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Abstract

In this work, we study a general approach to the estimation of single particle tracking models with 

time-varying parameters. The main idea is to use local Maximum Likelihood (ML), applying a 

sliding window over the data and estimating the model parameters in each window. We combine 

local ML with Expectation Maximization to iteratively find the ML estimate in each window, 

an approach that is amenable to generalization to nonlinear models. Results using controlled­

experimental data generated in our lab show that our proposed algorithm is able to track changes 

in the parameters as they evolve during a trajectory under real-world experimental conditions, 

outperforming other algorithms of similar nature.

I. INTRODUCTION

Single Particle Tracking (SPT) refers to a class of experimental techniques and mathematical 

algorithms for following small particles (less than 100 nm) moving inside living cells, 

including viruses, proteins, and strands of RNA [1]. By labeling the particles with a 

fluorescent reporter such as a fluorescent protein or quantum dot, the motion of the tag 

and, by extension, the motion of the particle can be observed. While there are many different 

schemes, the general paradigm in SPT involves capturing a series of widefield fluorescence 

images, localizing the fluorescent particle in each frame to form a trajectory, and then 

analyzing the trajectory to estimate motion model parameters. Knowing these parameters 

provides vital information to understanding the underlying biological processes and has been 

used to understand processes from viral infection [2], intracellular communication between 

neurons [3], and other applications.

There are many models that are relevant to the biophysical application domain including 

(among others) free diffusion, confined diffusion, directed motion, and combinations of 

these, such as joint diffusion and directed motion [4]. Among the variety of motion models, 

diffusion is arguably the simplest and one of the most commonly used models when 

describing biomolecular motion. Because it is a fairly straightforward model, it is amenable 

to analysis and the use of optimal estimation. This was recognized and developed in [5]–

[8]. Using optimal techniques such as Maximum Likelihood (ML) estimation places the 
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problem on firm theoretical grounding, ensures that the analysis method is both consistent 

and asymptotically efficient, and provides a rigorous understanding of the accuracy and 

performance of the estimator. A similar approach has also been developed for the analysis of 

confined diffusion [9].

Existing ML schemes in SPT assume that model parameters, while unknown, are fixed 

(time invariant). There have been efforts on extending the analysis to determine the most 

likely model among a given set [4] but these also assumed fixed parameters [10]. One of 

the authors has considered time-varying parameters using a jump Markov model [11] but 

such models do not allow for continuously varying parameters, assume that the number of 

levels to which the parameter can jump is known, and impose a probabilistic structure on 

the changing parameter values that may be non-physical. In [12], the authors considered for 

the first time a windowed approach for the pure diffusion setting, combined with a strategy 

of change detection to refine the estimation of the diffusion constants after initial estimates 

were generated.

In this work, we develop an alternative estimation algorithm based on local likelihood 

estimation, extending beyond simple diffusion to general linear models typically found in 

SPT with time-varying parameters. The main idea is to take a window of data and fit 

a time-invariant parameter model in the window. Then the window is moved along by a 

fixed amount and the process repeated to trace out time-varying parameters. One of the 

fundamental insights from the statistical literature [13], [14] is that rectangular windows 

induce a kind of Gibbs-ringing (familiar from Fourier analysis) which can produce bias 

in the estimates. Thus, only smooth windows should be used. Unfortunately, in a lot of 

the applied literature this basic insight is unknown and rectangular windows are still very 

common.

The problem of estimating diffusion constants can be translated to one of estimating the 

process noise covariance matrix. This is a well-studied problem with a variety of approaches 

in the literature, e.g., maximum likelihood [15], [16], Bayesian estimation [17], covariance 

matching [15], and correlation techniques [18]. Some of these works are designed for 

adaptive filtering, including [15], [19]–[21]. A fair comparison against these adaptive 

innovation-based algorithms is carried out in [22] where it is shown that the algorithm 

introduced in that paper outperforms the others. In the present work, then, we compare our 

method to that of [22]. It is important to note, however, that our method is more general than 

that of [22], allowing for estimation of any of the model parameters and not just the process 

covariance.

II. SPT MODEL

SPT refers to a broad collection of experimental techniques and data analysis algorithms 

for studying the motion of single, labeled biological macromolecules moving in their 

native environments, including inside living cells. The basic paradigm is to collect a series 

of images from a CCD camera, localize the particle in each of the images, link these 

positions into a trajectory, and then analyze the trajectory for motion model parameters 

using, typically, a curve fit to an MSD curve. Localization can be done using a variety of 
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different algorithms, ranging from simple centroid calculations through full ML estimation 

[23]–[25]. One of the most common techniques is a fit of the intensity in the image to 

a simple Gaussian profile, yielding an accuracy on the order of 10 nm, well below the 

diffraction limit of light.

Given a trajectory, analysis typically proceeds by selecting a parameterized model and using 

the trajectory to identify those parameters. In this work we consider the following quite 

general model (expressed here in the x-axis only with similar models holding in the other 

axes):

xk + 1 = atxk + bt + wk, wk N 0, qt ,
yk = xk + vk, vk N 0, rt , (1)

where xk, yk, wk, vk ∈ ℝ, qt = 2DtΔt is the variance of the process noise defined by the 

diffusion coefficient Dt and the sampling time Δt, and rt is the variance of the measurement 

noise as generated by a variety of processes, including shot noise due to the physics of 

photon generation in fluorescence and read-out noise in the camera. System (1) can be used 

to represent several models important in the SPT application. For example, setting at = 1, bt 

= 0 describes pure diffusion; if we choose at < 1, bt = 0, we have the Ornstein-Uhlenbeck 

model that can capture tethered motion of a biomolecule or be used to approximate confined 

diffusion [9], [26]. We note that the restriction to one dimension in (1) is for simplicity of 

presentation only. The extension to the multi-dimensional setting is straightforward since 

motion in the different axes is generally considered to be independent.

The model in (1) also allows for time-varying parameters. For example, the process 

noise qt can vary as the particles move into different regions of the cells with different 

local environments, interact with different species in their surroundings, or go through 

biochemical changes due to the natural activity in the cell. This insight will set up the 

conditions for the examples given in Sec. IV-B. For notation purposes, we add subindex 

t to a parameter to indicate that it is time-varying, and remove the subindex t when it is 

presumed to be time-invariant.

Despite the complex reality of measurement noise, it is often modeled as a simple Gaussian 

white noise process. The Gaussian approximation works well at high signal-to-noise levels 

but does break down at low intensities, necessitating a more complex description of the 

data [27]. In general, the measurement noise rt has reasonably static statistics as it is 

driven primarily by the experimental equipment. However, rt may also due to non-uniform 

background or changes in illumination intensity during the measurements.

Our goal, then, is to develop an algorithm based on local ML estimation that can track 

the time-varying parameters of motion in (1), namely, at, bt, qt and rt. (Of course, if some 

parameters in the model are known a priori or can be independently measured, one should 

use that value instead of trying to estimate it from the data; the approach below is easily 

modified for estimating a subset of these parameters.)
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III. INFERENCE PROBLEM

Our goal is to use a local likelihood approach to handle time-varying estimation. We begin 

with a single window where the problem reduces to the time-invariant case.

A. Time-invariant parameter estimation via EM

Consider model (1). We define β, the parameter vector containing all the unknowns, that is, 

β = [Γ q r]T, where Γ = [a b]. The ML estimation problem (for a particular window) is then 

given by

β = argmax
β

l(β), (2)

where l(β) is the log-likelihood function defined as l(β) = log p(YN|β) and YN is the 

observed data defined as YN = y1,...,yN. For convenience and future reference, we also 

define XN = {x1,...,xN}.

Many authors have worked on problem (2) for model (1) (or on variations) using the 

EM algorithm, see, e.g., [28]–[32] and references therein. The EM algorithm produces a 

sequence of estimates β (i), i = 1, 2, ⋯, of the unknown parameter β, which is guaranteed to 

converge to a local maximum of the log-likelihood function l(β) [32]. The basic idea is to 

use a hidden1 variable, which in our case is taken to be the underlying particle trajectory XN, 

to create an auxiliary function Q, which approximates the log-likelihood function. The EM 

algorithm is summarized in Algorithm 1.

1The terminology arises from the statistics literature.
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Algorithm 1:

Time invariant EM

It turns out that, under quite general conditions, if the estimate β (i + 1) is chosen as in (4), 

then the sequence of numbers l(β (i)), i = 1, 2, ⋯ is monotonically increasing, and therefore the 

parameter sequence β (i) converges to a local maximum of the log-likelihood function l(β) 

[32].

It is well-known, see e.g. [33, p.343], that for the system in (1), with time-invariant 

parameters (at = a, bt = b, qt = q, rt = r), the associated E-step (ignoring constant terms 

and the parameters of the initial condition) is given by

Q β, β (i) = E −2l(β) ∣ Y N, β (i) = − Nlogq−1

− Nlogr−1 + ∑
k = 1

N
E yk − xk

2r−1 ∣ Y N, β (i) +

∑
k = 1

N
E xk + 1 − Γzk

2q−1 ∣ Y N, β (i)

(5)

where, for convenience, we have defined zk = xk uk
T . Notice that we have included an 

input uk with enough energy (different to the constant 1) that does not exist in the original 

model (1), with the purpose of improving the estimation of bt (or b for the time-invariant 

case). E ⋅ ∣ Y N, β (i)  refers to the expected value given the incomplete data YN, see e.g. 

[28], [29]. For details about the optimization of the auxiliary function Q (the M-step), we 

refer to [29], where a general robust numerical implementation can be found.
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B. Time-varying estimation using local likelihood

In this section, we describe an algorithm to trace time-varying parameters associated with 

(1). We pose a time-varying likelihood, which is time-invariant in a window of a nominated 

length h, optimize in this window, and continue the process by leaving one sample out 

and taking a new one in order to keep the same window size. The process finishes when 

we have included the last available sample. There are alternative ways to local modeling. 

For example, there is much literature on how to model data using a global polynomial 

fit. However, this method can potentially have the drawback of needing a large number 

of components to have a reasonably low bias [14], and, as a consequence, may lead 

to over-parametrization, which has an effect on the variance of the estimate. The local 

approximation approach, in general, only requires a small number of parameters.

The local likelihood is defined as:

lt βt = ∑
k = 1

N
Kk, tl yk ∣ βt , (6)

where Kk, t: = K k − t
ℎ  is the kernel, h is the window length2, t is a point within the window, 

usually the middle point, k indicates any point within the window, and l(yk|βt) is the 

likelihood of yk|βt. Different values for h can be used, as well as different kernels, and 

appropriate selection of them is a nontrivial issue, see e.g. [14]. However, it is important 

to use smooth windows to minimize the effects caused by the Gibbs ringing phenomenon, 

which is achieved by using Kk,t to create a window with rounded edges, see e.g. [34]. 

Examples of such kernels can be found from the following expression

K(v) =
1

β(1/2, γ + 1) 1 − v2 , if v ≤ 1,

0, otherwise
(7)

where K(v) ≥ 0 and ∫−∞
∞ K(v)dv = 1. For γ = {0, 1, 2}, we obtain the uniform, Epanechnikov, 

and biweight kernels, respectively. The kernel progressively downweights data points far 

from the kernel centre. In this way, data points are introduced smoothly into the windowed 

neighbourhood.

If we now multiply (6) by −2, consider (5), take E ⋅ ∣ Y N, β t
(i)  on both sides, then we can 

find that the time-varying auxiliary function is given by

Qt βt, β t
(i) = E −2l βt ∣ Y N, β t

(i)
(8)

where the log-likelihood l(βt) is given by (ignoring constant terms and the initial condition)

2or bandwidth in the statistics literature
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−2l βt = ∑
k = 1

N
Kk, tl yk ∣ βt , (9)

with l defined as

l yk ∣ βt : = xk + 1 − Γtzk
2qt−1 + yk − xk

2rt−1 . (10)

Remark 1: Notice that the difference of Qt with respect to the Q (found in the time­

invariant EM) is the inclusion of the kernel function K(v), where v := (k − t)/h, and the time 

dependancy of the parameters of interest. We have added the sub-index t in this function to 

denote that it depends on the time-varying parameter βt.

For our scalar case, and discarding the constant terms and the parameters for the initial 

conditions, we can obtain the following auxiliary function Qt

Qt βt, β t
(i) = − logqt−1 + logrt−1 ∑

k = 1

N
Kk, t +

qt−1 S11 − S01
T Γt

T − ΓtS01 + ΓtS00Γt
T +

rt−1 ∑
k = 1

N
Kk, t yk − xk ∣ ℎ

2 + Pk ∣ ℎ , with

(11)

S11 = ∑
k = 1

N
E Kk, txk + 1

2 ∣ Y N, β t
(i)

= ∑
k = 1

N
Kk, t xk + 1 ∣ ℎ

2 + Pk + 1 ∣ ℎ ,
(12)

S01 = ∑
k = 1

N
E Kk, t

xkxk + 1
ukxk + 1

∣ Y N, β t
(i)

= ∑
k = 1

N Kk, t xk + 1 ∣ ℎxk ∣ ℎ + Pk + 1, k ∣ ℎ
T

Kk, tukxk + 1 ∣ ℎ
,

(13)

S00 = ∑
k = 1

N
E Kk, t

xk
2 xkuk

ukxk uk
2 ∣ Y N, β t

(i)

= ∑
k = 1

N Kk, t xk ∣ ℎ
2 + Pk ∣ ℎ Kk, tukxk ∣ ℎ

Kk, txk ∣ ℎuk Kk, tuk
2

(14)

and where the values of xk ∣ ℎ, Pk, k − 1 ∣ ℎ, and Pk|h are defined by the smoothed distributions 

within the appropriate window. In our setting, these can be calculated from the Kalman 
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smoother equations within the window h, see e.g. [35]. Kk,t is taken out of the expected 

values since it is deterministic.

The algorithm also depends upon choosing a window length h = hoN where ho << 1. The 

choice of ho affects the rate of change of the parameters that can be followed as well as 

the accuracy and robustness to noise. Typically some trial and error, as well as experience, 

is needed to select an appropriate window size. However, there are data-based methods that 

can be used based on the Steins Unbiased Risk Estimator (SURE) [36].

C. Optimization of the time-varying E-step

We now optimize the time-varying E-step. Taking the derivatives of Qt with respect to 

Γt, Qt
−1 and Rt

−1 and setting them to zero yields:

Γ(i + 1) = S01S00
−1,

Qt
(i + 1) = 1

n S11 − S01
T Γt

(i + 1) T − Γt
(i + 1)S01 −

Γt
(i + 1)S00 Γt

(i + 1) T ,

Rt
(i + 1) = 1

n ∑
k = 1

N
Kk, t yk − xk ∣ ℎ yk − xk ∣ ℎ

T + Pk ∣ ℎ
T ,

(15)

where n = ∑k = 1
N Kk, t.

The time-varying estimation algorithm is summarized in Algorithm 2.
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Algorithm 2:

Time-varying EM

While not applied here, we note that there are several approaches to improve the numerical 

robustness of the Kalman filtering and smoothing algorithms such as extending the work in 

[29] or using an SVD decomposition, see e.g. [37].

D. Convergence

It is well-known that the only requirement needed in the EM algorithm to converge to a 

stationary point of the likelihood function (which is not necessarily the global maximum) 

is that Q β (i + 1), β (i) > Q β (i), β (i) . In fact, this is assured to occur when another auxiliary 

function found in the EM algorithm, known as ℋ β, β (i) , is proven to be non-increasing; for 

details see e.g. [38].

The next lemma shows that the local likelihood does increase at each step of the EM 

iteration. Since our algorithm is based on EM, it inherits these same convergence properties. 

Of course, this also implies we cannot guarantee convergence to the true value because the 

EM algorithm itself only yields the global maximum under certain special cases [38, ch.3].

Lemma 1: In our scheme, the proposed lt(βt) defined in (6) has the following property:

lt β t
(i + 1) > lt βt

(i) .
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Proof. Following the reasoning in [38], we show that the inclusion of 

the kernel Kk,t does not affect the non-decreasing nature of the function 

ℋ βt, β t
(i) : = E ∑k = 1

N Kk, tlogpβ xk ∣ yk ∣ Y N, β t
(i) . We have for any βt

ℋ βt, β t
(i) − ℋ β t

(i), β t
(i) =

E ∑
k = 1

N
Kk, tlogpβt xk ∣ yk ∣ Y N, βt

(i) − E ∑
k = 1

N
Kk, t

logpβt
(i) xk ∣ yk ∣ Y N, β t

(i)

= E ∑
k = 1

N
Kk, tlog

pβt xk ∣ yk
pβt

(i) xk ∣ yk
∣ Y N, β t

(i)

= ∑
k = 1

N
Kk, tE log

pβt xk ∣ yk
pβ(i) xk ∣ yk

∣ Y N, β t
(i)

≤ ∑
k = 1

N
Kk, tlog E

pβt xk ∣ yk
pβt

(i) xk ∣ yk
∣ Y N, β t

(i) = 0.

(16)

Using Jenssen’s inequality in (16) yields that the expected value is 1, since the expectation 

is taken with respect to (xk|yk). This completes the proof that ℋ βt, β t
(i)  is a non-decreasing 

function, thus guaranteeing that the likelihood in (6) increases at each iteration of the EM 

algorithm. □

E. Comparison with other approaches

Adaptive filtering techniques have been used for a long time for the estimation of 

covariances matrices Q and R using the Kalman filter. Literature goes back to the late 

60s and early 70s, see e.g. [15], [39]. Here, we make a comparison with [22]. This method 

uses a retrospective optimization to update the process noise covariance at each time and 

is based on the minimization of a quadratic function based on the innovations. We take 

this paper for reference as it claims to have better accuracy than other methods regarded as 

innovations-based adaptive Kalman filter [15], [19]–[21].

In simulation, we generated trajectories with a change in the diffusion constant from Dx = 

0.1 μm2/s to Dx = 0.2 μm2/s, holding the parameters at = 1, bt = 0, and rt = 0.1 constant 

and known. In Fig. 2, we show the comparison between our method using K(v) = 1 (naive 

approach), K(v) as the Epanechnikov kernel, and the method in [22] for the mean of 5 

repetitions, considering two window sizes h = 180, 500. We observe that our proposed 

method outperforms both the method of [22] and the naive EM scheme. The inclusion of 

the kernel plays an important role in smoothing out the estimate, specially when the window 

size is smaller.

F. Effect of window sizes

There is a clear trade-off between the length of the window size with more sensitivity 

coming with shorter windows but at the cost of higher variance. To explore this, we 

performed simulations using the ground-truth values at = 1, βt = 0, and rt = 0.01, with qt 
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taking two values (0.1 and 0.2) during the run. We applied our method using short windows 

(h = 75, 100). (Note that even for estimating only qt, the method in [22] fails to produce an 

estimate for such short windows.) In Fig. 2, we show the estimate for all the unknowns, and 

for two different window sizes. The statistics are taken over 20 runs of the same experiment. 

As expected, we see that shorter windows (blue) the estimates have greater variance longer 

ones(red) while reacting somewhat faster.

IV. CONTROLLED EXPERIMENTS

A. Generation of data

Here, we test our algorithm with a more realistic situation based on controlled experiments 

with known ground truth information to generate data sets. The experimental procedure, 

described in detail in [40], consists of four steps: 1) generate numerical sample paths 

using the motion model in (1); 2) control the position of a fluorescent microsphere 

with a nano-positioning stage to follow the sample paths; 3) observe the motion using a 

widefield fluorescent microscope; 4) do image processing to extract position information 

from the resulting stack of images. This method effectively provides data sets that exhibit 

the phenomenon of interest with motions that are accurate, precise, and repeatable while 

also being subject to real-world effects. Our specific implementation of the controlled 

experiment, diagrammed in Fig. 3, uses a typical single particle tracking microscope. 

Realizations using (1) were generated for specific values of a, b, and qt. The value of rt 

was a result of the experimental conditions that include fluorophore brightness, illumination 

intensity, integration time of the camera and the amount of background light collected 

by the microscope. These trajectories were then sent to the amplifier of the microscope 

stage via a National Instruments compact reconfigurable input-output system (NI 9076 

cRIO) programmed through the LabView interface. To observe the particle motion, a Zeiss 

Axiovert 200 equipped with a 63x 1.2 NA water immersion objective and a photometrics 

95B sCMOS camera was used to acquire diffraction-limited images at 10 frames per second 

with an integration time of 50 ms. The microscope stage would move and settle during the 

time when the camera was off-loading the previous image and the next image would be 

taken after the stage settled. This yielded a single position per image period. The single 

particles were then localized using a least squares fitting of the image data to a Gaussian 

profile with background to the image data. The time series of localizations were then 

analyzed with local ML.

B. Results

In this section, we demonstrate the performance of our algorithm using experimental data 

generated using the procedure described in section IV-A. Two dimensional trajectories were 

generated, modeled as two independent systems of the form (1). The true values of at and bt 

for both cases were fixed to at = 1 and bt = 0. The diffusion coefficients began at 0.9 μm2/s, 

then switched to 0.1 μm2/s at time 25 s, and then again back to 0.9 μm2/s at time 50 s.

The ground truth value used for the creation of the trajectories are shown in Fig. 4 (solid-thin 

line), as well as the results of the estimation window length h = 100 samples. In Fig. 4 

(upper-left plot), we show the estimation of at which, as expected, moves around the true 
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value of 1; the upper-right plot shows the estimation of bt, which is around 0; Fig. 4 (lower 

plot) shows the estimation of the diffusion constant Dt. Plots include the estimation for both 

x and y-axes.

We also calculate the Mean Square Error (MSE) for each parameter using different window 

lengths h = 75, 100, 125. The rationale behind the selection of these window lengths is that 

in SPT one typically has a limited number of images due to photobleaching and biological 

effects, leading to the choice of relatively short windows. In Table I, we can observe that 

for the fixed parameters MSE values decrease as the window h increases for a and b, which 

is expected. However, the estimation of the time-varying diffusion coefficient actually gets 

worse as the window length increases. This is because the change is abrupt and the longer 

windows imply a longer time for the old data to move out of the window. Thus, there 

is a clear trade-off between accuracy and capacity to follow the change, having several 

possibilities for addressing this, such as adaptive windows or combining a forward and a 

backward pass. Resolving this is left to future work.

V. CONCLUSIONS

In this paper, we have developed a local likelihood estimation algorithm to track time­

varying parameters in a general model that captures several common motion paradigms used 

in SPT. Our approach uses local likelihood in a sliding window, which is well-known in the 

statistics literature. We generated data using a controlled real experimental setup, and our 

approach was demonstrated using this generated data.

While focused on pure linear systems with additive Gaussian noise on the trajectory, the 

basic scheme can represent a wide variety of useful models found in SPT. One way to extend 

our work is by considering more complex models by replacing the underlying linear filtering 

and smoothing with nonlinear techniques such as sequential Monte Carlo filtering. There 

are also clear questions about the optimal way to select window sizes, and the effect of 

measurements noise and modelling errors.
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Fig. 1. 
Comparison of our method with Epanechnikov kernel, no kernel, and innovation-based 

method [22] (KFB). Measurement noise rt = 0.1
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Fig. 2. 
Comparison of estimates at, b t, qt, r t using two different window sizes h = 75 (blue) and h = 

100 (red).
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Fig. 3. 
A block diagram showing the signal flow. (Upper left) computer generated realizations of 

our model (bottom) is sent to the controller and is translated to an analog control voltage. 

This control voltage is sent to the stage amplifier which then generates the high voltage 

needed to generate motion in the stage.
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Fig. 4. 
Estimation of the unknown parameters in x (blue-solid) and y (red-dashed) axis of controlled 

experiments.
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TABLE I

MSE VERSUS WINDOW LENGTH h

h = 75 h = 100 h = 125

parameter x-axis y-axis x-axis y-axis x-axis y-axis

at .0197 .0297 .0157 .0157 .0133 .0100

bt .0048 .0044 .0043 .0042 .0036 .0033

Dt =
qt

2Δt .0526 .0507 .0633 .0617 .0703 .0789
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