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Abstract

Diet is a significant modifiable risk factor for type 2 diabetes (T2D), and its effect on disease risk is under partial genetic
control. Identification of specific gene–diet interactions (GDIs) influencing risk biomarkers such as glycated hemoglobin
(HbA1c) is a critical step towards precision nutrition for T2D prevention, but progress has been slow due to limitations in
sample size and accuracy of dietary exposure measurement. We leveraged the large UK Biobank (UKB) cohort and a diverse
group of dietary exposures, including 30 individual dietary traits and 8 empirical dietary patterns, to conduct genome-wide
interaction studies in ∼340 000 European-ancestry participants to identify novel GDIs influencing HbA1c. We identified five
variant-dietary trait pairs reaching genome-wide significance (P < 5 × 10−8): two involved dietary patterns (meat pattern
with rs147678157 and a fruit & vegetable-based pattern with rs3010439) and three involved individual dietary traits (bread
consumption with rs62218803, dried fruit consumption with rs140270534 and milk type [dairy vs. other] with
4:131148078_TAGAA_T). These were affected minimally by adjustment for geographical and lifestyle-related confounders,
and four of the five variants lacked genetic main effects that would have allowed their detection in a traditional
genome-wide association study for HbA1c. Notably, multiple loci near transient receptor potential subfamily M genes
(TRPM2 and TRPM3) interacted with carbohydrate-containing food groups. These interactions were further characterized
using non-European UKB subsets and alternative measures of glycaemia (fasting glucose and follow-up HbA1c
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measurements). Our results highlight GDIs influencing HbA1c for future investigation, while reinforcing known challenges
in detecting and replicating GDIs.

Introduction
Diet is a major modifiable risk factor for type 2 diabetes and
related cardiometabolic traits, but a complete understanding of
the therapeutic potential of dietary intervention is limited by
the high inter-individual variability in glycaemic response (1).
The relationship between diet and hyperglycaemia is known
to be influenced by genetics (2,3), suggesting that gene–diet
interaction (GDI) analysis for glycaemic traits has the potential to
uncover novel genetic variants that modify the effect of dietary
intake on glycaemic response and diabetes risk. This approach
can contribute to our understanding of diet-related health dis-
parities between populations and inform the development of
precision nutrition.

Despite much interest in GDIs over the past two decades,
there have been few robust discoveries (4). This can be attributed
in part to the low statistical power of gene–environment inter-
action (GEI) analysis in general, which requires approximately
four times the sample size of a genetic main effect analysis to
detect associations of similar strength (5,6). The recent avail-
ability of both cohorts with hundreds of thousands of indi-
viduals, such as the UK Biobank (UKB), and computationally
efficient software programs for biobank-scale GEI analysis rep-
resents an opportunity to overcome power limitations and iden-
tify novel interactions of modest effect size (7,8). Recent anal-
yses at loci with genetic main effects in UKB have identified
GEIs impacting body mass index (BMI), using a series of expo-
sures including, but not limited to, food frequency questionnaire
(FFQ)-based diet measurements (9,10). However, the use of self-
reported dietary data as environmental exposures compounds
the power limitations of GEI analysis. FFQ-based intake esti-
mates are imprecise and influenced by numerous potentially
confounding socio-cultural factors (11), which may bias interac-
tion estimates toward the null hypothesis and further hamper
discovery. Empirical dietary patterns that combine correlated
single foods or nutrients provide one approach to deriving more
meaningful and robust representations of dietary behaviors. For
example, a recent genome-wide association study of dietary
behaviors in UKB identified genetic signals that were unique
to either individual foods or dietary patterns, emphasizing the
potential for discovery when using complementary and multi-
variate dietary traits (12).

Here, we leveraged the large-scale UKB dataset along with
a diverse set of dietary exposures to search for novel GDIs
impacting glycated hemoglobin (HbA1c), a blood biomarker
of hyperglycaemia and diagnostic biomarker for T2D. The
primary interaction analysis was conducted genome-wide in
a subset of unrelated individuals of European ancestry without
diabetes (N ∼ 340 000), using a series of individual diet traits
(e.g. cooked vegetable intake and level of fat in milk) as well as
principal components analysis (PCA)-based dietary patterns.
We identified five loci reaching genome-wide significance
(P < 5 × 10−8) and conducted comprehensive characterization
of their associations with sensitivity analyses incorporating
known confounders, multi-ancestry replication, and analysis
using related glycaemic traits.

Results
Dietary behaviors associate with HbA1c

Thirty dietary traits capturing type and overall frequency of a
variety of foods and beverages were derived from brief FFQs in
an unrelated subset of European-ancestry participants from the
UK Biobank (workflow in Fig. 1; UKB population characteristics
in Supplementary Material, Table S1). These traits included
semi-quantitative estimates of consumption frequency (such
as cooked vegetables, bread, coffee, and alcohol), food or drink
types (such as milk type [dairy vs. non-dairy milk] and decaf-
feinated vs. caffeinated coffee), and avoidance of specific foods
(such as wheat) (Supplementary Material, Table S2). Moderate
correlation between many traits, with a maximum Pearson
correlation of 0.43 between beef and lamb/mutton intake
(Supplementary Material, Fig. S1), motivated the derivation of
both global and food sub-group dietary patterns, combining
correlated foods into summary variables using PCA. Eight
empirical dietary patterns (dietary principal components, or
dPCs) were derived from the first principal component of
seven group-specific PCA on related foods (fruit & vegetable,
drinks, fish, meat, grains, dairy, and food avoidance; see
Supplementary Material, Table S2) and one PCA on the full set
of 30 dietary traits (global dPC) (Fig. 2A). The global dPC, which
explained 9.4% of the total variance in all dietary traits, remained
reflective of a general ‘prudent’ dietary pattern as has been
previously observed in UKB (12).

To first understand the relationship between these dietary
traits and HbA1c (collected from individuals on the same day)
independently of genetic background, we regressed HbA1c
on each of the dietary traits, finding associations at the
majority of dietary patterns and individual traits (32 of 38
traits at Bonferroni-corrected P < 0.05/38 = 0.0013) (Fig. 2B).
The strongest associations were observed for the grains dPC
(0.30 mmol/mol HbA1c per dPC standard deviation, 95% CI: 0.29
to 0.31, P < 1 × 10−300), which loads most strongly on bread type
(increased white vs. brown or whole grain bread), the ‘prudent’
global dPC (0.30 mmol/mol HbA1c per standard deviation, 95%
CI: 0.28 to 0.31, P < 1 × 10−300), which is also largely influenced
by bread type, and alcohol intake (−0.316 mmol/mol HbA1c
per standard deviation, 95% CI: −0.32 to −0.29, P < 1 × 10−300).
Many of these associations were substantially attenuated by
adjustment for geographic and lifestyle covariates, indicating
the presence of partial confounding (between 30 and 40%
reduction in effect size for the grains dPC, global dPC, and
processed meat intake, though these relationships remained
highly significant). Others, such as alcohol intake and bread
intake, remained equally strong in the adjusted model.

Genome-wide interaction studies

Genome-wide interaction studies (GWIS) were performed for
each of the 8 dPCs and 30 individual dietary trait exposures
to identify loci whose effect on HbA1c is modified by dietary
intake. Across the 38 GWIS, nine variants reached genome-
wide significance (P < 5 × 10−8) for their interaction effect,
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Figure 1. Participant selection and analysis workflow. UK Biobank participants underwent filtering based on genotyping quality control, relatedness, ancestry,

availability of dietary data, and diabetes status. Dietary traits were curated from FFQ responses and dietary patterns were derived from principal components analysis.

All 38 dietary traits were used in genome-wide interaction studies for HbA1c, with follow-up sensitivity, replication, and within-population analyses using related

glycaemic traits.

constituting five independent loci after clumping by 500 kb
windows (Fig. 3; Table 1). None of these signals passed a more
stringent threshold adjusted for multiple testing of 18.4 effective
traits (P < 5 × 10−8/18.4 = 2.72 × 10−9; see Materials and Methods).

Two of the five lead GDIs involved food group dPCs (meat
dPC-rs147678157 and fruit & vegetable dPC-rs3010439) and
three involved individual dietary traits (bread consumption-
rs62218803, dried fruit consumption-rs140270534, and milk
type [dairy vs. other]-4:131148078_TAGAA_T). After visual
inspection of the regional association plots (Supplementary
Material, Fig. S4–S8), we note that one of these interactions,
involving rs147678157, should be evaluated with particular
caution due to lower minor allele frequency (0.008), modest
imputation quality score (INFO = 0.76), and relative lack of
variants in linkage disequilibrium with similar interaction
associations. Main effects of the interacting dietary traits on
HbA1c were all strong, while genetic effects (as calculated
from a model without any interaction term) were absent other
than a small association at the meat-interacting rs147678157
(Table 1). To better characterize the interactions at our lead
variants, we conducted two sets of stratified analyses: testing
the genetic effects on HbA1c after stratifying our dietary
exposures into quintiles and testing the dietary effects on
HbA1c after stratifying by genotype. Genotypic effects all
displayed a qualitative interaction pattern, in which the sign
of the genetic effect differed across strata of dietary behaviors
(Supplementary Material, Fig. S2). This accounts for the lack of

marginal genetic effect of these variants on HbA1c. In contrast,
we found evidence of quantitative interactions, in which the
dietary effect changed only magnitude across genotype groups,
at three out of the five loci (rs147678157, rs62218803, and
rs3010439; Fig. 3B). For example, in those with two copies of
the reference allele at rs62218803, each standard deviation
of bread consumption associates with an HbA1c increase of
0.22 mmol/mol. The strength of this association decreases by
37% to 0.14 mmol/mol in those with two copies of the alternate
allele, meaning that bread consumption may be less detrimental
in these individuals.

Of the primary interactions, two were in or near transient
receptor potential subfamily M genes, TRPM2 and TRPM3, despite
their genomic location in two different chromosomes (21 and 9,
respectively). Their protein products, as well as other transient
receptor potential (TRP) family proteins, have been implicated in
insulin secretion and downstream glycaemia (13). Furthermore,
some of these index variants had marginal interaction effects
on HbA1c with other dietary traits (such as the meat dPC-
interacting rs147678157 with the global dPC and tea intake, as
well as the dried fruit-interacting rs140270534 with the fruit &
vegetable dPC), whereas other lead GDIs were apparently unique
to the dietary exposure used in discovery (such as the milk type-
interacting 4q28.3 variant; Supplementary Material, Table S3).
Each dPC-interacting variant showed some degree of interaction
with at least one of that dPC’s constituent traits, indicating that
the use of PCA-based dietary patterns increased our power
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Figure 2. Dietary traits and associations with HbA1c. (A) Heatmap displays loadings for each of the 30 dietary traits characterizing the seven food group dPCs and

one global dPC. Higher positive loadings denote higher contributions of the trait (y-axis) to the associated dPC (x-axis). (B) Forest plot of coefficients from regression of

HbA1c on each dietary trait. Models included either the same set of covariates as in the primary GWIS (‘Primary’; purple) or those from sensitivity model 3 (‘Adjusted’;

adjusted for birthplace, assessment center, BMI, smoking, educational attainment and physical activity; purple). Error bars correspond to 95% confidence intervals.

for the detection of interactions. For example, P-values for
rs147678157 were between 1 × 10−6 and 1 × 10−3 for four of
five individual meat consumption traits, while the meat dPC
interaction reached P = 5.45 × 10−9.

Sensitivity models were conducted at all five index variants
to assess the potential effects of confounding and interaction
model biases (see Methods). Interaction effect estimates
were consistent after adjustment for genotype×covariate
interactions (sensitivity model 1 [SM1]), birthplace and study
center (SM2), and BMI, smoking, physical activity, and edu-
cational attainment (SM3) (Supplementary Material, Fig. S3,
Supplementary Material, Table S4). The effects were only
modestly attenuated when including individuals with diabetes

(SM4), whose diagnosis and treatment would directly affect
HbA1c via both behavioral changes and medication use. The
small degree of change in the interaction effect estimates
across these sensitivity models indicates that the observed
relationships are not primarily due to confounding by known
correlates of diet such as socioeconomic status or a generally
healthy lifestyle.

Replication across ancestries and cohorts

To assess the translation of these GDIs in non-European
populations, we conducted a multi-ancestry replication of the
five significant interactions in individuals of West African
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Figure 3. Genome-wide GDI analysis results. (A) Manhattan plot shows minimum -log10 (P-values) as a function of genomic position across all 38 GWIS. Colors

correspond to independent loci with index variants having P < 5 × 10−8, and variants are assigned to a peak if within 50 kb of an index variant and having P < 1 × 10−5.

Index variants are annotated with the trait, variant rsID (where available), and annotated gene. (B) Dietary effect sizes on HbA1c (change in HbA1c associated with a

standard deviation increase in the associated dietary trait; y-axis) after stratification by genotype (closest genotype based on dosages; x-axis), using the primary analysis

covariates. Points and bars denote stratified main effect estimates and 95% confidence intervals from the primary model. Genotype-stratified effects are shown only

for genotype groups containing >100 individuals. Effect estimates are in terms of mmol/mol HbA1c. s.d.: standard deviation.

(AFR; N = 4763 after sample QC), East Asian (EAS; N = 1936),
and South Asian (SAS; N = 5849) ancestry based on the same
dietary data in UKB. Although we had low statistical power
to detect these signals (Supplementary Material, Table S5),
evidence for replication across ancestries would provide more
robust support for these interactions. One variant-trait pair,
rs62218803 and bread consumption (slices per day), was
nominally significant (beta = −0.38, P = 0.022) and directionally
consistent in the East Asian ancestry group. One nominal and
directionally consistent interaction was observed for a dPC-
interacting variant with the individual contributing dietary
trait (Supplementary Material, Table S6), specifically for the fruit
& vegetable dPC locus (cooked vegetables-rs3010439 in EAS,
beta =−0.24, P = 0.012). Overall, the majority of variant-trait-
ancestry combinations did not show meaningful replication,
though we note the limited power afforded by the much smaller
sample size.

To explore this further, we gathered all variant-trait pairs
reaching suggestive significance (P < 1 × 10−5) in the primary

analysis and tested for an enrichment of shared interaction
coefficient signs in the multi-ancestry analysis. As shown in
Table 2, we did not find evidence of such an enrichment in
any of the ancestries, an observation that could be attributed
partially to lower sample sizes, differences in dietary intake and
its socio-cultural correlates, and known differences in genetic
architecture (e.g. haplotype blocks, allele frequencies, and causal
variants).

Follow-up analyses at lead GDIs

To further explore these top loci, we tested for GDIs using follow-
up FFQ and HbA1c data (again, collected on the same follow-up
visit day) from a subset of UKB individuals from the primary
analysis that participated in a repeat assessment center visit
between 2012–2013 (N = 10 644) and for GDIs using fasting glu-
cose from the subset of individuals who were fasting at their
baseline visit (N = 10 879). The follow-up analysis can provide
evidence for the stability of these interactions over time, and

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab109#supplementary-data
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the fasting glucose analysis indicates whether these interac-
tions are generalizable to other measures of hyperglycaemia.
Though significance levels were weak, possibly due to sample
size limitations, the directions of the interaction effects were
consistent with the primary analysis for all variant-trait pairs
(Supplementary Material, Table S7). The strongest associations
included the meat dPC-rs147678157 interaction impacting fast-
ing glucose (P = 0.02) and the milk type-4:131148078_TAGAA_T
locus interaction evaluated at follow-up (P = 0.005). Given the
generally lower statistical power for these analyses, we tested
for an enrichment of directional consistency compared to the
primary analysis across all 959 suggestive variant-trait pairs
(P < 1 × 10−5 in any of the 38 GWIS), and found strong evidence
for enrichment using a subset of the same European individuals
(66% directionally consistent with P = 8.3 × 10−26 for follow-up
and 57% directionally consistent with P = 3.9 × 10−6 for fast-
ing glucose), an enrichment we did not find among our non-
European replication analyses (Table 2).

To better characterize these loci at a molecular level, we
used PhenoScanner to examine cross-trait associations with
DNA methylation, gene expression, metabolites, and proteins,
including potential proxy variants with r2 > 0.8 in Europeans.
Variant rs3010439 (fruit & vegetable dPC-interacting), lies within
an intron of TRPM3 and has strong associations with the methy-
lation of nearby CpG sites within TRPM3 (including cg20555507
[P = 4.42 × 10−14] and proxy variant rs3095766 with cg14165911
[P = 8.61 × 10−286]). The other TRPM variant, rs62218803 (bread-
interacting), is located less than 400 bp downstream of
TRPM2, yet there were no significant (P < 5 × 10−8) expression-
quantitative trait loci (eQTLs) in any tissues contained in
the associated GTEx dataset. However, approximately 100 kb
upstream of rs62218803, and in complete linkage equilibrium,
is a missense coding variant in PFKL with no interaction effect
(P = 0.92) but a strong genetic main effect on HbA1c in our analy-
sis (rs17850433, P = 7.8 × 10−23; Supplementary Material, Fig. S4).
Variant rs140270534 (dried fruit-interacting) lies in an intron of
the pseudogene ANKRD62P1-PARP4P3 and acts as an eQTL for
XKR3 in whole blood (P = 5.52 × 10−13 in the eQTLGen dataset
(14)). XKR3 codes for a homolog of the putative membrane
transporter and Kell blood group component XK, but has no
clear link to glycaemic regulation.

To test the robustness of these interactions in an inde-
pendent cohort, replication was sought in individuals of
European ancestry from the US-based Women’s Genome
Health Study (N = 20 095). Though we were only able to test
for 3 variant-trait pairs surpassing genotype imputation
quality filters, no interactions were detected at P < 0.05
(Supplementary Material, Table S8). We note that this lack of
replication may reflect a variety of factors including hetero-
geneity in dietary behaviors and measurement as well as lack of
statistical power.

Discussion
We have conducted the largest GDI study for HbA1c to-
date, uncovering multiple interactions between genotype and
dietary traits (both individual diet questionnaire items and
empirical diet patterns) that influence HbA1c. We further
characterized these loci through multi-ancestry replication and
other validation analyses within UKB, and showed that these
loci have the potential to have a meaningful impact on the
diet-hyperglycaemia relationship.

HbA1c is both a diagnostic and prognostic biomarker
for T2D, reflecting cumulative blood glucose over a two to

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab109#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab109#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab109#supplementary-data


Human Molecular Genetics, 2021, Vol. 30, No. 18 1779

Table 2. Aggregate replication and validation of suggestive (P < 1 × 10−5) index variant-trait pairs

Dataset Sample size # variants testeda % directionally consistent Pb

West African 4763 958 52% 0.16
East Asian 1936 486 48% 0.25
South Asian 5849 738 51% 0.96
Follow-up 10 644 959 66% 8.3×10−26

Fasting glucose 10 879 959 57% 3.9×10−6

aVariant numbers vary across ancestries due to the MAF > 0.005 criterion.
bChi-square test P-value for shared interaction effect signs with primary analysis.

three-month period prior to measurement [13]. Therefore, it
provides a long-term quantitative measure of glucose levels,
making it an appealing outcome for GDI analysis with FFQ
dietary exposures collected at the same study visit and which
similarly reflect long term usual intake over a 1-year period. It
is important to note that HbA1c is more strongly influenced
by postprandial, rather than fasting, glucose blood glucose
concentrations (15). In this light, it may not be surprising that our
fasting glucose analysis in a subset of the primary population
did not strongly validate our top interaction associations.
Furthermore, while HbA1c is a valuable continuous measure
for hyperglycaemia, it is also independently influenced by red
blood cell characteristics, such that its genetic influences are
often classified as either glycaemic or erythrocytic [15]. However,
based on the dietary traits used as exposures and the candidate
genes identified, it does not appear that these interactions are
affecting HbA1c via red blood cell traits.

The primary analysis highlighted interactions within or near
two independent TRPM subfamily genes. TRPM2 and TRPM3 are
members of a larger family of 28 cation-permeable TRP channels,
many of which are modulated by a diverse array of natural
and dietary compounds (16). Both TRPM2 and TRPM3 have been
shown to affect insulin secretion by beta cells in animal models
(17,18), highlighting a potential role in glycaemic control. The
TRPM3 variant (rs3010439), which showed an interaction with
the fruit and vegetable dPC in European-ancestry individuals
and cooked vegetable intake in East Asian-ancestry individu-
als, is particularly interesting in that the TRPM3 protein prod-
uct is inhibited by citrus fruit metabolites, specifically narin-
genin and hesperetin (19). In general, our finding of interactions
between TRPM-annotated variants and multiple carbohydrate-
heavy foods (bread and fruit) provides an avenue for further
exploration.

The effect sizes of the interactions identified here may
be practically meaningful towards the implementation of
personalized nutrition approaches. For example, based on
the stratified models, an increase of one standard deviation
in bread consumption (approximately 8 slices of bread per
week) associates with an HbA1c increase of 0.22 mmol/mol in
reference homozygotes at rs62218803 (TRMP2). However, this
effect size is decreased by 37% to 0.14 mmol/mol in alternate
allele homozygotes. Likewise, the protective effect of the fruit
and vegetable-increasing dietary pattern (0.13 mmol/mol per
standard deviation in reference homozygotes) is magnified by
70% in alternate allele homozygotes at rs3010439 (TRPM3). Still,
these effect estimates should be treated with caution, as they
are not only susceptible to residual confounding, but also the
Winner’s Curse phenomenon, in which effects from hypothesis-
free studies tend to be overestimated in discovery analyses (20).

The large sample size used in this study along with the use
of data-driven dietary patterns improved our statistical power to

uncover GDIs of small effect size. For example, the combination
of related foods into empirical dietary patterns led to the iden-
tification of genome-wide significant interaction effects that
were present with only modest significance with the individual
foods themselves. However, we were not able to demonstrate
replication of these interactions in the independent Women’s
Genome Health Study, and showed only partial nominal replica-
tion of the interactions in the secondary within-UKB analyses.
This incongruence could be due to a variety of factors, including
differences in dietary variability across ancestries and countries
(US vs. UK), differences in the dietary questionnaires used, and
differences in the extent to which these food groups act as
proxies for underlying traits (such as socioeconomic status or
general healthy behaviors). The difficulty in replication of GDIs
was highlighted in the null findings of a systematic replication
effort for gene–macronutrient interactions influencing type 2
diabetes risk in the EPIC-InterAct study (21). The authors empha-
sized rigor in reporting and replication in diverse populations as
strategies to combat potential false positive findings. While our
in-depth replication approach, which included diverse ances-
tries, independent cohorts, and alternative outcomes, was an
important strength of this study, it also reinforces the difficulty
in replicating GDIs, even among biologically relevant candidate
genes. To address known obstacles to gene–environment
interaction detection (22), we suggest that future investigations
seek out populations with substantial variability in the dietary
behaviors of interest and use dietary datasets with greater gran-
ularity. These more precise dietary datasets can complement
the dPC-based discovery approach employed here by helping
with ‘phenotypic fine-mapping’ to pinpoint the relevant dietary
components.

Additional limitations should be considered when evaluat-
ing these results. First, the UKB FFQ contains a limited set of
questions on high-level food behaviors and therefore does not
enable the calculation of reliable nutrient or total energy intake
estimates. While the use of dietary patterns, which reflect higher
level patterns of behavior, may be less influenced by total energy
intake (TEI), interactions involving these patterns as well as the
individual dietary traits may still be susceptible to residual con-
founding by total energy intake. However, we note that adjust-
ment for both BMI and physical activity, which are highly corre-
lated with TEI (23) had a minimal impact on the results. Second,
the individual dietary traits and dPCs used here are likely reflec-
tive to some extent of confounding factors such as socioeco-
nomic status, as has been previously observed (12), and are sus-
ceptible to reverse causation (impacts of known diabetes risk or
family history on dietary behaviors). While our sensitivity anal-
yses aimed to control for socio-cultural effects on dietary intake,
it remains possible that our top interactions are actually cap-
turing additional lifestyle exposures, which, given their major
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differences across ethnicities and countries, would explain our
limited replication.

In summary, we have leveraged the large sample size of the
UK Biobank and an empirical dietary pattern-based approach to
conduct a well-powered scan for GDIs influencing HbA1c. We
uncovered multiple biologically relevant genetic loci that may
influence the relationship between diet and hyperglycaemia.
Our findings indicate the value of GDI analysis in large-scale
datasets and the use of composite dietary exposure variables,
while also reinforcing the persistent difficulty in detecting and
replicating interactions based on self-reported dietary question-
naires. This study can serve as a basis for future investigations
into the interplay of lifestyle and genetics for type 2 diabetes
prevention.

Materials and Methods
UK Biobank genetic data

UKB is a large prospective cohort with both deep phenotyping
and molecular data, including genome-wide genotyping, on over
500 000 individuals ages 40–69 living throughout the UK between
2006 and 2010 (24). Genotyping, imputation, and initial quality
control on the genetic dataset have been described previously
(25). Additionally, we removed individuals flagged for failing
UKBiLEVE genotype quality control, heterozygosity or missing-
ness outliers, individuals with putative sex chromosome ane-
uploidy, individuals with self-reported vs. genetically inferred
sex mismatches, and individuals whom withdrew consent at the
time of analysis. Furthermore, only genetic variants with minor
allele frequency (MAF) > 0.005 and imputation INFO score > 0.5
were included, resulting in a set of approximately 11 100 000
autosomal variants for analysis. Work was conducted on genetic
data release version 3, with imputation to both Haplotype Refer-
ence Consortium and 1000 Genomes Project (1KGP), under UK
Biobank application 27 892. This work was conducted under a
Not Human Subjects Research determination (NHSR-4298 at the
Broad Institute of MIT and Harvard).

UK Biobank phenotypes

Phenotype data processing and other downstream analy-
ses were conducted using R version 3.6.0 (26). HbA1c (UKB
field 30 750) was measured in blood samples through high-
performance liquid chromatography (HPLC) using a Bio-Rad
VARIANT II Turbo platform. HbA1c values and effect sizes are
reported here in units of mmol/mol, as originally provided by
UKB. Type 1 and type 2 diabetes were defined by expanding
‘probable’ and ‘possible’ definitions of diabetes from a previously
developed algorithm (27) to take into account information
from repeat assessment center visits and touchscreen diabetes
diagnosis (UKB field 2443). After the removal of individuals with
type 1 or type 2 diabetes, outliers for HbA1c were removed using
a cutoff of three interquartile ranges below or above the 25th
and 75th percentiles, respectively.

Dietary data processing was based on the procedure
described by Cole and colleagues (12). All dietary phenotype
derivation was conducted on a homogenous population of
unrelated individuals of European (EUR) ancestry (N = 340 705),
as determined by: (1) limiting to unrelated, high quality samples
used in ancestry PCA conducted by UKB (Bycroft 2018), (2)
projection of genotypes onto 1KGP phase 3 PCA space, (3) outlier
detection to identify the largest cluster of individuals in which
all clustered individuals fell within 1KGP EUR PC1 and PC2 limits,

and (4) self-report as one of the following: ‘British’, ‘Irish’, ‘Any
other white background’, ‘White’, ‘Do not know’, or ‘Prefer not
to answer’.

The UKB FFQ was completed during the same baseline
study visit in which the blood draw for HbA1c measurement
was taken. It consists of quantitative continuous variables
(e.g. field 1289, tablespoons of cooked vegetables per day),
ordinal non-quantitative variables depending on overall dai-
ly/weekly frequency (e.g. field 1329, overall oily fish intake),
food types (i.e. milk, spread, bread, cereal or coffee) or
foods never eaten (field 6144, dairy, eggs, sugar and wheat).
Supplementary Material, Table S2 provides a list of UKB fields
relating to the corresponding FFQ question for each dietary
habit, which can be viewed in the UKB Data Showcase (http://bio
bank.ndph.ox.ac.uk/showcase/). Ordinal variables were ranked
and set to quantitative values, while food types or foods
never eaten were converted into a series of binary variables.
A single high-resolution overall alcohol intake variable was
derived by combining questions on either ‘drinks per month’ or
‘drinks per week’ for each alcoholic beverage type (answered by
different individuals depending on their reported overall alcohol
frequency (field 1558)) while median-imputing values for those
who reported consuming alcohol but responded either ‘Do not
know’ or ‘Prefer not to answer’ to specific drink frequency.

Quantitative traits (QTs) were then inverse rank normal
transformed and missing data were median-imputed for all
traits. Dietary patterns (dietary principal components, or dPCs)
represent the first principal component from a series of PCA
(using the prcomp function in base R), including seven PCA on
groups of related dietary traits and one global PCA using all
30 dietary traits (Supplementary Material, Table S2). Given the
substantial correlation between many of these traits, we derived
an effective number of traits for multiple testing correction: PCA
was conducted on the 38 scaled and mean-imputed traits, and
the associated eigenvalues λ were used to calculate the number

of effective traits as
(∑38

k=1λk

)2
/
∑38

k=1λ
2
k = 18.4 (28).

Additional phenotypes were retrieved for use in sensitivity
models. Physical activity was calculated in units of excess
metabolic equivalents (METs) as previously described (29),
with median-imputation used to replace ambiguous values
(‘Prefer not to answer’, ‘Do not know’, or missing) for physical
activity-related questionnaire items. Tobacco smoking behavior
was assigned a score based on questionnaire responses: 0
(‘No’), 1 (‘Only occasionally’), or 2 (‘Yes, on most or all days’).
Educational attainment was derived in terms of US years of
schooling equivalents as previously described (30), with median-
imputation used to replace ambiguous values (‘Prefer not to
answer’ or missing).

Genome-wide interaction studies

Basic power calculations were performed using the genpwr
package for R (31), using parameters: outcome standard
deviation = 3.71 (based on the HbA1c standard deviation in the
European group), genetic main effect = 0 mmol/mol/allele, diet
main effect = 0.15 mmol/mol/s.d., minor allele frequency = 0.25,
and assuming an additive genetic model. For each dPC and
individual dietary trait (38 exposures in total), a GWIS was
performed using the following model:

HbA1c ∼ g + D + g ∗ D + covariates (1)

where g represents the imputed genotype dosage and D rep-
resents the dietary exposure. Covariates in the primary model

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab109#supplementary-data
http://biobank.ndph.ox.ac.uk/showcase/
http://biobank.ndph.ox.ac.uk/showcase/
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab109#supplementary-data
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included sex, age, age2, and 10 genetic principal components
to control for population stratification estimated using Flash-
PCA2 (32). Interaction analysis was performed using GEM (Gene–
Environment interaction analysis in Millions of samples) v1.1
(7) with robust standard error estimates to protect against bias
due to heteroscedasticity and mis-specification of the genotype-
HbA1c or diet-HbA1c relationship. Summary statistics from the
primary GWIS for each of the 38 GWIS have been deposited in
the T2D Knowledge Portal (https://t2d.hugeamp.org/).

An extensive set of sensitivity models were then applied
to loci reaching genome-wide significance (P < 5 × 10−8). First,
additional interaction parameters were included in the model
between genotype and all covariates (sensitivity model 1 [SM1])
to adjust for possible confounding by the genotype × covariate
interaction effect that is not accounted for by the covariate main
effect (33). Second, birthplace and study center (and their inter-
actions with genotype) were included as additional covariates
(SM2) to further account for potential coincident ancestry and
cultural substructure in the population. Third, BMI, smoking,
physical activity, and educational attainment (and their interac-
tions with genotype) were additionally added to the model (SM3)
to address confounding by specific socio-cultural factors. Fourth,
SM3 was repeated while including individuals with diabetes
(SM4) to test for the potential of collider bias via the diabetes
exclusion criterion in the primary model.

Top variants were assigned to genes based on the NCBI
dbSNP database where available, and otherwise based on the
nearest gene within 10 kb (in the case of the rs147678157-
APOBEC3B assignment). PhenoScanner v2 (34,35) was used to
explore variant associations with phenotypic traits and molecu-
lar quantities (e.g. eQTL as retrieved from the GTEx v7 release
and methylation-quantitative trait loci (36)). Queries included
proxy variants having r2 > 0.8 with the query variant in European
populations. Stratified analyses were performed using linear
regression models in R and the same set of covariates as in the
primary interaction analysis. Separate stratified models were
performed with respect to the relevant dietary trait (quintiles)
and genotype (three groups, with hard-calls generated by round-
ing dosages to the nearest genotype [0/1/2]). Stratified analyses
were performed in two ways: testing for the effect of hard-
called genotypes among each of 5 dietary trait quintiles, and
vice versa, testing for the effect of the dietary trait in each of 3
genotype groups. Stratified models were tested using base linear
regression models in R with the same set of covariates as in the
primary interaction analysis.

Multi-ancestry replication and testing in related
glycaemic traits

Multi-ancestry replication was performed using three non-
European ancestry groups in UKB (West African, East Asian,
and South Asian). Using 1KGP phase 3 as the training dataset,
we built probabilistic Gaussian mixture models to represent
normally-distributed subpopulations within the overall popu-
lation, assigning data points to the multivariate normal com-
ponents that maximize the component posterior probability.
Ten-fold cross-validation was used with different initialization
states and clustering was evaluated using the adjusted Rand
index score. The model with the highest adjusted Rand index
score for each ancestry was used to cluster individuals in UKB
into ancestry subgroups based on their 1KGP projected PCs
and self-reported ethnicities (field 2100). Multi-ancestry dietary
and clinical phenotypes were derived as described above for
European individuals, and dPCs were derived by projecting

ancestry-specific dietary traits onto the European principal
component loadings. Interaction analysis was conducted for
top variant-trait pairs under the primary model described above
in Europeans.

To test the robustness of the top associations, two GDI anal-
yses using related glycaemic traits (follow-up HbA1c and fasting
glucose levels) were performed based on the primary model in
Europeans. For the follow-up analysis, all variables were taken
from the second assessment center visit (i.e. the first follow-up),
with dPCs projected as described above in the multi-ancestry
analysis. For the fasting glucose analysis, all phenotypes and
analysis parameters were identical to the primary model in
Europeans, other than the replacement of HbA1c as the outcome
with fasting glucose, defined as random glucose in participants
who reported having fasted for at least 8 hours prior to the blood
draw (UKB fields 30 740 and 74).

General agreement between the primary results and repli-
cation results was tested via an enrichment test for shared
interaction effect signs. Suggestive variant-trait pairs, defined
as having interaction P < 1 × 10−5 in the primary analysis, were
collected and pruned using 500 kb windows. For each within-
UKB replication approach, a Chi-square test for shared signs of
interaction effects was performed.

Replication was also undertaken in the Women’s Genome
Health Study, a prospective US-based cohort of ∼23 000 females
45 years or older, described in detail elsewhere (37). After quality
control procedures, the final interaction analysis was conducted
in 20 095 females of European ancestry, free of a history of
diabetes, and whose current diet had not ‘greatly’ changed in
comparison to the last 5 years. The HbA1c phenotype was pro-
cessed in a similar manner as described for UK Biobank, and was
collected within an approximately 12-week overlapping period
with the WGHS FFQ. Semi-quantitative dietary exposures and
fruit and vegetable food groups were converted to continuous
variables as described previously (38) and inverse normal trans-
formed. Using an Rsq cutoff of 0.50, three variant-trait pairs were
tested for replication. The rs140270534 (dried fruit) interaction
was tested with overall fruit intake in WGHS, the rs3010439 (fruit
and vegetable dPC) was tested with overall fruit and vegetable
intake in WGHS, and the 4:131148078 indel (milk) was tested with
milk consumption in WGHS derived by binarizing individuals
who drink any amount of skim or whole milk versus those that
answer never or rarely for both. Effect sizes on HbA1c were
converted from % to mmol/mol.

Supplementary Material
Supplementary Material is available at HMG online.
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