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Abstract

Single Particle Tracking (SPT) is a powerful class of tools for analyzing the dynamics of

individual biological macromolecules moving inside living cells. The acquired data is typically in

the form of a sequence of camera images that are then post-processed to reveal details about the

motion. In this work, we develop a local time-varying estimation algorithm for estimating motion

model parameters from the data considering nonlinear observations. Our approach uses several

well-known existing tools, namely the Expectation Maximization (EM) algorithm combined with

an Unscented Kalman filter (UKF) and an Unscented Rauch-Tung-Striebel smoother (URTSS),

and applies them to the time-varying case through a sliding window methodology. Due to the shot

noise characteristics of the photon generation process, this model uses a Poisson distribution to

capture the measurement noise inherent in imaging. In order to apply our time-varying approach to

the UKF, we first need to transform the measurements into a model with additive Gaussian noise.

This is carried out using a variance stabilizing transform. Results from simulations show that our

approach is successful in tracing time-varying diffusion constants at a range of physically relevant

signal levels. We also discuss the initialization for the EM algorithm based on the available data.

I. Introduction

Single particle tracking (SPT) is an important class of techniques for studying the motion of

single biological macromolecules. With its ability to localize particles with an accuracy far

below the diffraction limit of light and the ability to track these particles across time, SPT

continues to be an invaluable tool in understanding biology at the nanometer-scale. It has

been applied to the study of a wide variety of molecules, including proteins [1], mRNA

molecules [2], viruses [3], and more. While SPT encompasses many specific experimental

techniques [4], [5], common to most of these is that measurements come in the form of CCD

camera images which are analyzed to infer particle trajectories and to estimate parameters.

Typically, these models are assumed time-invariant, but in reality parameters can vary

according to local conditions or the actions of the cellular machinery.

There are several motion models relevant to biophysical applications, including diffusion,

confined diffusion, directed motion, and combinations [6]. Given noisy observations of such
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a model (e.g. from producing a trajectory by localizing a fluorescent particle in each frame

of an image sequence), the most common technique to estimate the motion model

parameters is to fit the chosen model to the Mean Square Displacement (MSD) curve. This

is simple and popular approach has been enormously successful in probing biomolecular

dynamics [7]. However, the resulting estimates depend on choices such as the number of

points to fit and the scheme does not account for many factors such as observation noise and

motion blur arising from the camera shutter time [8].

Since the diffusion model is straightforward, it is amenable to analysis and to the use of

optimal estimation. This was recognized and developed in [8]–[10] where it has been shown

that such schemes outperform simple MSD. Using optimal techniques such as ML

estimation places the problem on firm theoretical grounding, ensuring that the analysis

method is both consistent and asymptotically efficient, and provides a rigorous

understanding of the accuracy and performance of the estimator. A similar approach has also

been developed for the analysis of confined diffusion [11].

In general, techniques for model parameter estimation assume a simple linear observation of

the particle position corrupted by additive white Gaussian noise [12]. The actual data,

however, are intensity measurements from a CCD camera that are well modeled as Poisson-

distributed random variables with a rate depending on the true location of the particle and on

experimental realities, including background intensity and the optics used. This already

nonlinear model becomes even more complicated at low signal intensities (common to SPT

data) where noise models specific to the type of camera being used become crucial [13],

[14].

In SPT, especially at low SBR intensities, we thus face a nonlinear estimation problem. In

[15], this nonlinear estimation problem (with time-invariant parameters) was solved by using

Sequential Monte Carlo (SMC) techniques in the context of the EM algorithm. The

approach is general, being able to handle nearly arbitrary nonlinearities in both the motion

and observation models, at the cost of significant computational burden. Recently, in [9],

two of the authors addressed the computational load challenge by replacing the particle-

based methods by an Unscented Kalman filter (UKF) and Unscented Rauch-Tung-Striebel

smoother (URTSS) [16], [17], which reduces the computational complexity drastically with

very little compromise in performance.

In this work, we consider the time-varying setting and develop an estimation algorithm

based on local likelihood estimation, focusing on diffusion with a nonlinear observation

model. The idea of local likelihood is very old and is a natural development of the sliding

window approach [18]. However, a thorough theoretical understanding of the method was

not developed until the 1990s in the statistics literature under the name local least squares or

local polynomial modelling [18], [19]. Despite these developments, the theory has not

diffused widely outside the statistics literature and so a number of basic insights are still

ignored in other application domains.

There are, of course, alternatives to a local modeling approach. For example, there is

significant literature on modeling data using a global polynomial fit. However, this method
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potentially needs a large number of components to yield a low bias [19], and, as a

consequence, may introduce over-parametrization. The local approximation approach, in

general, only requires a small number of parameters.

In this work, we restrict our attention to 2-D diffusion since: (i) diffusion is the workhorse of

motion modeling in biophysical systems at the nanometer scale; (ii) there are many 2-D

biophysical settings of interest, such as motion in plasma membranes; and (iii) this allows us

to concentrate the discussion on a straightforward and concrete setting. As the corresponding

dynamic model is linear with additive Gaussian noise, applying the UKF to the state update

equations is straightforward. The observation model, however, involves Poisson distributed

noise whose parameters depend upon the state. To apply the UKF, the model must be

converted into one where the measurement noise is Gaussian. Based on prior work [9], we

use the Anscombe transform.

One important aspect in the EM algorithm is the selection of the initial value of the

parameter. It is usually the case that, in a real application, the user has prior information

about the values of the parameters in their data based on domain knowledge. However, this

information is not necessarily reliable or might reflect a bias of the experimenter, and thus it

is important to provide a more formal approach to initialization. It is well-known that the

selection of the initial estimate of the parameter of interest is critical in the performance of

the EM algorithm, see e.g. [20]. Here, we investigate two initialization approaches. The first

one is based on a warm start, which means we use the last value of the algorithm obtained in

the previous window. The second approach is given by the spectral factorization (SF) [12] of

an approximated time series to the SPT model. Results for different kind of signal-to-

background levels (SBR) are then compared based on the two aforementioned initializations.

II. Problem formulation

A. Motion model

The model of 2-D anisotropic diffusion in discrete time is

xt + 1 = xt + wk, wk ∼ 𝒩(0, Q), (1)

where xt ∈ ℝ2 represents the location of the particle at time t and Q ∈ ℝ2 × 2 is a covariance

matrix given by

Q = q1 0
0 q2 =

2DxΔt 0
0 2DyΔt

. (2)

Here Dx and Dy are independent diffusion coefficients and Δt is the time between frames of

the image sequence.
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B. Observation model

Because the single particle is smaller than the diffraction limit of light, the image on the

camera is described by the point spread function (PSF) of the instrument. In 2-D (and in the

focal plane), the PSF is well approximated by

PSF(x, y) = exp − x2

2σx
2 − y2

2σy
2 , (3)

where the particle is located at the origin, the pair (x, y) represents a position on the plane x-

y at which the PSF is being evaluated, and σx and σy are given by

σx = σy = 2λ
2πNA . (4)

Here λ is the wavelength of the emitted light and NA is the numerical aperture of the

objective lens being used [21]. This PSF is then imaged by the CCD camera.

Assuming segmentation has been done (a standard preprocessing step), the image acquired

by the camera is composed of P pixels arranged into a P × P square array. The pixel size is

Δx by Δy with the actual dimensions determined by the physical size of the CCD elements

on the camera and the optical magnification. At time step t. the expected photon intensity

measured for the pth pixel is

λp, t = ∫
xp, i
min
xp, t
max

∫
yp, t
min
yp, t
max

G
ΔxΔyPSF x1t

− ξ, x2t
− ξ′ dξdξ′,

where G denotes the peak intensity of the fluorescence and the integration bounds are over

the given pixel.

In addition to the signal, there is always a background intensity rate arising from

autofluorescence and out-of-focus fluorescence. While this background can vary across the

sample, the region covered by the P pixels is small and it is assumed that Nbgd is a constant,

uniform rate that is independently estimated (though it can be integrated into our inference

problem in Sec. III). Combining these signals, the measured intensity in the pth pixel at time

t is given by

I p, t ∼ Poiss λp, t + Nbgd , (5)

where Poiss(·) represents a Poisson distribution.

C. Measurement model transformation

The UKF applies to nonlinear observation models with additive Gaussian noise [17]. The

model in (5) can be transformed into such a form using a variance stabilizing transformation

such as the Anscombe [22] or the Freeman and Tukey [23] transformation, or at sufficiently

large intensities, it can be directly approximated by a Gaussian model [24]. These different
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approaches were compared in [9] where it was found that in general the Anscombe

transform performs the best, especially at low signal levels and thus this is the approach we

take here. Applying this transformation, the observation model (5) becomes

I p, t ≈ 2 λp, t + 3
8 − 1

4 λp, t
+ vk, vk ∼ 𝒩(0, 1) . (6)

III. Inference problem

Our goal is to use a local likelihood approach to handle time-varying estimation. We begin

with a single window where the problem reduces to the time-invariant case.

A. Time-invariant parameter estimation via EM

Consider the problem of identifying an unknown parameter θ ∈ ℝ
nθ for the nonlinear state

space model

xt + 1 = f t xt, wt, θ , yt = ht xt, vt, θ , (7)

Our goal is to find an ML estimate of θ from the data YN ≜ y1, …, yN . The ML estimates

can be found through the optimization problem:

θ = argmax
θ

logpθ YN . (8)

This optimization can only be solved in closed form in certain simple cases as pθ(YN) is

typically intractable.

An alternative way to find the estimate θ  that optimizes (8) is by using the EM algorithm

[20]. EM defines a hidden (or latent) variable and iteratively optimizes the log-likelihood

function l(θ) = pθ(YN) through a new function, 𝒬,

𝒬(θ, θ (i)) = 𝔼 pθ(XN, YN) ∣ YN, θ (i) . (9)

The calculation of 𝒬(θ, θ (i)) is called the Expectation (E)-step at the ith iteration. It has been

shown [20] that any choice of θ (i + 1) such that 𝒬(θ (i + 1), θ (i)) > 𝒬(θ(i), θ (i)) also increases the

original likelihood. Thus, the E-step is followed by a Maximization (M)-step to produce the

next estimate,

θ (i + 1) = argmax
θ

𝒬(θ, θ (i)) . (10)

Notice that (9) can be decomposed as, see e.g. [25]
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𝒬(θ, θ (i)) = I1(θ, θ (i)) + I2(θ, θ (i)) + I3(θ, θ (i)), (11)

where

I1(θ, θ (i)) = 𝔼 logp(x0 ∣ θ) ∣ YN, θ (i) , (12a)

I2(θ, θ (i)) = ∑
t = 1

N
𝔼 logp(xt ∣ xt − 1) ∣ YN, θ (i) , (12b)

I3(θ, θ (i)) = ∑
t = 1

N
𝔼 logp(yt ∣ xt) ∣ YN, θ (i) . (12c)

In the SPT context, the unknowns are the diffusion constants, captured in the (unknown)

variance Q. Hence, our E-step is given by (ignoring constant terms):

−2𝒬 = − Nlog Q−1 + ∑
t = 1

N
tr{Q−1𝔼{(xt − xt − 1)

(xt − xt − 1)T, ∣ YN, θ (i)}},
(13)

where | · | and tr(·) indicate the determinant and trace operators, respectively. The M-step is

simply obtained by setting the derivative of 𝒬 with respect to Q−1 to zero and solving to

obtain:

Q(i + 1) = 1
N ∑

t = 1

N
{𝔼{(xt − xt − 1)(xt − xt − 1)T ∣ YN, θ (i)}} .

This depends on the smoothed distributions p(xt|YN) and p(xt, xt−1|YN). If the underlying

model in (III-A) is linear with Gaussian noise then these distributions are easily obtained

[26] using the Kalman Filter. For nonlinear systems, an analytical solution cannot be found.

Therefore, either an approximation or numerical approach must be used. Here we take an

approximation approach and apply the UKF and URTSS. Finally, from (2), our estimates are

given by:

Dx = 0.5
Δt q1, Dy = 0.5

Δt q2 . (14)

B. Time-varying likelihood

In this section, we describe an algorithm to trace time-varying parameters associated with

the general model in (1), using as a base the algorithm in section III-A. The idea is to pose a
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time-varying likelihood which is time-invariant in a window of a nominated length. The

likelihood is then optimized in this window and the window then shifted.

The local likelihood is defined as:

lt(θt) = ∑
k = 1

N
Kk, tl(yk ∣ θt), (15)

where Kk, t: = K(k − t
h ) is usually called the kernel, h is the window length, t is a point within

the window, usually the middle point, and k indicates any point within the window. Different

values for h can be used, as well as different kernels, and the most appropriate selection is a

nontrivial issue. One common choice is the Epanechnikov kernel, see e.g [19], which is used

throughout this work.

Due to the nonlinear measurements of SPT, obtaining the likelihood function is intractable

and we use the auxiliary 𝒬 function of the EM algorithm as an approximation of the

likelihood, extending it to the time-varying setting through the local approach. We then

consider the following equation:

𝒬t(θt, θ t
(i)) = ∑

k = 1

N
Kk, t𝔼{pθt

(xk, yk) ∣ YN, θ t
(i)} . (16)

From (11), we can write

𝒬t(θt, θ t
(i)) = I1(θt, θ t

(i)) + I2(θt, θ t
(i)) + I3(θt, θ t

(i)) . (17)

As noted above, in the SPT setting, the parameter θt only appears in I2 so that the time-

varying E-step is

𝒬t(θt, θ t
(i)) = ∑

k = 1

N
𝔼{Kt, klogp(xk ∣ xk − 1) ∣ YN, θ t

(i)} . (18)

To optimize this time-varying function, we use a similar procedure as in the time-invariant

case, that is, we set the derivative of Qt with respect to θt to zero and solve. The resulting

estimates optimize the (windowed) likelihood within window h. The estimation algorithm

continues when the time points are shifted by one unit and finishes when the last data point

is included in the window. Of course, the shifting can be done by more than one unit to

reduce computation, see e.g. [19].

To summarize, the local likelihood approach introduces a time-varying E-step, denoted by

𝒬t, optimized within a window h. This, in turn, will optimize the log-likelihood function

within the same window, to create the local likelihood approach. For our SPT problem,

discarding the constant terms and the parameters for the initial conditions, we obtain
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𝒬t(θt, θ t
(i)) = − log Qt

−1 ∑
k = 1

N
Kk, t +

tr{Qt
−1[S11 − 2S01

T + S00]}
(19)

with

S11 = ∑
k = 1

N
Kk, t[xk ∣ hxk ∣ h

T + Pk ∣ h], (20)

S01 = ∑
k = 1

N
Kk, t[xk ∣ hxk − 1 ∣ h

T + Pk, k − 1 ∣ h]T, (21)

S00 = ∑
k = 1

N
Kk, t[xk − 1 ∣ hxk − 1 ∣ h

T + Pk − 1 ∣ h] . (22)

The values for xk ∣ h, Pk|h, and Pk,k−1|h are the smoothed state, variance, and covariance,

which are found using the UKF and URTSS, for details see [9].

The M-step is completed by taking the derivative of 𝒬t with respect to Qt
−1 and setting it to

zero, obtaining as a result:

Qt
(i + 1) = 1

∑k = 1
h Kk, t

[S11 − 2S01
T + S00] . (23)

Remark 1. To focus on our time-varying approach, we use the naïve version of EM.

However, we note that there is a robust version for the M-step, see e.g. [27], based on the

Cholesky factorization, with improved robustness.

C. Convergence

It is known that the EM algorithm converges to a stationary point of the likelihood function

(not necessarily the global maximum) so long as 𝒬(θ (i + 1), θ (i)) > 𝒬(θ (i), θ (i)) [28]. We have

shown ( [29] that the local likelihood does increase at each step. Then, since our algorithm is

based on EM, it inherits its convergence properties. Of course, this also implies we cannot

guarantee convergence to the true value because the EM algorithm itself only yields the

global maximum under certain special cases [28, ch.3].

D. Initialization of the EM algorithm

One crucial aspect to consider is the initial estimate for the EM algorithm. If the initial value

of the estimate is too far from the actual value, and the log-likelihood has multiple stationary
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points, then the EM algorithm might not converge to the true value of the parameters, see

e.g. [28, p.33]. Focusing on the x-axis, we rewrite (1) as

xk + 1
1 − xk

1 = wk
1, (24a)

yk = xk
1 + vk, vk ∼ 𝒩(0, R) (24b)

Through a small abuse of notation, the output in (24b), yk, is no longer the camera image a

time k but the position of the particle in the x-axis. This trajectory can be estimated from the

camera images by using a variety of methods with one a fit of the image intensities to a

Gaussian model being the most common [30]. We now consider the model in (24) to

calculate our initial estimate for Q. We rewrite (24) as yk+1 − yk = wk + (z − 1)vk, where z is

the shift operator. Our initial estimate of Q, namely Q(o), is given by [12]

q1(o)
= (1 − c)2σϵ

2, Q(o) = q1(o)
0

0 q2(o) , (25)

where σϵ and c are the parameters of an equivalent MA(1) model of the form yk − yk−1 = (z

− c)ϵk, ϵk ∼ 𝒩(0, σϵ
2), that are estimated using data from (24b) using, for example, Prediction

Error Methods (PEM).

IV. Demonstration and Analysis

We generate data according to the optical parameters and other fixed constants shown in

Table I. These were chosen to replicate experimental settings found in many SPT

experiments. Notice that we produce a step-like change in the diffusion constant at time tc =
200, from 1 × 10−3 to 2×10−3 μm2/s. For space reasons, results are presented only for a

single axis. Note that in general, real SPT experiments are often data-poor as the biological

samples can typically only be viewed for short periods of time. In our simulated data, then,

we have considered a somewhat short total of 400 images. Here, and in the sequel, we select

the tuning parameters for the UKF as follows: [α κ β]T = [1 0 2]T. For details about these

parameters, see e.g. [9].

A. Demonstration of the effect of kernel K(v)

We first demonstrate the effect of the inclusion of a Epanechnikov kernel function K(v), for

two different peak intensities G = {10, 50} with 10 being a relatively weak signal and 30 a

relatively strong one. Fig. 1 shows five lines corresponding to two different window sizes

each with and without a kernel is used or not, and the real value of Dx. As expected, the

kernel smoothing effect is stronger with shorter windows and with lower signal level as in

Fig. 1(a) compared to Fig. 1(b). These results thus indicate that a kernel is an important

element of the estimation process.
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B. Demonstration of window sizes

We now fix the kernel to the Epanechnikov form and look at the effect of the different

window sizes. The results for h = 50,100, at two different SBR levels, running 50 different

simulation trials, are shown in Fig. 2 with the median indicated by the center lines and the

middle two quantiles by the shaded area. Color corresponds to window size with 50 in blue

and 100 in red. As expected, the smaller window size leads to a quicker response but larger

variance. Comparing the results in Fig. 2(a) and (b), we note an increased variance in the

estimate at lower SBR.

Table II shows the RMSE (over 50 runs) for different window lengths and signal intensities.

The table indicates improvement in terms of accuracy for longer window lengths but with

diminishing returns as the window increases. Note that while here the window length is

chosen empirically, there are data-driven methods available, e.g. the Steins Unbiased Risk

Estimator (SURE) [31], to select good window sizes.

C. Effect of initial estimate for the EM algorithm

Next, we study the effect of using the initialization given by the SF decomposition versus a

warm start, comparing again at low and high SBR. The results at a background rate of Nbgd

= 1 and a signal intensity of G = 6, shown in Fig. 3(a), indicate that in this regime,

initialization using SF fails to give a reasonable estimate while the warm start still leads to

reasonable values. This can be explained in part by the fact that the SF decomposition uses

an observation model of position plus noise, generated from using Gaussian fits to each

image to localize the particle. This fitting becomes unreliable when the SBR drops too low.

The warm start, on the other hand, does not rely on such estimates and uses only the full,

nonlinear model. At higher SBR, we observe from Fig. 3(b) that both the warm start and the

initialization given by the SF give almost identical results. From this we conclude that the SF

decomposition is most useful to initialize the first window only with the warm start being

used in all subsequent windows.

D. Longer slides

The proposed scheme involves non-trivial calculations as the EM needs to be run across the

entire set of data in each window. While these computations can be performed off-line,

implying that the computational complexity is not a major concern, it is often a matter of

convenience to a user for estimates to be performed as quick as possible. One simple

approach for reducing the overall computation time is to simply shift the window by more

than one data point each time. In Fig. 4, we show the results of running the time-varying

approach, stepping forward by 1, 5, 20, and 50 steps. Somewhat surprisingly, there is little

loss in accuracy, though of course there is loss of sensitivity to multiple, rapid changes in

parameter values with larger shifts.

V. Conclusions

In this paper we introduced an algorithm for time-varying parameter estimation in single

particle tracking where we have a complex, nonlinear measurement model. The proposed

algorithm considers the use of previously developed tools, namely the EM algorithm
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combined with a UKF and the URTSS, in a local approach. Using physically accurate

simulations, we explored the effect of using a kernel in the window, in the window lengths,

and in the initialization method for the EM algorithm, all at two different SBRs. We also

considered the effect of increasing shifts in the window as a means of reducing the

computational load of the analysis technique.
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Fig. 1.
Effect of the kernel with window sizes of 50 (purple, with kernel; yellow, without kernel)

and 100 (red, with kernel; green, without kernel). (a) Low SBR: Ngbd = 1, G = 10. (b) High

SBR: Ngbd = 1, G = 50.
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Fig. 2.
Effect of window length h=50 (light blue) and h=100 (red) with median across 50 trials

indicated by dashed lines and the center two quantiles by the shaded region. (a) Low SBR:

Nbgd = 1, G = 10. (b) High SBR: Nbgd = 1, G = 50.
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Fig. 3.
Effect of initialization algorithm, comparing a warm start (blue) against an SF-

approximation (red). Median across 50 trials indicated by dashed lines and the center two

quantiles by the shaded regions. (a) Nbgd = 1, G = 6. (b) Nbgd = 1, G = 10.
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Fig. 4.
Comparison of different shift sizes with shifts of 1 (yellow), 5 (green), 20 (blue), and 50

(red). The true parameter is shown in purple.
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TABLE I

Parameter settings

Symbol Parameter Values

Δt Image period (discrete time step) 100 ms

T Number of images per dataset 400

tc time of change 200s

P Number of pixels per squared image 25

Dx
1 Diffusion coeff. in x direction before tc 0.001 μm2/s

Dx
2 Diffusion coeff. in x direction after tc 0.002 μm2/s

Dy
1 Diffusion coeff. in y direction before tc 0.001 μm2/s

Dy
2 Diffusion coeff. in y direction after tc 0.002 μm2/s

Δx Length of unit pixel 100 nm

Δy Width of unit pixel 100 nm

λ Emission wavelength 540 nm

NA Numerical aperture 1.2
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TABLE II

Root mean square error (RMSE) for different window lengths and signal intensity (G)

window h (RMSE ± std) ×10−3 G=50 (RMSE ± std) ×10−3 G=10

50 0.8006 ± 0.1408 0.9197 ± 0.2752

75 0.7616 ± 0.1406 0.8179 ± 0.2626

100 0.7375 ± 0.1386 0.7622 ± 0.2547

125 0.7144 ± 0.1347 0.7227 ± 0.2515
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