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Abstract

Increases in the D2 receptor high affinity state are associated with certain neurological disorders. 

We synthesized and characterized the high-affinity D2high ligand [3H]MCL-536 in competition 

binding against the D2/3 agonist R-(−)-N-n-propylnorapomorphine (NPA) and the D2/3 antagonist 

raclopride. The total binding of [3H]MCL-536 (minus that in the presence of 100 nM NPA) 

was measured by saturation binding in CHO cells expressing human D2long; the data yielded 

separable, nonsaturable nonspecific, and saturable specific components. The former represents 

an aporphine site common to NPA and [3H]MCL-536. The latter indicated specific binding 

to the total D2 receptors (both high and low-affinity states). [3H]MCL-536 had a Kd of 0.8 

nM. In competition binding, NPA had a Ki of 0.16 nM, and a Ki of 0.9 nM for raclopride. 

Co-incubation with guanylylimidodiphosphate abolished binding to D2high. This unique profile 

makes radiolabeled MCL-536 a versatile tool for diagnostics and therapeutics, and may quantify 

D2high sites in schizophrenia and PD patients in vivo.

Graphical Abstract

*Corresponding Author: Mailing address: Division of Basic Neuroscience, Medicinal Chemistry Laboratory, McLean Hospital, 115 
Mill Street, Belmont, MA 02478. Tel: 617-855-2071. Fax: 617-855-2519. ssubburaju@mclean.harvard.edu.
Author Contributions
S.S. carried out binding affinity studies, data analysis and wrote the manuscript; A.W.S. carried out synthesis of precursors and cold 
ligands; all authors discussed the results and contributed to the final manuscript.

The authors declare no competing financial interest.

HHS Public Access
Author manuscript
ACS Chem Neurosci. Author manuscript; available in PMC 2021 September 02.

Published in final edited form as:
ACS Chem Neurosci. 2018 June 20; 9(6): 1283–1289. doi:10.1021/acschemneuro.8b00096.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Dopamine D2high receptor; Parkinson’s disease; schizophrenia; PET; aporphine; tritiated 
radioligand

Dopamine receptors, especially those in the D2 family, play an important role in a variety of 

disorders involving the central nervous system. These include movement disorders such as 

Parkinson’s disease, restless leg syndrome (RLS), Huntington’s chorea, and multiple system 

atrophy (MSA),1 as well as psychoses including schizophrenia or Tourette’s syndrome, 

and other disorders including attention deficit disorder or addiction.2–6 The D2 receptor 

family includes the D2 receptor splice variants D2long and D2short7 as well as the D3 

and D4 receptors; the D2 family of receptors are predominantly coupled to Gi/o proteins.8 

G protein-coupled receptors have been reported to exist in high and low affinity states for 

dopamine. The existence of the dopamine D2 receptor in the high-affinity state (D2high) 

was first reported by De Lean and co-workers in 1982.9,10 The D2high receptor is thought to 

be the functional form of the D2 receptor to which endogenous neurotransmitter, dopamine, 

binds. The proportion of high-affinity and low-affinity receptors can be observed in vitro by 

using different assay conditions, and the receptors have different Ki binding affinities and 

show a biphasic competition curve. Despite some level of disagreement, the existence of the 

D2high receptor is widely accepted today. Evidence increasingly supports that the existence 

of the receptor in the high-affinity state, the functional or active state of the D2 receptor, 

is more important to pathophysiological processes than the expression of the receptor and 

its dysregulation.11,12 Thus, the development of high affinity and selective D2 receptor 

agonists, which are capable of distinguishing between the high and low affinity states of the 

D2 receptor, is important for research purposes as well as for early diagnosis and therapeutic 

intervention.

A number of ligands for the D2 receptor, both agonists as well as antagonists, are 

available to the research community. Among ligands which can selectively bind to the 

D2high receptor under appropriate assay conditions are antagonists such as raclopride, 

spiperone, N-methylspiperone (NMSP), domperidone and nemonapride. Likewise, a number 

of agonists also bind selectively to the D2high receptor: N-n-propylnorapomorphine (NPA), 

apomorphine (APO), PD-128907 ((+)-PHNO), 2-methoxy-N-n-propylnorapomorphine 

(MNPA), 7-OHDPAT, cabergoline, and bromocriptine. Most of these ligands are capable 

of identifying the D2high receptor. However, the proportion of the D2 receptor identified has 

been inconsistent and appears to depend on the ligand which is used. One problem which 

may complicate these findings is that these ligands are not selective for the D2 receptor, 

but may also bind to other receptors of the D2 family as well as with receptors for other 

neurotransmitters (Table 1).

For example, domperidone and raclopride also have a high affinity to D3 receptors.14,18 

Spiperone and NMSP have significant affinity to D3 and D4 receptors, but also to 5HT2A 

receptors.15,16,18,27 The ligand nemonapride also interacts with alpha (α1) adrenoceptors in 

addition to D2 receptors.19 In vitro assay conditions also exert a huge effect on the results, 

as they can affect the accessibility of D2high receptors. Thus, the benzamide radioligands 
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nemonapride and raclopride work only in the presence of sodium ions. At the same time, 

these ions interfere with the D2high affinity state.28,29 Interestingly, only domperidone, but 

neither spiperone nor raclopride has the capability to distinguish between D2high and D2low 

in whole, unfrozen rat anterior pituitary cells ex vivo.30

Since most dopamine antagonists have no inherent ability to distinguish between receptors 

in high- vs low-affinity states in vivo, they are not ideal for studies on neurotransmission 

and its pathophysiological changes which are associated with disease. Agonist ligands are 

preferable, because their preferential binding to the receptors in their high affinity state 

makes them an ideal tool for studying the role of the receptor state in the pathogenesis 

of disorders associated with the dopaminergic system, thus enabling more detailed studies 

and enhancing the knowledge of dopamine transmission and D2 receptor dynamics in these 

disorders.

We have developed an aporphine agonist, R-(−)-2-(3-fluoropropanoxy-11-hydroxy-N-n­

propyl(1,2-[3H])-noraporphine [3H]MCL-536, which binds with high affinity to dopamine 

D2 receptors but not to other receptors of the D2 family.31 Additionally, MCL-536 

exhibited no affinity or low affinity for other receptors tested, including serotonin, α- and 

β-adrenergic, benzodiazepine, GABAA, muscarinic, sigma, kappa, and mu opioid receptors, 

as well as dopamine, serotonin, and norepinephrine transporters and translocator proteins 

(NIMH, Psychoactive Drug Screening Program, North Carolina). Herein, we describe the 

further characterization of this novel agonist ligand with regard to its binding affinities to 

human D2 receptors expressed in Chinese hamster ovary (CHO) cells.

RESULTS AND DISCUSSION

Saturation Curve of MCL-536 Binding to the Human D2 Long Receptor.

MCL-536 was evaluated in a saturation assay using cloned human D2long membranes in 

CHO cells; the presence of the dopamine D2 receptor agonist, NPA (100 nM) served to 

detect nonspecific binding. Human D2long is the isoform of the D2 receptor found at the 

postsynaptic terminal. The binding of [3H]MCL-536 to dopamine D2-receptor-containing 

membranes in CHO (Chinese Hamster Ovary cells) was found to have more than one 

component. The total binding of [3H]MCL-536 minus that bound in the presence of 100 

nM NPA yielded two components that were graphically separable into a nonsaturable 

nonspecific component and a saturable specific component, as shown. The nonsaturable 

component, blocked by 100 nM NPA, represented an aporphine site common to NPA 

and [3H]MCL-536. The saturable component represented the specific binding to the total 

population of dopamine D2 receptors that were in the high-affinity state and the low-affinity 

state. At 50% of the specific binding of [3H]MCL-536 to the D2 receptor, a dissociation 

constant Kd of 0.8 nM could be determined (Figure 2).

Competition of Agonist NPA and Antagonist Raclopride vs [3H]MCL-536.

[3H]-MCL-536 was tested in vitro for competition with NPA and raclopride. When R-(−)-N-

n-propylnorapomorphine (NPA) was used as the competing ligand, it was found to have a Ki 

binding affinity of 0.16 nM against [3H]MCL-536 (Figure 3A). Raclopride had a Ki binding 
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affinity of 0.90 nM against [3H]MCL-536 (Figure 3B). Nonradioactive MCL-536 had a Ki 

of 1.29 nM against [3H]MCL-536 (Figure 3C).

Abolition of D2High Receptors in the Presence of a Guanine Nucleotide (GppNHp).

The dopamine D2 receptor is a G protein-coupled receptor; its G protein α subunit binds 

GTP in the activated state. The receptor becomes inactivated when GTP is metabolized 

to GDP and Pi. The role of GppNHp is to maintain a more constant state of continued 

inactivation. The specific binding of [3H]MCL-536 was found to separate into two sites 

in the presence of 200 μM guanilylimidodiphosphate (GppNHp). The binding component 

removed by the guanine nucleotide represented the dopamine D2High receptors. The 

residual binding sites in the presence of the guanine nucleotide (straight line) appeared to 

represent nonspecific sites related to the aporphine structure of MCL-536. The D2 high state 

was abolished by incubation with GppNHp (Figure 4), confirming that [3H]MCL-536 is a 

D2high agonist. The proportion detected is in agreement with previously reported values.5 

Thus, [3H]MCL-536 is able to identify the D2high receptor state.

There is increasing evidence that, in a number of neurological disorders involving the 

dopaminergic system, such as Parkinson’s disease or schizophrenia, more D2 receptors 

exist in the high-affinity state.32,33 However, the majority of commercially available D2 

radioligands are antagonists, which cannot distinguish between active D2high and inactive 

D2low affinity states of the receptor in vivo. Additionally, none of the commercially 

available ligands are selective for the D2 receptor subtype, but also possess high affinities to 

other D2 family receptors (D3/4) or even other neurotransmitter receptors (5HT, alpha 1a, 

etc.). Thus, there is a demonstrated need for high-affinity, highly selective, agonist-based, 

[3H] radioligands for the D2 receptor.

Herein we describe here the synthesis and characterization of a selective and specific high 

affinity dopamine D2high receptor agonist, [3H]MCL-536. The advantages of this agonist 

are that (1) it has high selectivity for D2 over D3 and D4 (D2 Kd = 0.8 nM; Ki = 1.29 

nM when [3H]MCL-536 is used; D3 Ki = 100 nM when [H]domperidone is used;23 D4 

Ki = 53 nM when [3H]N-methylspiperone is used (NIMH, Psychoactive Drug Screening 

Program, North Carolina)); (2) it has no affinity or very low affinity for other receptors 

tested, including serotonin, α- and β-adrenergic, benzodiazepine, GABAA, muscarinic, 

sigma, kappa, and mu opioid receptors, as well as dopamine, serotonin, and norepinephrine 

transporters and translocator proteins (NIMH, Psychoactive Drug Screening Program, North 

Carolina); and (3) it detects the activated form, or high affinity state, of the D2 receptor, 

D2high (this study). This unique profile makes MCL-536 a versatile tool for research as well 

as for diagnostic and therapeutic purposes.

When [3H]MCL-536 was used in competition binding studies for D2high, NPA had a 

Ki value of 0.18 nM and raclopride had a Ki of 0.90 nM. Additionally, [3H]MCL-536 

was shown to identify the D2high state. Thus, in its tritiated form, MCL-536 can be 

used experimentally to investigate D2 receptor activity and dynamics more effectively as 

a function of neurological conditions. In this regard, we are planning future studies to 

complete the preclinical evaluation of MCL-536 by confirming selectivity to D2high in 
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different brain regions of the rat via autoradiography ex vivo, and to evaluate biodistribution 

in vivo.

Our ultimate goal is to develop MCL-536 as an 18F-radioligand for clinical PET 

neuroimaging. Most ligands which are currently available to the research community 

are 11C-labeled, including [11C]MNPA,17,34,35 [11C]NPA,36 and [11C]-(+)-PHNO.37,38 

However, because the radioisotope 11C has a short half-life of only 20 min, its use is 

limited to on-site cyclotrons which are not readily available in all clinics. Furthermore, 

the ligands described above do not unambiguously identify the D2high receptor in its 

active state in vivo.39 This may be due to their long dissociation half-lives from the 

receptor, measured in vitro (from ~30 to ~600 s), compared to the short dissociation 

time of the G protein and the ensuing conversion of the receptor from its high- to low­

affinity state (<1 s).33 Likewise, the development of an effective 18F-labeled D2 agonist 

radioligand has also encountered challenges in the N-alkyl radiofluorination of (+)-PHNO, 

e.g., significantly altered D2 binding compared to that of (+)-PHNO. Furthermore, N-alkyl 

radiofluorinated aporphine derivatives, including [18F]FNPA and [18F]FNEA, did not prove 

to be D2 agonists.40 Reports on the aminotetralin radioligands [18F]5-OH-FPPAT, [18F]5­

OH-FHXPAT, and [18F]7-OH-FHXPAT describe their development as D2high and D3high 

ligands, respectively.41,42 Last year, a series of 18F-labeled chromanol derivatives were 

evaluated in rats, and one analogue ([18F]FEt-AMC13) possessed a striatum/cerebellum 

binding ratio of 2.08, although it exhibited a lower binding potential and it was less 

sensitive to competition with raclopride in comparison to previously reported agonist PET 

radioligands.43,44 Thus, development of an 18F-labeled D2 agonist which exhibits high 

selectivity and specificity for the D2high receptor for human use remains an important 

goal. Such a radioligand would be an invaluable tool for studying unusual activity of D2 

receptor dynamics in the living brain, before extensive neurological changes occur, and 

before physical symptoms emerge. It could enable early diagnosis of dopamine-associated 

disorders, and at the same time also form a basis for more targeted and effective therapies 

for Parkinson’s disease, schizophrenia, addiction, and other neuropsychiatric disorders 

involving the D2high receptor. In summary, the new radioligand [3H]MCL-536 possesses 

subnanomolar binding affinity to human D2long and has proven to be a superior radioligand 

for in vitro evaluation in receptor binding assays. MCL-536 will be developed as 18F-labeled 

PET radiotracer, and being a selective, high affinity D2 agonist ligand, it also has the 

potential to replace the current standard therapies, as a lower-dose, potent oral medication 

for PD.

METHODS

Synthesis of R-(−)-N-Allyl-2-(3-fluoropropanoxy)-11-hydroxynoraporphine (MCL-565).

The N-allyl precursor to [3H]MCL-536, MCL-565, was synthesized in seven steps from 

commercially available morphine (Figure 1), and tritiated to produce [3H]MCL-536 at >99% 

purity and activity of 57.6 Ci/mmol.23,45–47
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3-Deoxynalorphone.

The oxidation of the allylic alcohol of 3-deoxynalorphine46 was carried out analogously as 

described by Sondergaard et al.48 To a dried vial was added 3-deoxynalorphine (307 mg; 

1.016 mmol), followed by anhydrous DMF (5 mL) and 2-iodoxybenzoic acid (IBX) (313 

mg; 1.12 mmol). The reaction mixture was stirred vigorously for 1 h at room temperature. 

Upon completion, the mixture was transferred to ethyl acetate (25 mL) and washed with 

water (80 mL), 10% aqueous sodium carbonate solution (2 × 80 mL), and brine (80 

mL). The organic phase was separated and dried over anhydrous Na2SO4, filtered, and 

concentrated in vacuo. The residue was purified by silica gel flash column chromatography 

using 1:20 methanol/dichloromethane as eluent to afford the product as a pale yellow solid, 

3-deoxynalorphone, 227 mg, yield 76%, mp 118–120 °C. 1H NMR (300 MHz, CDCl3) 

δ7.09−6.99 (m, 1H), 6.69−6.58 (m, 2H), 6.05 (dd, 1H, J1 = 3.00 Hz, J2 = 6.00 Hz), 5.28 (s, 

1H), 5.22−5.15(brt, 2H, J = 6.00 Hz), 4.66 (s, 1H), 3.53 (dd, 1H, J1 = 3.00 Hz, J2 = 6.00 

Hz), 3.29−3.13 (m, 3H), 3.07 (d,1H, J = 18.00 Hz), 2.78−2.67 (m, 2H), 2.34 (dd, 1H, J1 = 

3.00 Hz, J2 = 6.00 Hz), 2.24 (td, 1H, J1 = 3.00 Hz, J2 = 12.00 Hz), 2.05 (ddd, 1H, J1 = 3.00 

Hz, J2 = 12.00 Hz, J3 = 12.00 Hz), 1.79 (brd, 1H, J = 6.00 Hz). 13C NMR (75 MHz, CDCl3) 

δ 194.66, 157.31, 149.66, 135.64, 134.22, 132.56, 128.86, 127.68, 119.32, 117.90, 107.58, 

87.80, 58.41, 56.75, 45.11, 43.10, 41.81, 34.20, 21.99.

R-(−)-N-Allyl-2-(3-fluoropropanoxy)-11-hydroxynoraporphine (MCL-565 Base).

To a 5 mL Wheaton microreactor were added 3-deoxynalorphone (94 mg; 0.32 mmol) 

and fluoropropanol (0.175 mL; 2.33 mmol). The mixture was stirred briefly at room 

temperature. Next, methanesulfonic acid (1.5 mL) was added dropwise and the resulting 

mixture was stirred at 80 °C for 30 min. Next, the mixture was poured into ice and water 

(30 mL) and the pH was adjusted to 8–9 with 28% aqueous NH4OH and the aqueous phase 

was extracted with dichloromethane (3 × 30 mL). The combined organic phase was washed 

with brine (20 mL) and dried over with anhydrous Na2SO4. After filtration, the solvent was 

removed in vacuo to afford a dark red foam (250 mg). The foam was purified by silica gel 

flash column chromatography using 1:30 methanol/dichloromethane as eluent to afford 53 

mg of R-(−)-N-allyl-2-(3-fluoropropanoxy)-11-hydroxynoraporphine (MCL-565 base) as a 

buff foam, 44% yield, HPLC purity: >96%. 1H NMR (300 MHz, CDCl3) (base) δ 7.68 (s, 

1H), 7.02 (brs, 1H), 6.81−6.72 (m, 2H), 6.60 (s, 1H), 6.01 (brs, 1H, likely to be –OH), 5.24 

(t, J1 = 2.10 Hz, J2 = 1.20 Hz, 2H), 4.71 (brs, 1H), 4.55 (brs, 1H), 4.14−4.03 (m, 2H), 3.73 

(brd, J = 1.20 Hz, 1H), 3.36 (d, J = 1.50 Hz, 1H), 3.23−2.90 (m, 5H), 2.73−2.55 (m, 2H), 

2.45 (t, J1 = 1.20 Hz, 1H), 2.19 (brs, 1H), 2.10 (brs, 1H). 13C NMR (75 MHz, CDCl3) (base) 

δ 157.34, 153.26, 138.64, 134.87, 134.61, 133.05, 123.38, 127.95, 121.53, 120.71, 118.79, 

116.89, 113.00, 112.19, 81.10 (d, J = 135 Hz), 63.55, 59.35, 57.75, 49.04, 35.30, 30.70 (d, J 
= 21.00 Hz), 29.50. 19F NMR (282 MHz, CDCl3) (base) δ 7.70 (tt, J1 = 27.00 Hz, J2 = 51.00 

Hz).

MCL-565 free base was dissolved in a minimal amount of dichloromethane and treated with 

excess 1 N HCl in ether and crystallized to afford the HCl salt, 35 mg, off-white solid, 

HPLC purity (>97.6%), mp 169–171 °C (dec.).
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Ligand Characterization Studies.

R-(−)-N-(2,3-[3H]Propyl)-2-(3-fluoropropanoxy)-11-hydroxynoraporphine, [3H]MCL-536, 

was synthesized (maximum specific activity 57.6 Ci/mmol; American Radiolabeled 

Chemicals, Inc. St. Louis, MO). The measurement of dopamine D2high receptors in 

cloned human D2long membranes in CHO cells in vitro was carried out as reported 

earlier.49 Briefly, crude D2long dopamine receptor membranes (5 ug/sample; EMD 

Millipore) were incubated with either MCL-536, R-(−)-N-n-propylnorapomorphine (NPA; 

final concentrations between 1 and 1000 nM) or raclopride (1 and 1000 nM) and 

[3H]MCL-536 (2 nM final concentration) in assay buffer (50 mM Tris-HC1 (pH 7.4 at 

20 °C), 1 mM EDTA, 5 mM KCl, 1.5 mM CaC12, 4 mM MgC12, 10 Mm NaCl) for 

competition experiments and with or without a final concentration of 100 nM NPA for 

the saturation experiment to define nonspecific binding to the dopamine D2 receptors 

for 2 h at room temperature. The incubates were filtered, using a 48-well cell harvester 

(Brandel Inc.) and buffer-presoaked glass fiber filter mats (grade GF/B fired: size 4.5 × 

12.25 in.: cat # FP-105, Brandel Inc.). Filter mats were rinsed with buffer for 15 s (7.5 

mL buffer) and placed in scintillation minivials (7 mL, 16 × 54 mm) containing 4 mL 

of scintillant (PerkinElmer) each. Radioactivity was determined after 6 h in a Beckman 

LS 6500 scintillation counter. The specific binding of the [3H] ligand was defined as total 

binding minus binding in the presence of 100 nM NPA.

The Cheng–Prusoff equation50 was used to derive the dissociation constant (Ki value) of 

NPA from the concentration that inhibited 50% of the high-affinity component (IC50) or 

50% of the low-affinity component for [3H]MCL-536. The form of the Cheng–Prusoff 

equation used was Ki = 5 − [IC50/(1 + C*/Kd)], where C* is the final concentration of 

the ligand and Kd is the dissociation constant of the ligand, as determined directly by 

independent experiments of saturation binding to the CHO cells (i.e., Scatchard plot).

To determine binding of the [3H] ligand to the D2 high receptor, [3H]MCL-536 was 

incubated in the presence of 200 μM GppNHp. Then 100 nM NPA was added to determine 

nonspecific binding. Measurement was carried out as described above.
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Figure 1. 
(A) Synthesis of allyl precursors for MCL-536. (B,C) HPLC chromatograms of (B) 

[3H]MCL-536 and (C) coinjected nonradioactive MCL-536. Reagents and conditions: (a) ref 

46; (b) IBX, anhydrous DMF, rt, 76%; (c) 3-fluoropropanol, methanesulfonic acid, 95–105 

°C, 44%; 1 N HCl/Et2O, 100%;23,45–47 (e) [3H]2, [Pd], 60 Ci/mmol.
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Figure 2. 
Binding of [3H]MCL-536 to dopamine D2 receptor expressed in CHO membranes (n = 5). 

Membranes of CHO cells were incubated with [3H]MCL-536 in increasing concentrations 

with or without 100 nM NPA. The total binding of [3H]MCL-536 minus [3H]MCL-536 in 

the presence of 100 nM NPA yielded a nonsaturable, nonspecific component (“apomorphine 

site”) and a saturable, specific component (total high- and low-affinity state D2 receptors). 

The dissociation constant, Kd, of [3H]MCL-536 for the D2 receptors occurred at the 

concentration where 50% of the receptors were occupied.
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Figure 3. 
Curves illustrating competitive binding for [3H]MCL-536 vs NPA (A), for [3H]MCL-536 vs 

raclopride (B), and for nonradioactive MCL-536 (C) to the human cloned D2long receptor 

expressed in CHO cells (n = 5). Data were analyzed using GraphPad Prism software.
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Figure 4. 
Specific binding of [3H]MCL-536 in the presence and absence of 200 μM 

guanilylimidodiphosphate (GppNHp) (n = 5).
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