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Abstract

Focal epilepsies are the largest epilepsy subtype and associated with significant 

morbidity. Somatic variation is a newly recognized genetic mechanism underly-

ing a subset of focal epilepsies, but little is known about the processes through 

which somatic mosaicism causes seizures, the cell types carrying the patho-

genic variants, or their developmental origin. Meanwhile, the inception of sin-

gle cell biology has completely revolutionized the study of neurological diseases 

and has the potential to answer some of these key questions. Focusing on single 

cell genomics, transcriptomics, and epigenomics in focal epilepsy research, cir-

cumvents the averaging artifact associated with studying bulk brain tissue and 

offers the kind of granularity that is needed for investigating the consequences 

of somatic mosaicism. Here we have provided a brief overview of some of the 

most developed single cell techniques and the major considerations around ap-

plying them to focal epilepsy research.
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1  |   INTRODUCTION

Focal epilepsies are a heterogeneous group of disorders 
that are associated with significant morbidity and ap-
proximately one-third of focal epilepsy patients do not 
respond to available anti-seizure medications (1–3). The 
most common type of focal epilepsy, temporal lobe ep-
ilepsy (TLE), is notoriously pharmacoresistant and in 
roughly two-thirds of the medically refractory cases re-
quires surgical intervention, which is not always effective 
(4) and can have negative effects on cognition (5). In the 
pediatric population, malformations of cortical develop-
ment (MCD) account for the majority of focal epilepsies 
and may need surgical resection if deemed medically 
refractory, although outcomes vary greatly based on 
pathology (6). Notably, the success rate is lower among 
patients who do not have a lesion visible on MRI (7–10). 
One of the most important advances in the field over 
past two decades, is establishing a clear link between so-
matic variants and MCD. Somatic variants arise when 
spontaneous DNA damage escapes DNA repair machin-
ery and most commonly gives rise to single nucleotide 
variants (SNVs) and indels (11–13), or to larger structural 
abnormalities such as copy number variants (CNVs) (14, 
15). Historically, twin studies (16) and de novo variant 
discovery in genetic generalized epilepsies (17, 18) repre-
sented the first wave of investigation in epilepsy genetics, 
but naturally, the main focus was on identifying dam-
aging germline variants that essentially excluded most 
focal epilepsies. Despite epilepsy surgery providing a 
unique opportunity to investigate the affected brain tis-
sue directly (19), the recognition of somatic variation as a 
major contributor to focal epilepsies was delayed partly 
due to technical factors such as sequencing technology 
and partly as the result of the barriers to routinely test-
ing surgical resections. Naturally, identifying somatic 
mosaicism in subtypes of focal epilepsies created a new 
wave of excitement as it explained the focality of lesions 
and/or neuronal circuit disruptions that are typically ob-
served. This created a paradigm shift, moving us away 
from descriptive pathology to molecular genetics as the 
standard diagnostic approach to focal epilepsy.

While sequencing genomic DNA in blood or saliva 
is sufficient to diagnose germline variants and a small 
fraction of somatic variants (20), the recognition of so-
matic mosaicism in focal epilepsies brought to light 
the importance of studying the affected tissue directly. 
This is not only key for the detection of somatic vari-
ants with low variant allele fraction (VAF), but also to 
discern the impact of these variants in situ. In order to 
understand whether a somatic variant contributes to dis-
ease in a cell-autonomous manner or if it acts through 
disruption of complex cellular networks, it is import-
ant to know which cells carry the variant and how they 
differ from their genotypically normal counterparts. 
In the next phase of discovery that ensued, targeted se-
quencing of the affected brain tissue helped identify a 

large set of somatic variants, the majority of which were 
associated with MCD (21–33). This experimental ap-
proach has not been as effective for non-lesional cases, 
particularly most adult-onset focal epilepsies, although 
these cases are not as well studied. Furthermore, even 
in “solved” cases, bulk sequencing is inherently blind to 
the specific cell types or clones carrying the pathogenic 
variants and rarely provides a mechanistic explanation 
for epileptogenesis. The absence of a clear correlation 
between genotype and clinical phenotype hinders the 
efforts to devise new targeted treatments. Unlike some 
germline genetic epilepsies where the genetic diagnosis is 
now informing treatment, the limited understanding of 
molecular mechanisms in focal epilepsies has hindered 
the use of genetic diagnosis in clinical decision making. 
While we grapple with these fundamental challenges in 
studying and treating focal epilepsies, the inception of 
single cell biology has completely revolutionized cancer 
research and treatment and is beginning to permeate the 
study of all other human diseases. Focusing on single 
cell genomics, transcriptomics, and epigenomics in focal 
epilepsy research, circumvents the averaging artifact as-
sociated with studying bulk brain tissue and offers the 
kind of granularity that is needed for investigating the 
consequences of somatic variants. Moreover, since most 
focal epilepsies are not yet associated with a causal gene 
variant, identifying defective transcriptional or epigene-
tic changes at the single cell level may shed light on the 
affected cell types/pathways and provide an opportunity 
for intervention. Here we will review some of the key sin-
gle cell genomic techniques with their unique advantages 
and limitations, and highlight a few areas in focal epi-
lepsy where they could be immediately applied.

2  |   SOM ATIC MOSA ICISM 
IN FOCA L EPILEPSIES A N D 
TH E N EED FOR SINGLE CELL 
GENOM IC APPROACH ES

It is estimated that somatic variants develop at a rate 
of ~1–3 variants per division per cell during early em-
bryonic development (11, 13, 34, 35). This suggests that 
a typical individual carries ~80 somatic single nucleo-
tide variants (sSNVs) in ≥2% of cells with ~2% of these 
being exonic variants (34). Some striking estimates pre-
dict ~37%–45% of new exonic variants that have not yet 
undergone evolutionary selection to be damaging (34, 
36, 37), which means about half the population carries 
≥1 damaging exonic sSNV at ≥2% of cells (34). This 
number does not include the potentially toxic sSNVs 
in non-coding parts of the genome that have also been 
linked to neurodevelopmental disorders such as autism 
(34, 38–43). Nor does it take into account the effect of 
somatic structural variants such CNVs that are known 
causes of focal epilepsies (44, 45). In other words, the 
contribution of somatic variants to focal epilepsies is 
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likely more far-reaching than what is known to date. 
For example, only a handful of genes have been impli-
cated in focal epilepsies so far, while larger scale in-
vestigation is underway that will certainly expand that 
list. Animal studies have demonstrated that cell type 
specific knock-ins or deletions of ion channel or small 
molecule transporter genes such as SCN1A (46–48), 
SCN2A (49), SCN8A (50), KCNQ2 (51), and GLT1 (52) 
can generate a seizure phenotype, which supports the 
notion that a subset of focal epilepsies may be caused 
by somatic variation in these classic germline epilepsy 
gene families. It is important to note though, even in 
MCD where causal somatic variants have been identi-
fied in a significant number of cases, the downstream 
effects of these variants on cells and on neuronal cir-
cuits are largely unknown. This is partly due to the fact 
that epigenetic factors such as chromatin accessibility 
and DNA methylation heavily and dynamically regu-
late gene expression in each cell, making it very dif-
ficult to study the effects of somatic variation in bulk 
tissue. These interactions may be even more intricate in 
focal epilepsies that are associated with germline vari-
ants in genes such as TSC1, TSC2, DEPDC5, NPRL2, 
which require a somatic second-hit (21, 32).

Focal cortical dysplasia type 2 (FCD II) is an exam-
ple that highlights some of these challenges in assessing 
somatic variants. The majority of known somatic vari-
ants that cause FCD II, either directly or indirectly ac-
tivate the PI3K/Akt/mTOR signaling cascade (21, 53). 
This is a crucial intracellular signaling pathway that 
is involved in a range of intracellular processes such 
as protein synthesis, gene transcription, autophagy, 
nutrient sensing, growth, etc (54). However, depend-
ing on the timing of mTOR overactivation, the spe-
cific part of the pathway affected, and the particular 
clones involved, cellular phenotypes could range from 
FCD, to neurodegeneration, to death (55). In FCD II, a 
simplistic explanation may be that mTOR overactiva-
tion during development disrupts normal neuro-glial 
differentiation, migration, and integration into the 
neuronal circuit, which gives rise to epilepsy. While 
this hypothesis may be partially valid, it is unlikely to 
capture the full spectrum of mTOR functions, in par-
ticular the ongoing effects of mTOR overactivation on 
cellular excitability and altered inhibition in mature 
neuronal circuits (53). The fact that mTOR inhibitors 
improve seizure control in animal models of FCD (23), 
as well as patients with FCD and tuberous sclerosis 
complex (TSC) (56) is a clear demonstration of that 
point. Several RNA-sequencing and whole-genome 
methylation profiling studies have had modest success 
in characterizing some of the differentially expressed 
genes and unique methylation signatures in FCD (57, 
58). For example, Kobow et al. identified unique meth-
ylation signatures that distinguished subtypes of FCD 
from TLE and non-epileptic controls (57). However, 
these studies are inherently limited in scope and more 

granular investigation of single cell transcriptomes 
and epigenomes is necessary to push the study of FCD 
and other focal epilepsies to the next level.

3  |   TRA NSCRIPTIONA L A N D 
EPIGEN ETIC PROFILING OF 
SINGLE CELLS

3.1  |  Single cell (nucleus) RNA sequencing

mRNA is the molecule through which the identity of a 
cell, its activities, and function are determined—it is the 
direct link between genotype and phenotype in a single 
cell. Naturally, studying mRNA expression in the af-
fected tissue can provide a great deal of information about 
the pathogenesis and downstream consequences of a dis-
eased state. To study gene expression, we previously re-
lied on reverse transcription (RT)-PCR of specific genes 
or microarray analysis of the transcriptome, which are 
low throughput and riddled with technical limitations 
(59). But with the advent of RNA sequencing (60–62), 
high throughput and accurate identification, quantifica-
tion, and discovery of new genes and their splicing iso-
forms became possible (59–62). Development of reliable 
single cell transcriptome amplification (63–65) paved the 
way for single cell RNA sequencing (scRNA-seq) (64, 
65). In just over a decade since the first proof of concept 
scRNA-seq experiment (65), there has been an explo-
sion in the number of scRNA-seq tools with significant 
improvements in the technology (66–68). Adaptation of 
single cell cDNA library preparation to single nuclei (69) 
facilitated the application of this important technology 
to human tissue where isolating whole cells is frequently 
not possible (70, 71). Additionally, the adoption of unique 
molecular identifiers (UMIs) allowed for absolute quan-
tification of molecular counts, increasing accuracy, re-
ducing cost, and improving throughput (72, 73).

scRNA-seq methods can be divided based on two key 
features: single cell isolation and cDNA library prepara-
tion strategies. The initial step in all single cell molecu-
lar genetics techniques is assigning a unique identifier to 
each cell, either through physical separation of individual 
cells/nuclei or through single cell combinatorial indexing 
(SCI). Physical isolation of cells in individual wells of mi-
crotiter plates (74–77) can be achieved through limiting 
dilution (71, 78), micromanipulation with a capillary pi-
pette (79), fluorescent activated cell sorting (FACS) (74, 
80), or laser capture microdissection (81). But most re-
cent techniques use either microfluidic devices to isolate 
cells in nanoliter droplets (82, 83) or apply split-pool bar-
coding to index cDNA molecules from each cell with a 
unique molecular tag without attempting physical sepa-
ration (84) (Figure 1). The key distinction between cDNA 
library preparation techniques is whether full-length 
transcripts are sequenced (66, 75) or if only the 3’- (82) or 
5’-ends (85) of the transcripts are captured.
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Each scRNA-seq strategy has its own advantages and 
drawbacks, which should be carefully considered for the 
specific application in mind (68). Full-transcript scRNA-
seq technologies have lower transcript dropout rates, allow 
for isoform detection and RNA editing analysis, and are 
in general superior in capturing rare and lowly expressed 
transcripts (86). However, they require physical isolation 
of single cells in microtiter plates and rely on significant 
amounts of sequencing per cell to cover the relatively 
large cDNA library, which renders them labor-intensive, 
inefficient, and expensive for most high-throughput ap-
plications. The most popular single cell full-transcript 
sequencing technique is Smart-seq2 (75) that is commer-
cially available and was recently updated to include UMIs 
for improved isoform quantification (Smart-seq3 (73)). 
Microfluidic droplet-based approaches are highly scal-
able, optimized for transcript quantification, and capture 
only one end of the transcript to reduce sequencing cost 
through smaller cDNA libraries (87). The main draw-
backs are that only a fraction of the transcripts in each 
cell is captured, diminishing their efficiency in detecting 
low-abundance transcripts, the 3’- or 5’-bias significantly 
reduces their utility for isoform quantification or allele 

expression detection, and although cheaper than full-
transcript techniques in cost of sequencing per cell, they 
are still expensive. Recently, commercial droplet-based 
scRNA-seq technologies, such as the product by 10X 
Genomics, have become the standard approach for most 
scRNA-seq applications. It is noteworthy that SCI-based 
scRNA-seq is gaining some traction due to theoretically 
unlimited scalability and lower cost. These techniques do 
not require physical separation of cells and are entirely per-
formed at the benchtop (84), but until recently had lower 
transcript-capture efficiency compared to droplet-based 
approaches (84), which limited their utility (88). While not 
a standard application of the technique, it is noteworthy 
that RNA-seq (89, 90) and scRNA-seq (86, 91) data could 
also be used for germline and somatic variant discovery, 
although with a lot of limitations.

3.2  |  Single cell characterization of chromatin 
accessibility

Nucleosome, which consists of an octamer of histone pro-
teins encircled by DNA, is the basic structural element of 

F I G U R E  1   SCI- and droplet-based cell isolation are the most popular barcoding strategies used by most high-throughput single cell 
genomic applications. SCI uniquely tags the nucleic acid molecules in each cell through serial mixing, splitting, and barcoding. The higher the 
number of barcoding steps, the higher the number of cells that can be uniquely tagged in each experiment. Droplet-based techniques rely on 
physical isolation of individual cells and engineered barcoded beads in nanoliter droplets, which limits their scalability but they produce less 
noisy results 
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chromatin (92)—the complex responsible for packaging 
the long DNA molecule in eukaryotic cells. Nucleosomes, 
along with other chromatin binding structures, indirectly 
affect cellular function by restricting access to parts of 
DNA. For example, internucleosomal DNA is rich in gene 
regulatory elements (GREs) such as enhancers, promot-
ers, insulators, as well as transcription factor binding sites 
(93, 94). Nucleosome occupancy is not a binary variable 
and it can dynamically change from closed and inaccessi-
ble chromatin to open and fully accessible chromatin (95). 
These features create an intricate and dynamic process 
through which gene expression is regulated in each cell. In 
other words, chromatin accessibility is a surrogate marker 
for transcription factor binding and regulatory potential 
of a given locus (92), and not only provides information 
about the current state of a cell, but it can also predict its 
future function (88, 96).

The most commonly used techniques for measuring 
chromatin accessibility across the genome are DNAse I 
hypersensitive site sequencing (DNAse-seq) (97), assay 
for transposase-accessible chromatin (ATAC-seq) (98), 
and micrococcal nuclease sequencing (MNase-seq) 
(99), which all rely on enzymatic cleavage of the DNA 
molecule to mark open regions of chromatin. Both 
DNAase-seq and ATAC-seq have be adapted for single 
cell applications (100, 101), but due to the ability of Tn5 
transposase to easily tag cleaved oligonucleotide frag-
ments in each nucleus, ATAC-seq has been the most 
easily scalable and widely used. An array of commercial 
and non-commercial technologies have been developed 
for scATAC-seq that uses microfluidic capture (102), 
individually indexable wells of a nano-well array (103), 
SCI (104), and droplet-based microfluidic isolation (105). 
Similar to scRNA-seq, combinatorial strategies offer 
excellent scalability, but the library complexity is lower 
than the microfluidic-based approaches (92). Given 
that only ~10% of the DNAse I hypersensitive sites are 
detected via scATAC-seq (101), this could appear as a 
major drawback of the technique. However, similar to 
scRNA-seq, SCI-based protocols are rapidly improving 
(88) and will likely be the standard in the future.

3.3  |  Single cell methylation profiling

DNA methylation is an important epigenetic modifica-
tion that plays a key role in the regulation of transcrip-
tion, X chromosome inactivation, genomic imprinting, 
and chromosomal stability through silencing of trans-
posable elements (106–109). 5-methylcytosine is the most 
common methylated DNA base in vertebrates (110). 
Cytosine is generally methylated in the context of a 
CpG dinucleotide—cytosine followed by guanine on the 
same DNA strand—which clusters together in distinct 
genomic regions called CpG islands (111). CpG islands 
are frequently associated with promoters and enhanc-
ers of gene expression, so hypermethylation indicates 

repression of these GREs whereas DNA hypomethyla-
tion is a surrogate for active regulation of gene transcrip-
tion (111, 112).

Even though DNA methylation has been an active 
area of scientific exploration for years (113), techniques 
for measurement of single cell genome-wide methyla-
tion still face some technical hurdles. Recently whole-
genome bisulfide sequencing (WGBS) has established 
itself as the gold standard for bulk DNA methylation 
sequencing, covering as much as ~95% of the CpG sites 
(114). In WGBS, unmethylated cytosines are deaminated 
into uracil, while methylated cytosines remain unaltered 
(115). When combined with next-generation sequencing, 
methylated cytosines can be detected as the single base 
resolution (116). To overcome the costs associated with 
deep whole-genome sequencing required for WGBS, re-
duced representation bisulfite sequencing (RRBS) was 
developed that uses methylation-insensitive restriction 
enzymes to generate smaller sequencing libraries (117, 
118). The main drawback for RRBS is that it only covers 
~10% of the total CpG sites, which means regions of low 
CpG density such as enhancers are not well-represented 
(119). Several different single cell adaptations of both 
bisulfide-based and restriction enzyme-based methyl-
ation sequencing have been developed, but they have 
several key differences and should be chosen based on 
the biologic question in mind (115). The first iteration of 
single cell methylation profiling used a bisulfide-based 
approach, but suffered from poor and inconsistent cov-
erage across different cells (120). Some of these limita-
tions are inherent to bisulfite conversation, as it causes 
DNA degradation (115), but using UMIs (121), bisulfite 
conversion prior to adapter ligation (122), and PCR am-
plification of the tagged fragments, have extended the 
coverage rate to ~18% of all CpG sites (scBS-seq) (123). 
Further improvements in library preparation and read 
mapping have increased uniformity and reduced arti-
factual reads (snmC-seq2) (124, 125). However, they are 
lower throughput compared to SCI-based strategies (sci-
MET) (126) that are highly scalable at the cost of lower 
data quality. To circumvent the problems associated 
with bisulfite conversion, a small number of single cell 
methylation techniques utilize methylation-sensitive re-
striction enzymes (127, 128), but their lower resolution 
and non-quantitative design, limits their application. 
Overall, single cell methylation profiling is more chal-
lenging and less developed compared to other single cell 
molecular genetics tools, but if applied to the right bio-
logical question, it could be quite powerful—particularly 
when combined with scRNA-seq or scATAC-seq.

3.4  |  Combined transcriptional and epigenetic 
analysis of single cells

It has been demonstrated that DNA hypomethylated 
and DNAse I hypersensitive sites overlap at a high rate, 
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suggesting that a combination of these signatures may re-
flect stages of enhancer activation (119, 129), Importantly 
though, GRE accessibility and DNA methylation state 
change independently during cell fate transitions with 
delayed loss of methylation in regions of open chroma-
tin (129). This creates a complex dynamic between these 
important epigenetic regulatory mechanisms through 
which transcription is regulated. In other words, inde-
pendent measurements of gene transcription, chromatin 
accessibility, and DNA methylation will not tell the full 
story on epigenetic regulation of gene expression at the 
single cell level. A combined assay could be quite impact-
ful in unraveling how different cell types are affected by 
focal epilepsies and even predict their ongoing adapta-
tive response to seizures.

Since most combined single cell approaches are de-
rived from techniques that have already been described, 
we will not elaborate on each method, but rather list some 
of the more popular options available. The most robust 
co-assays developed to date, profile RNA and chroma-
tin accessibility in single cells (scRNA+ATAC-seq). The 
first generation of these techniques were sci-CAR (130), 
Paired-seq (131), and SNARE-seq (132), which used sim-
ilar protocols, but relied on SCI vs droplet-based bar-
coding of single cells. While an important achievement, 
these initial methods produced lower quality data com-
pared to what could be generated by individual scRNA-
seq or scATAC-seq assays (88). The second-generation 
scRNA+ATAC-seq techniques, which include SHARE-
seq (88) and a commercial product by 10X genomics, 
have closed that gap considerably with remarkable im-
provement in data quality. Other available co-assays 
simultaneously profile single cell transcriptome and 
methylome (scM&T-seq (133)), single cell nucleosome 
occupancy and DNA methylation (scNMOe-seq (134)), 
and single cell transcriptome, chromatin accessibility, 
and DNA methylation (scNMT-seq (135)), but they have 
lower throughput and are less developed compared to 
scRNA+ATAC-seq. It is important to note that combined 
single cell techniques are in their nascency and have not 
been extensively applied to the study of human brain. In 
other words, they may have important limitations that 
are not yet known, however, a handful of examples offer 
a glimpse of their future potential in studying the human 
brain and focal epilepsies (88, 131, 136).

4  |   APPLICATION OF SOM ATIC 
VARI A NTS TO LIN EAGE 
TRA NCING IN NORM A L A N D 
DISEASED BRA INS

During neurogenesis approximately 105 neurons are 
generated per minute (137–139), making the brain par-
ticularly susceptible to somatic variants that have been 
estimated to accumulate at rates as high rate as ~5.1 
sSNVs per day per cerebral cortical progenitor (11). 

Different studies have estimated as many as ~300–900 
somatic SNVs for a post-zygotic neuron soon after 
birth (11, 140). Somatic CNVs are not thought to be as 
common—though more difficult to detect—but they re-
portedly happen in up to 41% of human neurons (141). 
Somatic transposon insertion events are an important 
and well-studied cause of somatic subchromosomal 
CNVs that happen at rates significantly lower than 
sSNVs (15, 142). When discussing somatic mutagenesis, 
typically the primary focus is on its role in disease causa-
tion. Importantly though, somatic variants that are pre-
sent in all the clones of a progenitor, can also serve as a 
lineage map to determine both their origin and timing of 
development (11). For example, when a neuroglial pro-
genitor has spontaneous DNA damage that escapes the 
DNA repair machinery, it accumulates variants that are 
unique to that cell and are passed down to its progeny 
as a lineage barcode (Figure 2). If the lineage-defining 
clonal variants in a given tissue are known—typically 
through bulk or synthetic bulk WGS (143)—it is possible 
to trace back the developmental origin of cortical neu-
rons or glia by identifying the variants that they share. 
The cell types and the fraction of cells carrying a spe-
cific somatic variant could serve as surrogate markers 
to infer the developmental timing of when a mutation 
occurred (11, 144). This technique is particularly pow-
erful when combined with RNA sequencing, as it can 
draw a connection between specific cell types, their de-
velopmental origins, and their timeline of differentiation 
(143). Lineage tracing in the human brain has so far been 
mostly limited to the study of normal tissue (11, 143, 144), 
but it is easy to imagine how this transformative tech-
nology could elucidate the mechanisms of genetic focal 
epilepsies. Lineage tracing could shed light on the tim-
ing of when pathogenic somatic variants arise and the 
conditions under which they cause disease. Beyond the 
obvious diagnostic and treatment implications, knowing 
when and how pathogenic somatic variants occur could 
provide clues about potential modifiable factors and 
may eventually lead to preventive measures.

Let's continue using FCD II as an example. One of 
the hallmarks of FCD II is the presence of dysmorphic 
neurons (DN) and balloon cells (BC, FCD IIb) (145). 
Naturally, understanding the developmental lineage of 
these aberrant cell types is an important step in deci-
phering how FCD lesions develop and how they give rise 
to epilepsy. One of the first attempts at lineage tracing in 
FCD, used single cell microdissection and an X-androgen 
receptor (XAR) inactivation (146) to show disparate 
XAR CAG repeat lengths in single DNs and BCs, and 
proposed a possible role for random X-inactivation in 
FCD (146). Several follow-up studies have used more ad-
vanced techniques such as laser capture microdissection 
and SNP genotyping to detect the presence of somatic 
SNVs in individual DNs and BCs. One such study look-
ing at a DEPDC5-related FCD IIa, demonstrated that 
the second-hit somatic DEPDC5 pathogenic variant was 
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enriched in DNs compared to their normal-appearing 
counterparts (32, 147). Another study that used a similar 
experimental approach in FCD IIb, showed enrichment 
of pathogenic MTOR and PIK3CA variants in DNs and 
BCs compared to morphologically normal-appearing 
neurons and glial cells (32). While DNs typically have 
neuronal properties and BCs express some glial markers, 
there is a range of intermediate cellular phenotypes that 
share properties of both as well markers of immaturity 
(53, 145). Older studies relying on immunohistochem-
istry and cell type-specific antibodies, have suggested 
that DNs and BCs arise from the telencephalic ventric-
ular zone and neuroglial progenitors (148). Although, 
cytomegalic interneurons have also been reported (149), 
calling the developmental origin of these cells into ques-
tion. In a more recent effort to characterize the develop-
mental lineage of FCD II, D’Gama et al. used FACS to 
sort neurons vs non-neuronal cells followed by scWGA 
and SNP genotyping to demonstrate an apparent en-
richment of pathogenic variants in the neuronal lineage 
(21). However, due to technical limitations, they stopped 
short of characterizing the specific neuronal cell types. 
Animal studies have had modest success, honing in on 
the developmental timing of somatic mutagenesis in 
FCD (23, 27), but much is left to be desired. In the mean-
while, with the advent of single cell DNA sequencing 

(scDNA-seq), single cell lineage tracing in normal 
human brain has been advancing rapidly. Application of 
this technology to FCD and other focal epilepsies could 
help answer many of these important questions.

4.1  |  Single cell whole-genome 
amplification and sequencing

To better understand the advantages and drawbacks of 
scDNA-seq technologies it is important to review some 
concepts in bulk DNA sequencing first. The gold stand-
ard for unbiased discovery of clonal somatic variants is 
unamplified bulk whole-genome sequencing (bWGS) 
(15). However, the human genome is approximately 3 bil-
lion base pairs in size, which means bWGS can be pro-
hibitively expensive at the high sequencing depth that is 
required for the detection of rare somatic variants (21, 
139). To circumvent the enormous financial burden of 
bWGS, target capture/amplification techniques such 
whole-exome sequencing (WES) and gene panel se-
quencing, have gained popularity in disease-associated 
somatic variant discovery. These techniques though very 
efficient and high yield, suffer from major artifacts asso-
ciated with PCR duplication errors (150) that reduce mo-
saic variant validation rate (151), and by definition miss 

F I G U R E  2   Somatic variants are spontaneously acquired during development. All the somatic variants in a progenitor cell are passed 
down to its daughter cells. The number of cells carrying a specific variant is an indirect marker for the developmental timepoint at which it was 
generated 
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any pathogenic variants outside the selected genomic 
regions. In broad terms, accuracy, resolution, and effi-
ciency are competing interests in bulk DNA sequencing 
technologies. The same challenges persist in scDNA-seq, 
but are even more magnified since the starting material 
is just one DNA molecule.

A normal diploid human genome contains about 6-7 
picograms of DNA (152), but several nanograms of input 
DNA are required for NGS. Logically, a DNA ampli-
fication step is necessary. All single cell whole-genome 
amplification (scWGA) strategies are imperfect, and to 
that end, the utility of a specific scDNA-seq approach 
is determined by the scWGA strategy applied (Table 1). 
Some common considerations include amplification bias 
with preferential amplification of specific genomic re-
gions (uniformity), allelic dropouts (coverage), and nu-
cleotide copy errors (false positive mutations) (153). The 
Holy Grail of single cell genomics is a scWGA tech-
nique that covers the entire genome, is uniform, has low 
copy errors, and is scalable. Since the first attempt at 
scWGA (154), there has been a lot of progress although 
two scWGA techniques have dominated the field so far. 
These methods that rely on non-linear exponential am-
plification are degenerate oligonucleotide-primed PCR 
(DOP-PCR) (155) and multiple displacement amplifi-
cation (MDA) (156). DOP-PCR is fast, uniform, and 
readily accessible through popular commercial products 
such as GenomePlex (Sigma-Aldrich) (157), but it has low 
coverage of the genome and is error prone (158). MDA 
is another popular and commercially available strategy 
for scWGA (159) that offers high coverage of the genome 
and low error rate, but it lacks uniformity (15). Given 
their highly uniform product, PCR-based approaches 
are more suitable for CNV analysis, while high coverage 
and low error rate make MDA ideal for SNV detection 
(14, 144, 160). To minimize the random non-uniform am-
plification associated with MDA, a semi-linear scWGA 
technique, multiple annealing and looping-based ampli-
fication cycles (MALBAC) (161) was created. MALBAC 

generates self-annealing amplicons to facilitate several 
cycles of linear amplification. However, it requires ex-
ponential amplification during the final steps and has a 
higher false-positive SNV rate compared to MDA (162). 
Linear amplification via transposon insertion (LIANTI) 
(163) took a major leap by solely utilizing linear ampli-
fication, offering more uniformity and improved cov-
erage. LIANTI is not yet commercially available and it 
relies on a more complex protocol and Tn5 transposases 
so its adoption has been slow. A very recent development 
in scWGA is primary template-directed amplification 
(PTA) (164) that similar to MDA uses the high-fidelity 
Phi29 DNA polymerase, but unlike MDA it generates 
the majority of the copies from the primary DNA strand 
to achieve linear amplification. PTA is a commercial 
product and relatively expensive, but it achieves uni-
form, high coverage, low error rate scWGA through a 
simple protocol.

High coverage scWGS is not easily scalable due to 
prohibitive sequencing costs, limiting the study of SNVs 
to a small subset of cells (140, 144). On the other hand, 
low coverage sequencing is sufficient for large CNV 
detection, making it the primary high throughput ap-
plication of scWGS (14). Many microfluidic-based and 
droplet-based adoptions of PCR- (165), MDA- (166, 
167), MALBAC-based (168) scWGA techniques exist. 
SCI has also been applied to scWGS (169) including a 
new technique that combinates SCI with linear ampli-
fication (170). But due to the inherent limitations out-
lined above, all of these techniques are only optimized 
for studying CNVs at a large scale, which is helpful if 
CNVs play a major role in the disease under investiga-
tion such as hemimegalencephaly (HME) (44). Another 
barrier to using scWGS for large-scale lineage tracing 
experiments is limited access to transcriptional infor-
mation to perform detailed cell type analysis, forcing 
us to resort to nuclear sorting for the determination of 
cellular identity. A handful of techniques have had mod-
est success in combining scRNA-seq and scDNA-seq 
(G&T-seq (171) and DR-seq (172)), but the protocols are 
laborious and transcript dropout limits their utility. A 
recent method, parallel RNA and DNA analysis after 
sequencing (PRDD-seq), used a microfluidic approach 
to simultaneously interrogate cell-type-specific cDNA 
and lineage-informative sSNVs using single cell qPCR 
(143). This approach facilitated large-scale lineage trac-
ing with the incorporation of more granular cellular 
identities. Another promising new tool that has not been 
yet applied to lineage tracing, sci-L3, utilizes SCI to per-
form single cell RNA and SNP-genotyping in thousands 
of cells (170). Sci-L3 does not require a priori knowledge 
about patterns of gene expression, which allows for the 
identification of new and rare cell types. While new and 
better techniques will be emerging in the near future, 
many of the available tools can be immediately used to 
study cellular lineage in focal epilepsies.

TA B L E  1   Comparison between common scWGA techniques

Amplification 
strategy Uniformity Coverage

Error 
rate

DOP-PCR Exponential

MDA Exponential

MALBAC Semi-linear

LIANTI Linear

PTA Linear

Note: Number of upward arrows reflects assay reliability in each represented 
category; one arrow depicts least and three arrows represents most reliable.
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5  |   PRIVATE VARI A NTS A N D TH E 
POTENTI A L FOR GENOTOXIC 
DA M AGE IN EPILEPSY

Surprisingly, even terminally differentiated neurons 
continue to accumulate private variants (somatic vari-
ants unique to each cell) at a rate of ~23 SNVs per year 
per neuron in the prefrontal cortex and at ~40 SNVs per 
year per neuron in the dentate gyrus (140). It is difficult 
to conceive, and it is unlikely that focal epilepsy is caused 
by these truly private variants. It is, however, plausible 
that cells that are exposed to chronic seizures acquire 
private somatic variants at an accelerated rate, due to in-
creased oxidative stress and disruption of normal cellular 
homeostasis. If this were to be the case, a subset of these 
private somatic variants in exonic or regulatory regions 
may have direct function-altering or toxic effects with 
deleterious consequences at the single cell level. It has 
been previously demonstrated that neurons in FCD and 
HME express abnormally high levels of phosphorylated 
tau (173, 174), which is typically a molecular feature of 
neurodegenerative diseases (175). Interestingly, patients 
with AD are at increased risk of having seizures (176), 
which has also been corroborated in animal models of 
AD (177). In other words, it is possible that genotoxic 
damage from chronic seizures plays a role in treatment-
refractory epilepsy and could be a plausible explanation 
for accelerated neurodegeneration seen in patients with 
epilepsy (178, 179).

6  |   TH E CH A LLENGE OF NON-
LESIONA L FOCA L EPILEPSIES 
A N D OPPORTU N ITY FOR SINGLE 
CELL IN VESTIGATION

In order for somatic variants to be detected by the cur-
rent diagnostic approaches, the variant allele fraction 
(VAF) should typically exceed 1% in the tested tissue 
(21). This may partly account for the fact that most so-
matic variants have been detected in MCD, where the 
affected tissue is easy to identify and the pathogenic 
variants arise mid-gestation so they are expressed in a 
higher percentage of cells (53). Since some neurogenesis 
continues after birth (180, 181), clonal somatic variants 
may continue to be passed down to a small subset of 
daughter cells postnatally. While the percentage of cells 
harboring such variants is likely extremely small, it is 
nevertheless theoretically possible that these variants 
contribute to the pathogenesis of a subset of adolescent-
 and adult-onset focal epilepsies such as TLE. At this 
juncture, this claim is purely theoretical with no experi-
mental evidence to support it. Nevertheless, irrespective 
of whether somatic mosaicism contributes to the devel-
opment of non-lesional focal epilepsies, single cell DNA, 
RNA, and epigenomic sequencing will give us the op-
portunity to shed light on the specific cell types affected, 

the burden of clonal and private somatic variants, and 
the GREs involved in the disease process.

7  |   CONCLU DING REM ARKS 
A N D OUTLOOK

Epilepsy is one of the oldest diseases described in human 
literature and one of the most studied neurologic dis-
eases, yet our approach to treating it has remained un-
changed for centuries. Part of the challenge is that the 
limited clinical classification of seizures is not reflective 
of the great molecular heterogeneity underlying dif-
ferent seizure types. The growing influence of somatic 
mosaicism in the scientific discourse surrounding focal 
epilepsies has generated a novel, mechanistic framework 
that takes into account genetic diversity at the single 
cell level. In light of this, to adequately investigate the 
molecular mechanisms underlying focal epilepsies, it is 
obligatory that we take advantage of single cell genomic 
approaches. Here we have provided a brief overview of a 
few available single cell techniques and some major con-
siderations around using them. It is important to note 
that despite their differences, many of these techniques 
have reached their maturity and can be immediately uti-
lized to study focal epilepsies.
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