43] and the

other is its dual structure, the Delaunay tessellation [16]. The latter is the alpha complex for

2In this work, we use notations ℂq
t, p, ðq

t, p, Δq
t, p, ℒq

t, p, and βq
t, p instead of ℂq

t + p, ðq
t + p, Δq

t + p, ℒq
t + p, and βq

t + p used in Ref.

[44].
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sufficiently large α, e.g., when α is greater than the diameter of P. Thus, the Delaunay

tessellation is the final complete simplicial complex in the filtration that we use.

For a given set of points P = p1, p2, ⋯, pn ⊆ ℝq, the Voronoi cell Vi of a point pi ∈ P

contains all of the points for which pi is the closest among all the points in P,

V i = x ∈ ℝq x − pi ≤ x − p j , ∀ p j ∈ P . (15)

The Voronoi diagram of P is the set of Voronoi cells, which is defined as

VorP = V i ∀i ∈ 1, 2, ⋯, P . (16)

The Delaunay tessellation for a given set P in general position (i.e., no q + 1 ponits are in a

(q−1)-D linear subspace, and no q + 2 points share the same circumsphere) is the dual

simplicial complex to the Voronoi diagrams. For instance, a Delaunay tessellation for a

given set P in 2D is a triangulation DT(P) such that no point in P is inside the circumcircle

of any triangle in DT(P) [3, 30]. A formal way to define the Delaunay tessellation is to use

the nerve of the collection of Voronoi cells (Nrv(VorP)), which can be expressed as

DT P = Nrv VorP = J ⊆ 1, 2, …, P ∩
i ∈ J

V i ≠ ∅ , (17)

under the condition that the points in P are general position. Note that, in practice, a set of

points that are not in general position can be symbolically perturbed to general position.

Next, we introduce the mathematical description of the construction of alpha complex

through the union of balls centered at points in P, which is essentially a van der Waals

surface for atoms positioned at P with the same radius α. For a given set of points P = {p1,

p2, ···, pn} in ℝq and a positive real number α, we can denote the closed ball centered at pi as

Bi α = pi + α𝔹q, where 𝔹q is a qD unit ball around the origin. The union of these balls can be

expressed as

U α = x ∈ ℝq ∃ pi ∈ P s.t. x − pi ≤ α . (18)

To ensure that we obtain a subcomplex of the Delaunay tessellation, we intersect Bi(α) with

its corresponding Voronoi cell,

Ri α = Bi α ∩ V i . (19)

It can be observed that U α = ∪pi ∈ P Ri α , so the Ri’s is a covering of U (α). The alpha

complex Kα is the simplicial complex representing the nerve of this covering,
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Kα = J ⊆ 1, 2, …, P ∩
i ∈ J

Ri α ≠ ∅ . (20)

The equivalence to the original definition can be readily checked. The union of all simplices

in the alpha complex forms the alpha shape. Figure 1 illustrates the Voronoi diagram,

Delaunay triangulation, and non-Delaunay triangulation. The point set is P = {A,B,C,D,E},

and the blue lines in the left chart of Figure 1 separate the plane into the Voronoi cells. The

red circles are the empty circumcircles for triples of points in P. We can notice that no four

points are on the same red circle, which satisfies the uniqueness condition for constructing

the Delaunay triangulation. In the right chart of Figure 1, the green circumcircle of ACD

contains E and the green circumcirlce of AEC contains D, indicating that those two triangles

do not belong to the Delaunay triangulation.

Figure 2 illustrates the standard filtration of alpha complexes. The top left figure is the

Delaunay triangulation of six 2D points A, B, C, D, E, and F. With an ever-growing radius α
centered at these points, a family of sub-complexes of the Delaunay triangulation can be

constructed. Figure 3 shows the persistence barcode of these 6 points. It can be seen that

when α = 0.2, all six points are disconnected, indicating that 6 0-cycles (connected

components) existed, which matches with Figure 3, where there are a total of 6 bars when α
= 0.2. With the radius α continually increasing, a 1-cycle will be formed, and the associated

alpha shape are shown in the bottom left chart of Figure 2. One can notice that in Figure 3,

when α = 0.6, β1
α, 0 = 1. When α reaches 0.83, the 1-cycle disappears and β1

α, 0 = 0 as shown

in the bottom left panel of Figure 2. Table 1 and Table 2 show how we construct the qth-

order persistent Laplacian ℒq
t, p and calculate the harmonic βq

t, p  and non-harmonic

persistent spectra of ℒq
t, p from the simplicial complexes K0.2 to K0.6 and K0.6 to K0.6.

2.5. Vietoris–Rips complex.

Vietoris-Rips complex is an abstract simplicial complex. It is commonly used in various

applications. For a given set of points P = {p1.p2, · · · , pn} in a metric space and a real value

r > 0, a k-simplex σk = [pi0, · · · , pik] is in the Vietoris–Rips complex if and only if

𝔹 pi j, r ∩ 𝔹 pi j′, r ≠ ∅, ∀ j, j′ ∈ 0, k .

3. Implementation.

3.1. Construction of alpha shape.

Recall that, given a set of points, the alpha shape with any α value is a subcomplex of

Delaunay tessellation. Thus, to construct the filtration of alpha complexes, it is necessary to

first compute the complete simplicial complex through the Delaunay tessellation formed by

the set of points. A number of efficient implementations is available in existing software

packages. Our implementation employs the Computational Geometry Algorithms Library

(CGAL), an efficient and robust software package for many commonly used calculations.

We then assign each simplex σ with an alpha value ασ. Finally, the alpha shape given at an

α value α0 is constructed by union of convex hulls of all the simplices σ satisfying ασ ≤ α0,
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which naturally forms the nerve of balls centered at the given points truncated by the

Voronoi regions, i.e., the corresponding alpha complex.

We illustrate our implementation with point sets P in 3D, as it is the most common use

scenario. We also assume that all the points are in general positions, which means that no 4

points of P lie on the same plane and no 5 points of P lie on the same sphere. Given a

simplex σ, which can be a point, an edge, a triangle or a tetrahedron, denote the open ball

bounded by its minimal circumsphere as Bσ. The simplex σ is called Gabriel ([27]) if

Bσ ∩ P = ∅. Note that for vertices (0-simplices) the circumradius is considered 0. The above

discussion can be directly adapted for 2D implementation by replacing circumsphere with

circumcircle and omitting tetrahedra.

The filtration parameter α for every simplex σ can be defined as follows. If the simplex is

Gabriel, the filtration value is the corresponding circumradius (for efficiency, we actually

store its square) because the corresponding ball can be considered as an empty α-ball

touching all its vertices. If the simplex is not Gabriel, the filtration value is the minimum of

all the filtration values of the cofaces of σ that contain the points making the simplex non-

Gabriel. When α value reaches that number, we will have an empty α-ball making the

simplex α-exposed.

3.2. Implementation details for alpha shape.

To ensure the valid calculation of the filtration parameter for non-Gabriel simplices, the

filtration value are always computed from the highest dimension (tetrahedra) down to 0

(vertices). We initialize the filtration value for all the simplices to be positive infinity. For

dimension k, we iterate through each k-simplex. If the current filtration value ασ
2 is positive

infinity, we assign the filtration value as the square of the corresponding circumradius. Then,

we check every (k−1)-dimensional face τ in ∂σ. If the circumsphere of τ enclosed the other

vertex of σ in the interior, it is not Gabriel, and does not correspond to an empty α-ball. In

this case, ασ
2 is assigned to ατ

2 if ασ > ατ.

With this procedure, we ensure that ασ for every simplex σ corresponding to the filtration

value α is α-exposed to an empty α-ball. In other words, we ensure that for each simplex

represented by its vertex index set J ⊆ {1, 2, …, |P|} is in the nerve of Ri’s, which are the

intersections Ri = Vi ∩ Bi of Voronoi cells Vi’s and balls Bi’s around the points pi’s.

3.2.1. Boundary operator construction.—With ασ assigned, we sort the k-simplices

with increasing filtration parameter value. This allows us to construct a single boundary

operator Bq
∞ (the matrix representation of ∂q

∞) for the entire filtration, which is that of the

Delaunay tessellation. For any given α, we can read of the top left block of the full boundary

matrix Bq
∞, i.e.,

Bq
α

i j
= Bq

∞
i j

, ∀1 ≤ i ≤ Nq − 1
α , 1 ≤ j ≤ Nq

α, (21)
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where Nq
α is the number of q-simplices in the alpha complex with the filtration parameter α.

Alternative, we can consider the Nq
α × Nq

∞ projection matrix Pq
α from the Delaunay

tessellation to the alpha complex, Pq
α

i j
= δi j (1 on the diagonal and 0 elsewhere), with

which we have Bq
α = Pq − 1

α Bq
∞ Pq

α T
.

3.2.2. Persistent boundary operator.—The construction of p-persistent boundary

matrix Bq
α, p (the representation of operator ðq

α, p is more involved than reading off Bq
∞.

We first construct the projection matrix ℙq
α, p from Cq

α + p to ℂq
α, p. Then, the p-persistent

boundary matrix can be assembled as Bq
α, p = Pq − 1

α Bq
∞ ℙq

α, p T
.

To construct the projection matrix, we first note that it is the projection to the kernel of an

operator that measures the difference between the boundary operator mapped onto Cq − 1
α + p

and the boundary restricted to Cq − 1
α , Diffq

α, p = Iq − 1
α + p − Rq − 1

α, p T
Bq

α + p, where

Rq
α, p = Pq

α + p Pq
α T

Pq
α Pq

α + p T
 is the restriction from Cq

α + p to Cq
α and Iq

α + p is the identity

matrix on Cq
α + p.

Instead of storing a dense matrix, we propose to use a procedural representation involving

the inverse of persistent Laplacians with gauge ([47]) to reduce the storage as well as speed

up the computation. More specifically, we construct the projection matrix as follows

ℙq
α, p = Iq

α + p − Diffq
α, p T

Lq − 1
α, p −1Diffq

α, p, (22)

where Lq − 1
α, p −1

 can be implemented through rank deficiency fixing in [47], and the

restricted operator Diffq
α, p is defined below. Note that this sparse linear equation solving

approach is essentially the graph version of the harmonic extension described in Ref. [48].

The reason that the projection matrix can be defined this way is that starting from an

arbitrary element ωq ∈ Cq
α + p, we can modify it into ωq − Diffq

α, p T
f q − 1 ∈ ℂq

α, p, where fq−1

is nonzero only in the difference complex Cl Tα + p − Tα , the closure of the difference

between Tα+p and Tα. Denoting any chain f on the difference complex as f  and any operator

B on it as Bα, p, and the Bq
α, p Bq

α, p T
f q − 1 = Bq

α, pωq. Noticing that f q − 1 is determined up to

a gauge transform f q − 1 − Bq − 1
α, p T

gq − 2 for some (q − 2)-chain gq−2 in Cl(Tα+p − Tα), we

introduce the gauge fixing term Bq − 1
α, p f q − 1 = 0, which leads us to the sparse linear system

Lq − 1
α + p f q − 1 = Diffq

α, pωq where the Diff operator is the above operator projected to the

difference complex. Note that fixing the rank deficiency of persistent Laplacians (in the
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difference complex) is computationally efficient as its kernel dimension is far smaller than

that of the corresponding boundary or coboundary operators.

3.2.3. Persistent spectrum computation.—The q-order p-persistent Laplacian

operators can then be implemented by direct evaluation of Lq
α, p = Bq + 1

α, p βq + 1
α, p T + Bq

α T
Bq

α.

Their spectra can be evaluated through any off-the-shelf sparse matrix eigensolver.

Thus, the dimension of the null space of L0
α, p is number of p-persistent connected

components. The dimension of the null space of L1
α, p is number of p-persistent handles or

tunnels. Similarly, the dimension of the null space of L2
α, p is the number of p-persistent

cavities.

3.3. Implementation details for Vietoris–Rips complex.

The Vietoris–Rips complex at different filtration values is also considered in HERMES.

Following the definition of the Vietoris–Rips complex, the implementation is

straightforward. However, due to large number of simplices, the calculation of non-harmonic

spectra of PLMs Lq
t, p can be resource-intensive. Therefore, we may set a maximum cutoff

distance for the filtration r and an upper limit for persistent p for practical applications.

4. Validation.

We construct the alpha complex at different filtration values from the finite cells of a

Delaunay tessellation from the Computational Geometry Algorithms Library (CGAL).

Moreover, the Vietoris–Rips complex at different filtration values is also constructed in the

HERMES. Gudhi and DioDe are two of the most frequently applied open-source libraries

that are able to compute the Betti numbers (harmonic persistent spectra) based on CGAL,

while Ripser is based on the blazing fast C++ Ripser package. As shown in [44], the 0-

persistent qth Betti numbers βq
t, 0 at filtration parameter t is the number of zero eigenvalues of

qth-order 0-persistent Laplacian ℒq
t, 0:

βq
t, 0 = dim Cq

t − rank ℒq
t, 0 = dimkerℒq

t, 0, (23)

where t = α if we choose to construct alpha complex, and t = r if we choose to construct

Vietoris–Rips complex.

In fact, βq
t, 0 counts the number of q-cycles in alpha complex Kt that persists in Kt. Although

Gudhi and DioDe can calculate the number of zero eigenvalues, the non-harmonic persistent

spectra also play an important role in applications as shown in our earlier work [44].

Therefore, we developed an open-source package HERMES, which not only tracks the

topological changes from the persistent Betti numbers but also derives the geometric

changes from the non-harmonic spectra of persistent Laplacians. In the following, we

compare the Betti numbers βq
t, p that are calculated from HERMES with the Betti numbers
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that are derived from Gudhi and DioDe on a set of 2D and 3D points, aiming to validate the

robustness and accuracy of HERMES.

4.1. Validation on fullerene structures.

In this section, we will validate the correctness of HERMES with simple systems such as

C20 and C60 molecules with known persistent Betti numbers [46] for Rips complex.

Moreover, the persistent Betti numbers for alpha complex are also included in this section.

C20 molecule.—C20 molecule is the smallest member of the fullerene family, which has a

dodecahedral cage structure as illustrated in Figure 4 (a). Both C20 and C60 have the

molecular symmetry of the full icosahedral point group Ih. Figure 5 illustrates the persistent

Betti numbers for Rips complex β0
r, 0.05, β1

r, 0.05, and β2
r, 0.05 (green curves) and the smallest

non-zero eigenvalue λ0
r, 0.05, λ1

r, 0.05, and λ2
r, 0.05 (yellow curves) of C20 that are computed

from HERMES. Similarly, Figure 6 illustrates the persistent Betti numbers for alpha

complex β0
α, 0.05, β1

α, 0.05, and β2
α, 0.05 (green curves) and the smallest non-zero eigenvalue

λ0
α, 0.05, λ1

α, 0.05, and λ2
α, 0.05 (yellow curves) of C20 that are computed from HERMES.

Note that although the Rips complex and the alpha complex have similar Betti-0 and Betti-1

patterns, their Betti-2 patterns differ from each other over the filtration range. Additionally,

the non-harmonic spectra of the Rips complex and the alpha complex differ much from each

other. Moreover, the non-harmonic spectra of the Rips complex appear to carry more

information than those of the alpha complex.

C60 molecule.—C60 molecule is a well-known structure that also called

buckminsterfullerene. A total of 12 pentagon rings and 20 hexagon rings consist of C60.

Figure 4 (b) shows the 3D structure of and C60. Figure 7 and Figure 8 demonstrate the 0.05-

persistent Betti numbers for rips complex and alpha complex, respectively. Figure 5 – Figure

8 indicate the capacity of HERMES for the direct calculation of the persistent spectra of

ℒq
r, p and ℒq

α, p (p > 0).

4.2. Validation on proteins.

In this section, we further validate HERMES using 15 proteins. Their Protein Data Bank

(PDB) IDs of these proteins are 1CCR, 1NKO, 1O08, 1OPD, 1QTO, 1R7J, 1V70, 1W2L,

1WHI, 2CG7, 2FQ3, 2HQK, 2PKT, 2VIM, and 5CYT. The 3D structures of these 15

proteins can be downloaded from the PDB). Here, only the alpha carbon atoms are

considered in our calculations. The harmonic spectra of HERMES are compared with the

persistent Betti numbers of Gudhi and DioDe. Figure 9 illustrates the network structures of

15 proteins. For each protein, color at atomic positions represents the normalized diagonal

values of the accumulated 0th-order 0-persistent Laplacians: 1
maxi ℒ0

0
ii

ℒ0
0

j j
, with

ℒ0
0 = ∑α ℒ0

α, 0. Here, the filtration α goes from 1.5 Å to 10 Å with the step size of 0.01 Å

Figure 10 depicts the persistent Betti numbers βq
α, 0 (blue curve) of PDB ID 5CYT that are
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calculated from Gudhi, DioDe, and HERMES, together with the smallest non-zero

eigenvalue λq
α, 0 (red curve) that are obtained only from HERMES.

It can be seen that all of these three packages return exactly the same persistent Betti

numbers, suggesting that the calculation of our package HERMES is reliable. Additionally,

the values of smallest non-zero eigenvalues λ0
α, 0 and λ1

α, 0 increase around 1.86 Å indicating

the dramatic topological changes at this point. Similarly, with the increment of the α, the

curve of λ2
α, 0 also records the topological and geometric changes at a specific filtration

value. The use of non-harmonic spectra for biophysical modeling was described in our

earlier work [44].

To be noted, HERMES can also deal with the qth-order p-persistent Laplacians ℒq
α, p. Figure

11 illustrates the persistent Betti numbers β0
α, 0.5, β1

α, 0.5, and β2
α, 0.5 (green curves) and the

smallest non-zero eigenvalue λ0
α, 0.5, λ1

α, 0.5, and λ2
α, 0.5 (yellow curves) of 5CYT that are

computed from HERMES, demonstrating the capacity of HERMES for the direct calculation

of the persistent spectra of ℒq
α, p (p > 0). Compared with the middle chart of Figure 10, the

β1
α, 0.5 in the middle chart of Figure 11 is always smaller than β1

α, 0 at the same filtration α.

Moreover, the λ1
α, 0.5 also goes up around 1.86 Å, which has the same behavior as λ1

α, 0.

Similar behaviors can be also observed from the bottom charts of Figure 10 and Figure 11.

Furthermore, HERMES can be used to detect the abnormality of a protein structure. Figure

12 (a) shows a 3D secondary structure of PDB 1O08, where the balls represent the alpha

carbon atoms. The light blue, purple, and orange colors represent helix, sheet, and random

coils of PDB ID 1O08. Figure 12 (b) depicts its harmonic spectra βq
α, 0 (blue curve) and the

smallest non-zero eigenvalue λq
α, 0 (red curve). Notably, two unusual onset of β0

α, 0 and β1
α, 0

are detected when α << 1.9 Å, indicating something is wrong with the structure data.

Usually, the distance between the two alpha carbon atoms is around 3.8 Å. By examining the

structure of PDB 1O08, we found that two pairs of alpha carbon atoms in PDB 1O08 have

abnormal distances as marked with black frames. The distance of alpha carbon atoms in the

upper box is 2.914 Å and that in the lower box is 2.996 Å which are too short. The plots of

the other proteins can be found in the Appendix. Similar structural defects were detected for

PDB IDs 1V70, 2HQK, 2PKT, and 2VIM.

Although our package provides additional geometric information by calculating the non-

harmonic spectra of qth-order persistent Laplacians, there are two limitations of HERMES.

First, the construction of the Vietoris–Rips complex is the primary bottleneck in the

calculation of non-harmonic spectra of persistent Laplacian matrices (PLMs). Additionally,

the input format of HERMES is point cloud data. Other input formats, such as pairwise

distances, point cloud with van der Waals radii, and volumetric density are not supported.

These limitations will be addressed in our future implementation.
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5. Conclusion.

While spectral graph theory has had tremendous success in data science to capture the

geometric and topological information, it is limited by representing a graph structure at a

given characteristic length scale, which hinders its practical application in data analysis.

Motivated by the persistent (co)homology in dealing with a given initial data by constructing

a family of simplicial complexes to track their topological invariants, and the multiscale

graphs by creating a set of spectral graphs aiming to extract rich geometric information, we

proposed persistent spectral graph (PSG) theory as a unified multiscale paradigm for

simultaneous geometric and topological analysis [44]. PSG theory has stimulated

mathematical analysis and algorithm development [31], as well as applications to drug

discovery [33], and protein flexibility analysis [44].

To enable broad and convenient applications of the PSG method, we present an open-source

software package called highly efficient robust multidimensional evolutionary spectra

(HERMES). For a given point-cloud dataset, HERMES creates persistent Laplacian matrices

(PLMs) at various topological dimensions via a filtration. The spectrum of PLMs includes

harmonic parts and non-harmonic parts. It turns out that the harmonic part spans the kernel

spaces of PLMs and carries the full topological information of the dataset. As a result,

HERMES delivers the same topological data analysis (TDA) as does persistent homology.

The non-harmonic part of PLMs provides valuable geometric analysis of the shape of data at

various topological dimensions. The smallest non-zero eigenvalues are found to be very

sensitive to data abnormality. In the present HERMES, both the alpha complex and the

Vietoris–Rips complex are implemented. Due to the potentially large number of simplicies,

the eigenvalue problem of persistent Laplacian for the Vietoris–Rips complex becomes

memory-intensive for large systems. This difficulty may be overcome with approximate

eigenvalue solvers. We will continue improving the efficiency of HERMES. HERMES has

been extensively validated for its accuracy, robustness, and reliability by standard test

datasets and a large number of complex protein structures, including comparison with Gudhi

and DioDe.
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Appendix A.

Figure 13 shows the harmonic spectra (under the construction of Vietoris–Rips complex)

βq
r, 0 q = 0, 1, 2  of C60 with shifting one of its atoms’ position. It can be seen that an

abnormality of distance between atoms are detected when the radius r is around 1.38Å.

Figure 14 – Figure 26 illustrate the harmonic spectra (under the construction of alpha

complex) βq
α, 0 q = 0, 1, 2  of PDB IDs 1CCR, 1NKO, 1OPD, 1QTO, 1R7J, 1V70, 1W2L,

1WHI, 2CG7, 2FQ3, 2HQK, 2PKT, and 2VIM at different filtration value α calculated from

Gudhi, DioDe, and HERMES.

Wang et al. Page 17

Found Data Sci. Author manuscript; available in PMC 2021 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



REFERENCES

[1]. Adams H, Tausz A and Vejdemo-Johansson M, JavaPlex: A research software package for
persistent (co) homology, in International Congress on Mathematical Software, Lecture Notes in
Computer Science, 8592, Springer, 2014, 129–136.

[2]. Aksoy SG, Joslyn C, Marrero CO, Praggastis B and Purvine E, Hypernetwork science via high-
order hypergraph walks, EPJ Data Science, 9 (2020).

[3]. Aurenhammer F, Klein R and Lee D-T, Voronoi Diagrams and Delaunay Triangulations, World
Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013.

[4]. Bauer U, Ripser: A lean C++ code for the computation of Vietoris–Rips persistence barcodes,
2017. Software available from: https://github.com/Ripser/ripser.

[5]. Bauer U, Kerber M and Reininghaus J, DIPHA (A distributed persistent homology algorithm),
2014. Software available from: https://github.com/DIPHA/dipha.

[6]. Bressan S, Li J, Ren S and Wu J, The embedded homology of hypergraphs and applications, Asian
J. Math, 23 (2019), 479–500.

[7]. Bubenik P and Kim PT, A statistical approach to persistent homology, Homology Homotopy Appl,
9 (2007), 337–362.

[8]. Cang Z and Wei G-W, TopologyNet: Topology based deep convolutional and multi-task neural
networks for biomolecular property predictions, PLoS Computational Biology, 13 (2017).

[9]. Carlsson G, De Silva V and Morozov D, Zigzag persistent homology and real-valued functions, in
Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry, ACM, 2009,
247–256.

[10]. Carlsson G, Zomorodian A, Collins A and Guibas L, Persistence barcodes for shapes,
International J. Shape Modeling, 11 (2005), 149–187.

[11]. Cheeger J, A lower bound for the smallest eigenvalue of the Laplacian, in Problems in Analysis,
Princeton Univ. Press, Princeton, NJ, 1970, 195–199.

[12]. Chen J, Zhao R, Tong Y and Wei G-W, Evolutionary de Rham-Hodge method, Discrete Contin.
Dyn. Syst. Ser. B, (2020).

[13]. Chung FR, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, 92,
American Mathematical Society, Providence, RI, 1997.

[14]. Ciocanel M-V, Juenemann R, Dawes AT and McKinley SA, Topological data analysis approaches
to uncovering the timing of ring structure onset in filamentous networks, Bull. Math. Biol, 83
(2021), 21pp. [PubMed: 33452960]

[15]. de Silva V and Ghrist R, Coverage in sensor networks via persistent homology, Algebr. Geom.
Topol, 7 (2007), 339–358.

[16]. Delaunay B, Sur la sphère vide, Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i
Estestvennyka Nauk, 7 (1934), 793–800.

[17]. Dey TK, Fan F and Wang Y, Computing topological persistence for simplicial maps, in
Computational Geometry (SoCG’14), ACM, New York, 2014, 345–354.

[18]. Eckmann B, Harmonische funktionen und Randwertaufgaben in einem Komplex, Comment.
Math. Helv, 17 (1945), 240–255.

[19]. Edelsbrunner H, Alpha shapes - A survey, Tessellations in the Sciences, 27 (2010), 1–25.
Available from: https://pub.ist.ac.at/~edels/Papers/2011-B-03-AlphaShapes.pdf.

[20]. Edelsbrunner H and Harer J, Persistent homology - A survey, in Surveys on Discrete and
Computational Geometry, Contemp. Math., 453, Amer. Math. Soc., Providence, RI, 2008, 257–
282.

[21]. Fasy BT, Kim J, Lecci F, Maria C, Millman DL and Kim MJ, Package (TDA), 2019.

[22]. Friedman J, Computing Betti numbers via combinatorial Laplacians, Algorithmica, 21 (1998),
331–346.

[23]. Giusti C, Pastalkova E, Curto C and Itskov V, Clique topology reveals intrinsic geometric
structure in neural correlations, Proc. Natl. Acad. Sci. USA, 112 (2015), 13455–13460. [PubMed:
26487684]

Wang et al. Page 18

Found Data Sci. Author manuscript; available in PMC 2021 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/Ripser/ripser
https://github.com/DIPHA/dipha
https://pub.ist.ac.at/~edels/Papers/2011-B-03-AlphaShapes.pdf


[24]. Hernández Serrano D, Hernaández-Serrano J and Sánchez Gómez D, Simplicial degree in
complex networks. Applications of topological data analysis to network science, Chaos Solitons
Fractals, 137 (2020), 21pp.

[25]. Kaczynski T, Mischaikow K and Mrozek M, Computational Homology, Applied Mathematical
Sciences, 157, Springer-Verlag, New York, 2004.

[26]. Kamber FW and Tondeur P, De Rham-Hodge theory for Riemannian foliations, Math. Ann, 277
(1987), 415–431.

[27]. Kerber M and Edelsbrunner H, The medusa of spatial sorting: 3D kinetic alpha complexes and
implementation, preprint, arXiv:1209.5434.

[28]. Lee Y, Barthel SD, D-lotko P, Mohamad Moosavi S, Hess K and Smit B, Quantifying similarity
of pore-geometry in nanoporous materials, Nature Communications, 8 (2017).

[29]. Maroulas V, Micucci CP and Nasrin F, Bayesian topological learning for classifying the structure
of biological networks, preprint, arXiv:2009.11974.

[30]. May J, Multivariate Analysis, Scientific e-Resources, 2018.

[31]. Mémoli F, Wan Z and Wang Y, Persistent Laplacians: Properties, algorithms and implications,
preprint, arXiv:2012.02808.

[32]. Meng Z, Vijay Anand D, Lu Y, Wu J and Xia K, Weighted persistent homology for biomolecular
data analysis, Scientific Reports, 10 (2020), 1–15. [PubMed: 31913322]

[33]. Meng Z and Xia K, Persistent spectral based machine learning (PerSpect ML) for drug design,
preprint, arXiv:2002.00582.

[34]. Mischaikow K and Nanda V, Morse theory for filtrations and efficient computation of persistent
homology, Discrete Comput. Geom, 50 (2013), 330–353.

[35]. Morozov D, Dionysus Software, 2012.

[36]. Morozov D and Skraba P, DioDe Software, 2017.

[37]. Nguyen D and Wei G-W, AGL-Score: Algebraic graph learning score for protein-ligand binding
scoring, ranking, docking, and screening, J. Chemical Information Modeling, 59 (2019), 3291–
3304.

[38]. Nguyen DD, Cang Z, Wu K, Wang M, Cao Y and Wei G-W, Mathematical deep learning for pose
and binding affinity prediction and ranking in D3R Grand Challenges, J. Comput. Aided Mol.
Des, 33 (2019), 71–82. [PubMed: 30116918]

[39]. Gudhi Project, GUDHI User and Reference Manual, 2015.

[40]. Sgouralis I, Nebenfuhr A and Maroulas V, A Bayesian topological framework for the
identification and reconstruction of subcellular motion, SIAM J. Imaging Sci, 10 (2017), 871–
899.

[41]. Spielman DA, Spectral graph theory and its applications, 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’07), IEEE, 2007, 29–38.

[42]. Townsend J, Micucci CP, Hymel JH, Maroulas V and Vogiatzis KD, Representation of molecular
structures with persistent homology for machine learning applications in chemistry, Nature
Communications, 11 (2020).

[43]. Voronoi G, Nouvelles applications des paramètres continus à la théorie des formes quadratiques.
Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine
Angew. Math, 133 (1908), 97–102.

[44]. Wang R, Nguyen DD and Wei G-W, Persistent spectral graph, Int. J. Numer. Methods Biomed.
Eng, 36 (2020), 27pp.

[45]. Xia K, Opron K and Wei G-W, Multiscale Gaussian network model (mGNM) and multiscale
anisotropic network model (mANM), J. Chem. Phys, 143 (2015).

[46]. Xia K and Wei G-W, Persistent homology analysis of protein structure, flexibility, and folding,
Int. J. Numer. Methods Biomed. Eng, 30 (2014), 814–844.

[47]. Zhao R, Desbrun M, Wei G-W and Tong Y, 3D hodge decompositions of edge-and face-based
vector fields. ACM Transactions on Graphics (TOG), 38 (2019), 1–13.

[48]. Zhao R, Wang M, Chen J, Tong Y and Wei G-W, The de Rham–Hodge analysis and modeling of
biomolecules, Bull. Math. Biol, 82 (2020), 38pp. [PubMed: 32162119]

Wang et al. Page 19

Found Data Sci. Author manuscript; available in PMC 2021 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[49]. Zomorodian A and Carlsson G, Computing persistent homology, Discrete Comput. Geom, 33
(2005), 249–274.

Wang et al. Page 20

Found Data Sci. Author manuscript; available in PMC 2021 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1.
Illustration of Voronoi diagram, Delaunay triangulation, and Non-Delaunay triangulation.

Left chart: The Voronoi diagram and its dual Delaunay triangulation. The points set is P =

{A,B,C,D,E} and the Delaunay is defined as DT(P). The blue lines tessellate the plane into

Voronoi cells. The red circle are the circumcircles of triangles in DT(P). Right chart: A
Non-Delaunay triangulation. Vertices E and D are in the green circumcircles, implying the

right chart is an example of Non-Delaunay triangulation.
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Figure 2.
Illustration of 2D Delaunay triangulation, alpha shapes, and alpha complexes for a set of 6

points A, B, C, D, E, and F. Top left: The 2D Delaunay triangulation. Top right: The alpha

shape and alpha complex at filtration value α = 0.2. Bottom left : The alpha shape and alpha

complex at filtration value α = 0.6. Bottom right: The alpha shape and alpha complex at

filtration value α = 1.0. Here, we use dark blue color to fill the alpha shape.
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Figure 3.
The persistent barcode for a set of points as illustrated in Figure 2 that are generated from

Gudhi and DioDe.
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Figure 4.
The 3D structures of C20 and C60. (a) C20 molecule. A total of 12 pentagon rings can be

found in C20. (b) C60 molecule. 12 pentagon rings and 20 hexoagon rings form the structure

of C60

Wang et al. Page 24

Found Data Sci. Author manuscript; available in PMC 2021 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5.

Illustration of the harmonic spectra (for Rips complex) β0
r, 0.05, β0

r, 0.05, and β2
r, 0.05 (green

curves from top chart to bottom chart) and the smallest non-zero eigenvalue λ0
r, 0.05, λ1

r, 0.05,

and λ2
r, 0.05 (yellow curves from top chart to bottom chart) of C20 molecule (the bottom left

chart in Fig. 9) at different filtration values α calculated from HERMES. Here, the x-axis

represents the radius filtration value r (unit: Å), the left-y-axes represents the number of zero

eigenvalues of ℒ0
r, 0.05, ℒ1

r, 0.05, and ℒ2
r, 0.05 from top to bottom, and the right-y-axes

represents the first non-zero eigenvalue of ℒ0
r, 0.05, ℒ1

r, 0.05, and ℒ2
r, 0.05 from top to bottom.
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Figure 6.

Illustration of the harmonic spectra (for alpha complex) β0
α, 0.05, β0

α, 0.05, and β2
α, 0.05 (green

curves from top chart to bottom chart) and the smallest non-zero eigenvalue λ0
α, 0.05, λ1

α, 0.05,

and λ2
α, 0.05 (yellow curves from top chart to bottom chart) of C20 molecule (the bottom left

chart in Fig. 9) at different filtration value α calculated from HERMES. Here, the x-axis

represents the radius filtration value α (unit: Å), the left-y-axes represents the number of

zero eigenvalues of ℒ0
α, 0.05, ℒ1

α, 0.05, and ℒ2
α, 0.05 from top to bottom, and the right-y-axes

represents the first non-zero eigenvalue of ℒ0
α, 0.05, ℒ1

α, 0.05, and ℒ2
α, 0.05 from top to bottom.
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Figure 7.

Illustration of the harmonic spectra β0
r, 0.05, β0

r, 0.05, and β2
r, 0.05 (blue curves from top chart to

bottom chart) and the smallest non-zero eigenvalue λ0
r, 0.05, λ1

r, 0.05, and λ2
r, 0.05 (red curves

from top chart to bottom chart) of C60 molecule (the bottom left chart in Fig. 9) at different

filtration value α calculated from HERMES. Here, the x-axis represents the radius filtration

value α (unit: Å), the left-y-axes represents the number of zero eigenvalues of ℒ0
r, 0.05,

ℒ1
r, 0.05, and ℒ2

r, 0.05 from top to bottom, and the right-y-axes represents the first non-zero

eigenvalue of ℒ0
r, 0.05, ℒ1

r, 0.05, and ℒ2
r, 0.05 from top to bottom.

Wang et al. Page 27

Found Data Sci. Author manuscript; available in PMC 2021 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8.

Illustration of the harmonic spectra β0
α, 0.05, β0

α, 0.05, and β2
α, 0.05 (green curves from top chart

to bottom chart) and the smallest non-zero eigenvalue λ0
α, 0.05, λ1

α, 0.05, and λ2
α, 0.05 (yellow

curves from top chart to bottom chart) of C60 molecule (the bottom left chart in Fig. 9) at

different filtration value α calculated from HERMES. Here, the x-axis represents the radius

filtration value α (unit: Å), the left-y-axes represents the number of zero eigenvalues of

ℒ0
α, 0.05, ℒ1

α, 0.05, and ℒ2
α, 0.05 from top to bottom, and the right-y-axes represents the first

non-zero eigenvalue of ℒ0
α, 0.05, ℒ1

α, 0.05, and ℒ2
α, 0.05 from top to bottom.
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Figure 9.
The alpha carbon network plots of 15 proteins: PDB IDs 1CCR, 1NKO, 1O08, 1OPD,

1QTO, 1R7J, 1V70, 1W2L, 1WHI, 2CG7, 2FQ3, 2HQK, 2PKT, 2VIM, and 5CYT from left

to right and top to bottom. The color represents the normalized diagonal element of the

accumulated Laplacian at each alpha carbon atom.
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Figure 10.

Illustration of the harmonic spectra βq
α, 0 (blue curve) and the smallest non-zero eigenvalue

λq
α, 0 (red curve) of PDB ID 5CYT (the bottom left chart in Fig. 9) at different filtration value

α when q = 0, 1, 2. The βq
α, 0 are calculated from Gudhi, DioDe, and HERMES, and λq

α, 0 are

obtained only from HERMES. Here, the x-axis represents the radius filtration value α (unit:

Å), the left-y-axis represents the number of zero eigenvalues of ℒq
α, 0, and the right-y-axis

represents the first non-zero eigenvalue of ℒq
α, 0. Note that the harmonic spectra from three

methods are indistinguishable.
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Figure 11.

Illustration of the harmonic spectra β0
α, 0.5, β0

α, 0.5, and β2
α, 0.5 (green curves from top chart to

bottom chart) and the smallest non-zero eigenvalue λ0
α, 0.5, λ1

α, 0.5, and λ2
α, 0.5 (yellow curves

from top chart to bottom chart) of PDB ID 5CYT (the bottom left chart in Fig. 9) at different

filtration value α calculated from HERMES. Here, the x-axis represents the radius filtration

value α (unit: Å), the left-y-axes represents the number of zero eigenvalues of ℒ0
α, 0.5,

ℒ1
α, 0.5, and ℒ2

α, 0.5 from top to bottom, and the right-y-axes represents the first non-zero

eigenvalue of ℒ0
α, 0.5, ℒ1

α, 0.5, and ℒ2
α, 0.5 from top to bottom.
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Figure 12.
(a) The 3D secondary structure of PDB ID 1O08. The blue, purple, and orange colors

represent helix, sheet, and random coils of PDB ID 1O08. The ball represents the alpha

carbon of PDB ID 1O08. (b) Illustration of the harmonic spectra βq
α, 0 (blue curve) and the

smallest non-zero eigenvalue λq
α, 0 (red curve) of PDB ID 1O08 at different filtration value α

when q = 0, 1, 2. The βq
α, 0 are calculated from Gudhi, DioDe, and HERMES, and λq

α, 0 are

calculated only from HERMES. Here, the x-axis represents the radius filtration value α
(unit: Å), the left-y-axis represents for the number of zero eigenvalue of ℒq

α, 0, and the right-

y-axis represents for the non-zero eigenvalues of ℒq
α, 0. Note that the harmonic spectra from

three methods are indistinguishable.
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Figure 13.

Illustration of the harmonic spectra β0
r, 0, β0

r, 0, and β2
r, 0 (blue curves from top chart to bottom

chart) and the smallest non-zero eigenvalue λ0
r, 0, λ1

r, 0, and λ2
r, 0 (red curves from top chart to

bottom chart) of C60 molecule with one atom shifted (the bottom left chart in Fig. 9) at

different filtration value α calculated from HERMES. Here, the x-axis represents the radius

filtration value α (unit: Å), the left-y-axes represents the number of zero eigenvalues of

ℒ0
r, 0, ℒ1

r, 0, and ℒ2
r, 0 from top to bottom, and the right-y-axes represents the first non-zero

eigenvalue of ℒ0
r, 0, ℒ1

r, 0, and ℒ2
r, 0 from top to bottom.
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Figure 14.

Illustration of the harmonic spectra βq
α, 0 (blue curve) and the smallest non-zero eigenvalue

λq
α, 0 (red curve) of PDB ID 1CCR at different filtration value α when q = 0, 1, 2. The βq

α, 0

are calculated from Gudhi, DioDe, and HERMES, and λq
α, 0 are obtained only from

HERMES. Here, the x-axis represents the radius filtration value α (unit: Å), the left-y-axis

represents the number of zero eigenvalues of ℒq
α, 0, and the right-y-axis represents the first

non-zero eigenvalue of ℒq
α, 0. Note that the harmonic spectra from three methods are

indistinguishable.
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Figure 15.

Illustration of the harmonic spectra βq
α, 0 (blue curve) and the smallest non-zero eigenvalue

λq
α, 0 (red curve) of PDB ID 1NKO at different filtration value α when q = 0, 1, 2. The βq

α, 0

are calculated from Gudhi, DioDe, and HERMES, and λq
α, 0 are obtained only from

HERMES. Here, the x-axis represents the radius filtration value α (unit: Å), the left-y-axis

represents the number of zero eigenvalues of ℒq
α, 0, and the right-y-axis represents the first

non-zero eigenvalue of ℒq
α, 0. Note that the harmonic spectra from three methods are

indistinguishable.
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Figure 16.

Illustration of the harmonic spectra βq
α, 0 (blue curve) and the smallest non-zero eigenvalue

λq
α, 0 (red curve) of PDB ID 1OPD at different filtration value α when q = 0, 1, 2. The βq

α, 0

are calculated from Gudhi, DioDe, and HERMES, and λq
α, 0 are obtained only from

HERMES. Here, the x-axis represents the radius filtration value α (unit: Å), the left-y-axis

represents the number of zero eigenvalues of ℒq
α, 0, and the right-y-axis represents the first

non-zero eigenvalue of ℒq
α, 0. Note that the harmonic spectra from three methods are

indistinguishable.
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Figure 17.

Illustration of the harmonic spectra βq
α, 0 (blue curve) and the smallest non-zero eigenvalue

λq
α, 0 (red curve) of PDB ID 1QTO at different filtration value α when q = 0, 1, 2. The βq

α, 0

are calculated from Gudhi, DioDe, and HERMES, and λq
α, 0 are obtained only from

HERMES. Here, the x-axis represents the radius filtration value α (unit: Å), the left-y-axis

represents the number of zero eigenvalues of ℒq
α, 0, and the right-y-axis represents the first

non-zero eigenvalue of ℒq
α, 0. Note that the harmonic spectra from three methods are

indistinguishable.
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Figure 18.

Illustration of the harmonic spectra βq
α, 0 (blue curve) and the smallest non-zero eigenvalue

λq
α, 0 (red curve) of PDB ID 1R7J at different filtration value α when q = 0, 1, 2. The βq

α, 0 are

calculated from Gudhi, DioDe, and HERMES, and λq
α, 0 are obtained only from HERMES.

Here, the x-axis represents the radius filtration value α (unit: Å), the left-y-axis represents

the number of zero eigenvalues of ℒq
α, 0, and the right-y-axis represents the first non-zero

eigenvalue of ℒq
α, 0. Note that the harmonic spectra from three methods are

indistinguishable.
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Figure 19.

Illustration of the harmonic spectra βq
α, 0 (blue curve) and the smallest non-zero eigenvalue

λq
α, 0 (red curve) of PDB ID 1V70 at different filtration value α when q = 0, 1, 2. The βq

α, 0 are

calculated from Gudhi, DioDe, and HERMES, and λq
α, 0 are obtained only from HERMES.

Here, the x-axis represents the radius filtration value α (unit: Å), the left-y-axis represents

the number of zero eigenvalues of ℒq
α, 0, and the right-y-axis represents the first non-zero

eigenvalue of ℒq
α, 0. Note that the harmonic spectra from three methods are

indistinguishable.
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Figure 20.

Illustration of the harmonic spectra βq
α, 0 (blue curve) and the smallest non-zero eigenvalue

λq
α, 0 (red curve) of PDB ID 1W2L at different filtration value α when q = 0, 1, 2. The βq

α, 0

are calculated from Gudhi, DioDe, and HERMES, and λq
α, 0 are obtained only from

HERMES. Here, the x-axis represents the radius filtration value α (unit: Å), the left-y-axis

represents the number of zero eigenvalues of ℒq
α, 0, and the right-y-axis represents the first

non-zero eigenvalue of ℒq
α, 0. Note that the harmonic spectra from three methods are

indistinguishable.
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Figure 21.

Illustration of the harmonic spectra βq
α, 0 (blue curve) and the smallest non-zero eigenvalue

λq
α, 0 (red curve) of PDB ID 1WHI at different filtration value α when q = 0, 1, 2. The βq

α, 0

are calculated from Gudhi, DioDe, and HERMES, and λq
α, 0 are obtained only from

HERMES. Here, the x-axis represents the radius filtration value α (unit: Å), the left-y-axis

represents the number of zero eigenvalues of ℒq
α, 0, and the right-y-axis represents the first

non-zero eigenvalue of ℒq
α, 0. Note that the harmonic spectra from three methods are

indistinguishable.
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Figure 22.

Illustration of the harmonic spectra βq
α, 0 (blue curve) and the smallest non-zero eigenvalue

λq
α, 0 (red curve) of PDB ID 2CG7 at different filtration value α when q = 0, 1, 2. The βq

α, 0

are calculated from Gudhi, DioDe, and HERMES, and λq
α, 0 are obtained only from

HERMES. Here, the x-axis represents the radius filtration value α (unit: Å), the left-y-axis

represents the number of zero eigenvalues of ℒq
α, 0, and the right-y-axis represents the first

non-zero eigenvalue of ℒq
α, 0. Note that the harmonic spectra from three methods are

indistinguishable.
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Figure 23.

Illustration of the harmonic spectra βq
α, 0 (blue curve) and the smallest non-zero eigenvalue

λq
α, 0 (red curve) of PDB ID 2FQ3 at different filtration value α when q = 0, 1, 2. The βq

α, 0

are calculated from Gudhi, DioDe, and HERMES, and λq
α, 0 are obtained only from

HERMES. Here, the x-axis represents the radius filtration value α (unit: Å), the left-y-axis

represents the number of zero eigenvalues of ℒq
α, 0, and the right-y-axis represents the first

non-zero eigenvalue of ℒq
α, 0. Note that the harmonic spectra from three methods are

indistinguishable.
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Figure 24.

Illustration of the harmonic spectra βq
α, 0 (blue curve) and the smallest non-zero eigenvalue

λq
α, 0 (red curve) of PDB ID 2HQK at different filtration value α when q = 0, 1, 2. The βq

α, 0

are calculated from Gudhi, DioDe, and HERMES, and λq
α, 0 are obtained only from

HERMES. Here, the x-axis represents the radius filtration value α (unit: Å), the left-y-axis

represents the number of zero eigenvalues of ℒq
α, 0, and the right-y-axis represents the first

non-zero eigenvalue of ℒq
α, 0. Note that the harmonic spectra from three methods are

indistinguishable.
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Figure 25.

Illustration of the harmonic spectra βq
α, 0 (blue curve) and the smallest non-zero eigenvalue

λq
α, 0 (red curve) of PDB ID 2PKT at different filtration value α when q = 0, 1, 2. The βq

α, 0

are calculated from Gudhi, DioDe, and HERMES, and λq
α, 0 are obtained only from

HERMES. Here, the x-axis represents the radius filtration value α (unit: Å), the left-y-axis

represents the number of zero eigenvalues of ℒq
α, 0, and the right-y-axis represents the first

non-zero eigenvalue of ℒq
α, 0. Note that the harmonic spectra from three methods are

indistinguishable.
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Figure 26.

Illustration of the harmonic spectra βq
α, 0 (blue curve) and the smallest non-zero eigenvalue

λq
α, 0 (red curve) of PDB ID 2VIM at different filtration value α when q = 0, 1, 2. The βq

α, 0

are calculated from Gudhi, DioDe, and HERMES, and λq
α, 0 are obtained only from

HERMES. Here, the x-axis represents the radius filtration value α (unit: Å), the left-y-axis

represents the number of zero eigenvalues of ℒq
α, 0, and the right-y-axis represents the first

non-zero eigenvalue of ℒq
α, 0. Note that the harmonic spectra from three methods are

indistinguishable.
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Table 1.

The matrix representation of q-boundary operator and its qth-order persistent Laplacian with corresponding

dimension, rank, nullity, and spectra from alpha complex K0.6 → K0.6.

q q = 0 q = 1 q = 2

ℬq + 1
0.6, 0

AB BC CD DE EF DF AE
A
B
C
D
E
F

−1 0 0 0 0 0 −1
1 −1 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 1 −1 0 −1 0
0 0 0 1 −1 0 1
0 0 0 0 1 1 0

DEF
AB
BC
CD
DE
EF
DF
AE

0
0
0
1
1

−1
0

/

ℬq
0.6 A B C D E F

0 0 0 0 0 0

AB BC CD DE EF DF AE
A
B
C
D
E
F

−1 0 0 0 0 0 −1
1 −1 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 1 −1 0 −1 0
0 0 0 1 −1 0 1
0 0 0 0 1 1 0

DEF
AB
BC
CD
DE
EF
DF
AE

0
0
0
1
1

−1
0

ℒq
0.6, 0

2 −1 0 0 −1 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 3 −1 −1

−1 0 0 −1 3 −1
0 0 0 −1 −1 2

2 −1 0 0 0 0 1
−1 2 −1 0 0 0 0
0 −1 2 −1 0 −1 0
0 0 −1 3 0 0 1
0 0 0 0 3 0 −1
0 0 −1 0 0 3 0
1 0 0 1 −1 0 2

[3]

βq
0.6, 0

1 1 0

dim ℒq
0.6, 0

6 7 1

rank ℒq
0.6, 0

5 6 1

nullity ℒq
0.6, 0

1 1 0

Spec ℒq
0.6, 0

{0, 1, 1.5858, 3, 4, 4.4142} {0, 1, 1.5858, 3, 3, 4, 4.4142} {3}
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Table 2.

The matrix representation of q-boundary operator and its qth-order persistent Laplacian with corresponding

dimension, rank, nullity, and spectra from alpha complex K0.2 → K0.6.

q q = 0 q = 1 q = 2

ℬq + 1
0.2, 0.4

AB BC CD DE EF DF AE
A
B
C
D
E
F

−1 0 0 0 0 0 −1
1 −1 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 1 −1 0 −1 0
0 0 0 1 −1 0 1
0 0 0 0 1 1 0

/ /

ℬq
0.2 A B C D E F

0 0 0 0 0 0 / /

ℒq
0.2, 0.4

2 −1 0 0 −1 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 3 −1 −1

−1 0 0 −1 3 −1
0 0 0 −1 −1 2

/ /

βq
0.2, 0.4

1 / /

dim ℒq
0.2, 0.4

6 / /

rank ℒq
0.2, 0.4

5 / /

nullity ℒq
0.2, 0.4

1 / /

Spec ℒq
0.2, 0.4

{0, 1, 1.5858, 3, 4, 4.4142} / /
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