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Abstract: Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD, OMIM 609575) is associ-
ated with energy deficiency and mitochondrial dysfunction and may lead to rhabdomyolysis and
cardiomyopathy. Under physiological conditions, there is a fine balance between the utilization of
different carbon nutrients to maintain the Krebs cycle. The maintenance of steady pools of Krebs cycle
intermediates is critical formitochondrial energy homeostasis especially in high-energy demand-
ing organs such as muscle and heart. Even-chain dicarboxylic acids are established as alternative
energy carbon sources that replenish the Krebs cycle by bypassing a defective β-oxidation path-
way. Despite this, even-chain dicarboxylic acids are eliminated in the urine of VLCAD-affected
individuals. In this study, we explore dodecanedioic acid (C12; DODA) supplementation and inves-
tigate its metabolic effect on Krebs cycle intermediates, glucose uptake, and acylcarnitine profiles
in VLCAD-deficient fibroblasts. Our findings indicate that DODA supplementation replenishes the
Krebs cycle by increasing the succinate pool, attenuates glycolytic flux, and reduces levels of toxic
very long-chain acylcarnitines.

Keywords: VLCAD deficiency; dodecandioic acid; acylcarnitines; Krebs cycle

1. Introduction

Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD, OMIM 609575) is
manifested by a wide range of clinical phenotypes including hypertrophic and dilated
cardiomyopathy, rhabdomyolysis, myopathy, and hypoglycemia [1–4]. Some of these
symptoms can be ameliorated by nutritional restrictions. Current dietary strategies are
primarily focused on eating frequent meals and avoiding consumption of very long-chain
fatty acids, instead offering carbohydrates and medium-chain triglycerides as the energy
source [5]. Despite the special diet, nutritional management has limited success to treat
some symptoms and metabolic derangements in VLCADD affected individuals.

VLCAD deficiency leads to a defect in long-chain fatty acids catabolic pathway with
subsequent disruptions in energy production [6,7] and mitochondrial function [8,9]. In high
energy demanding organs such as muscle and heart, carbon energy substrate utilization
and the maintenance of adequate pools of Krebs cycle intermediates in mitochondria
are especially critical. Disruptions in adequate energy production and mitochondrial
bioenergetic pathways are implicated in the risk of development rhabdomyolysis [10]
and cardiomyopathy [11]. To target impaired mitochondrial bioenergetics in VLCADD,
anaplerotic therapy was proposed as a new treatment strategy [12,13]. This therapeutic
approach is directed towards the restoration of energy production by replenishing pools of
Krebs cycle intermediates [14] while bypassing defective β-oxidation of long-chain fatty
acids (LCFA). Nutritional therapy with a recently FDA-approved anaplerotic triglyceride
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triheptanoin in VLCADD demonstrated long-term positive effects, such as improvement
of some clinical symptoms and hospitalization frequency [15–18]. Nevertheless, VLCADD
presents with a very heterogenic phenotype and clinical outcomes under triheptanoin
supplementation are also heterogenic [16,17]. Oral triheptanoin has a limited effect on the
peripheral tissues [19] and may induce gastrointestinal symptoms leading to some degree
of lipotoxicity. Triheptanoin also does not significantly reduce episodes of rhabdomyolysis,
thus the search for the new therapeutic agents is still ongoing.

More recently, to address exercise intolerance and rhabdomyolysis another anaplerotic
molecule was investigated. Bleeker et al. demonstrated that ketone ester-induced nutri-
tional ketosis has beneficial outcomes and improves exercise performance in five VLCAD-
affected subjects [20]. The data presented in this study suggest that anaplerotic ketone ester
increases ATP levels in muscles.

Even-chain dicarboxylic acids (DAs) also exhibit anaplerotic characteristics and have
been proposed as an alternative energy substrate [21]. DAs are produced endogenously
through the corresponding fatty acid ω-oxidation or from the β-oxidation of longer di-
carboxylic acids. In normal circumstances, these pathways are considered minor fates
however, when β-oxidation becomes impaired, fatty acids are channeled to produce DAs.
DAs (C6-C12) metabolism in mitochondria and peroxisomes, yields a Krebs cycle interme-
diate and gluconeogenic precursor succinyl-CoA. Due to their anaplerotic effect and high
energy density [22], DAs were proposed as an alternative fuel energy substrate in parental
nutrition [21–23]. It is evident however that overproduction and accumulation of hepatic
DA are toxic [24]. Dicarboxylic aciduria is strongly associated with fatty acids oxidation
disorders while C8-C12 DAs are eliminated in urine in FAOD-affected individuals [25,26]
especially during metabolic instability and fasting episodes.

Dodecanedioic acid (DODA), a twelve carbon/medium-chain water-soluble DA de-
rives from β-oxidation of longer chain DAs and by the direct ω-oxidation of lauric acid
(C14). DODA enters mitochondria through the mitochondrial transport system similar
to the corresponding monocarboxylic fatty acids, but does not require a carnitine shut-
tle [27,28]. Mitochondria (Figure 1) and peroxisomes are major sites of DODA oxidative
metabolism [29,30].

Metabolites 2021, 11, x FOR PEER REVIEW 2 of 13 
 

 

acids (LCFA). Nutritional therapy with a recently FDA-approved anaplerotic triglyceride 
triheptanoin in VLCADD demonstrated long-term positive effects, such as improvement 
of some clinical symptoms and hospitalization frequency [15–18]. Nevertheless, VLCADD 
presents with a very heterogenic phenotype and clinical outcomes under triheptanoin 
supplementation are also heterogenic [16,17]. Oral triheptanoin has a limited effect on the 
peripheral tissues [19] and may induce gastrointestinal symptoms leading to some degree 
of lipotoxicity. Triheptanoin also does not significantly reduce episodes of rhabdomyoly-
sis, thus the search for the new therapeutic agents is still ongoing. 

More recently, to address exercise intolerance and rhabdomyolysis another anaple-
rotic molecule was investigated. Bleeker et al. demonstrated that ketone ester-induced nu-
tritional ketosis has beneficial outcomes and improves exercise performance in five 
VLCAD-affected subjects [20]. The data presented in this study suggest that anaplerotic 
ketone ester increases ATP levels in muscles. 

Even-chain dicarboxylic acids (DAs) also exhibit anaplerotic characteristics and have 
been proposed as an alternative energy substrate [21]. DAs are produced endogenously 
through the corresponding fatty acid ω-oxidation or from the β-oxidation of longer dicar-
boxylic acids. In normal circumstances, these pathways are considered minor fates how-
ever, when β-oxidation becomes impaired, fatty acids are channeled to produce DAs. DAs 
(C6-C12) metabolism in mitochondria and peroxisomes, yields a Krebs cycle intermediate 
and gluconeogenic precursor succinyl-CoA. Due to their anaplerotic effect and high en-
ergy density [22], DAs were proposed as an alternative fuel energy substrate in parental 
nutrition [21–23]. It is evident however that overproduction and accumulation of hepatic 
DA are toxic [24]. Dicarboxylic aciduria is strongly associated with fatty acids oxidation 
disorders while C8-C12 DAs are eliminated in urine in FAOD-affected individuals [25,26] 
especially during metabolic instability and fasting episodes. 

Dodecanedioic acid (DODA), a twelve carbon/medium-chain water-soluble DA de-
rives from β-oxidation of longer chain DAs and by the direct ω-oxidation of lauric acid 
(C14). DODA enters mitochondria through the mitochondrial transport system similar to 
the corresponding monocarboxylic fatty acids, but does not require a carnitine shuttle 
[27,28]. Mitochondria (Figure 1) and peroxisomes are major sites of DODA oxidative me-
tabolism [29,30]. 

 
Figure 1. DODA oxidative metabolism in mitochondria and peroxisomes yields acetyl-CoA and succinyl-CoA that
can anaplerotically replenish the Krebs cycle (red arrows). The identity of DODA peroxisomal oxidation intermediates
transferred from peroxisome to mitochondria for further oxidation is not fully elucidated [31].



Metabolites 2021, 11, 538 3 of 12

Due to its anaplerotic effect, the pharmacokinetics of DODA were studied in hu-
mans [32–34]. Given its solubility, DODA can be introduced through peripheral veins
as an inorganic salt. Following administration, it is immediately available for the tissue
energy requirements and exhibits a very low urinary clearance [22,29]. These observations
suggest that DODA supplementation can potentially benefit some conditions associated
with energy deprivation. Limited data, however, are available on DODA metabolic effect in
comparison to the recently FDA-approved triheptanoin (DOJOVITM, Ultragenyx, Novato,
CA, USA) (Table 1).

Table 1. Biochemical and anaplerotic characteristics of triheptanoin and DODA.

Triheptanoin DODA

• Not water soluble
• Metabolized in mitochondria
• Anaplerosis: oxidized to acetyl-CoA and propionyl-CoA
• Induce ketogenesis (C5 and C4 ketone bodies)
• Effect on glucose metabolism: significantly decreases hypoglycemia

episodes in VLCAD affected individuals [35]
• Energy characteristics: 8.3 kcal/mL (DOJOLVITM (triheptanoin) oral

liquid data from www.fda.gov (accessed on 29 June 2020))
• Effect on Krebs cycle intermediates: increase plasma citrate,

aconitate, fumarate, and malate in VLCAD affected individuals [18]
• Effect on lipids profile: increase in odd chain sphingomyelins,

phosphatidylcholines, and phosphatidylethanolamines in VLCAD
affected individuals [18]

• Water-soluble
• Metabolized in peroxisomes and mitochondria
• Anaplerosis: oxidized to acetyl- CoA and

succinyl-CoA [22,31,36]
• Does not induce ketogenesis
• Effect on glucose metabolism: induces a sparing

effect on whole-body glucose uptake, in
non-insulin-dependent diabetes mellitus [23]

• Energy characteristics: 7.2 kcal/g [22]
• Effect on Krebs cycle intermediates: increases

succinate levels [22,31,37]
• Effect on lipids profile: unknown

Here, we explore dodecanedioic acid (C12; DODA) supplementation and investigate
its metabolic effect on Krebs cycle intermediates, glucose uptake, and acylcarnitine profiles
in VLCAD-deficient fibroblasts.

2. Results
2.1. DODA Cellular Uptake

To assess DODA metabolic impact in control and VLCAD deficient cells, we first
analyzed DODA cellular uptake. Preliminary studies indicated that 1 mM DODA is the
optimum concentration that yields an increase in succinate (Figure S1). In the time period
of sixteen hours and the presence of other competing carbon substrates such as 5 mM
glucose and 0.2 mM palmitic acid-BSA, we observed a decrease of DODA in culture media
by 22.3% and 20.0% in control and VLCAD-deficient fibroblasts, respectively (Figure 2).
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2.2. Krebs Cycle Intermediate

At the baseline, VLCAD deficient fibroblasts demonstrated a decrease in succinate,
α-KG, and citrate (Figure 3). Low fumarate levels in VLCAD-deficient cells did not achieve
statistical significance. Incubation with 1 mM DODA for sixteen hours resulted in alter-
ations of Krebs cycle intermediates profiles. In agreement with the expected anaplerotic
DODA characteristics, succinate in both control and VLCAD-deficient cell lines was the
most significantly impacted metabolite in comparison to the baseline. A mild increase in
fumarate in control cells and a marked decrease in citrate in both control and VLCAD-
deficient cells were also detected (Figure 3).
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2.3. Glucose Uptake and Glycolytic Flux

The VLCAD phenotype manifests with intermittent hypoglycemia. To determine
the effect of 1 mM DODA supplementation on cellular glucose uptake, control and
VLCAD-deficient cells were incubated in glucose-free media supplemented with 5 mM
13C6-glucose, 0.2 mM palmitate-BSA, 0.4 mM L-carnitine, and 1 mM of DODA. Next,
we analyzed 13C6-glucose levels in culture media at time zero (t = 0 h) and after five
hours (t = 5 h). In five hours, VLCAD cells consumed a significantly higher amount of
glucose (214.6 ± 50.0 nmol/mg protein vs. 101.1 ± 28.9 nmol/mg protein in the control
cell). 13C6-glucose level in cell media five hours post 1 mM DODA loading indicated
that cells consumed less glucose with fold changes of −1.50 and −4.24 for control and
VLCAD deficient cells, respectively (Figure 4A). We also monitored the incorporation
of 13C from 13C6-glucose to the downstream 13C3-pyruvate and 13C3-glycolytic lactate
(Figure 4C,D). DODA has no effect on 13C-labeled cellular pools of pyruvate and lactate
in control cells, however, there is a significant reduction of 13C3-pyruvate and 13C3 lac-
tate pools (Figure 4C,D) and their ratios (Table 2) in VLCAD-deficient fibroblasts treated
with DODA.

Table 2. Total long-chain (saturated and unsaturated C14-C18) cellular acylcarnitines.

n = 5 Total Long Chain Acyl Carnitines (nmol/mg Protein)

Control 91
VLCAD 511

Control + DODA 103
VLCAD + DODA 397
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2.4. Acylcarnitines Profiles

Circulating acylcarnitines are diagnostic markers of incomplete fatty acid oxidation in
VLCADD. We supplemented cells with a mixture of oleic, palmitic, and linoleic-BSA conju-
gated fatty acids and analyzed cellular acylcarnitines at the baseline and post-incubation
with 1 mM DODA. DODA supplementation induces changes in acylcarnitine profiles
(Figure 5). The decrease in the total amount of long-chain acylcarnitines in VLCAD-
deficient cells was significant (Table 2), while the overall impact on long-chain acylcarnitine
levels in control cells was mild.
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3. Discussion

Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency, a metabolic disorder
of long-chain mitochondrial fatty acids (C14-C20) oxidation, is strongly associated with
energy deficit and accumulation of toxic fatty acids oxidation intermediates. The disorder
is screened as a part of the newborn screening (NBS) program based on dried blood spot
acylcarnitine profiles with a follow-up second-tier testing such as urine organic acids and
molecular confirmatory tests. The defective very long-chain acyl-CoA dehydrogenase
enzyme is a key protein in mitochondrial energy metabolism, thus energy deficit and
perturbed substrate utilization play a significant role in disease pathophysiology. Disease
treatment primarily focuses on the management of clinical symptoms. Nutritional man-
agement focuses on restricting intake of dietary fat while supplementing patients with
medium-chain triglycerides (MCT oil) in an attempt to restore energy deficit and Krebs
cycle substrates balance.

A more recent therapeutic approach using anaplerotic supplements for fatty acid oxi-
dation disorders and other inherited metabolic diseases has been proposed [38,39]. These
anaplerotic energy sources contribute to energy production by increasing the availability
of Krebs cycle intermediates or their precursors (acetyl-CoA and propionyl-CoA) required
for optimal energy production while bypassing the defective metabolic pathways [37]. For
instance, triheptanoin (DOJOLVITM), an anaplerotic C7-triglyceride was recently approved
by FDA for LC-FOAD management. Medium even-chain dicarboxylic acids (C6-C12) also
exhibit anaplerotic characteristics and effectively replenish Krebs cycle intermediates with
efficient energetic values [21,22].

In the present study, we explored the metabolic outcomes of 1 mM DODA supple-
mentation on Krebs cycle intermediates, acylcarnitines, and glucose uptake in fibroblasts
derived from healthy and documented VLCAD-deficient individuals.

To encourage competitive uptake of DODA, we cultured cells in a state of low glucose
(5 mM) and low palmitate-BSA (0.2 mM). Under these conditions, both control and VLCAD-
deficient fibroblasts consumed DODA at a similar rate, indicating that 364 A>G mutation
does not affect DODA cellular uptake (Figure 2). A number of earlier studies explored
DODA metabolism and reported that DODA catabolism yields succinate [35]. More
recently, Jin et al. perfused rat liver with 13C-labeled DODA and detected 13C labeling in
Krebs cycle intermediates, short-chain CoAs, and β-hydroxybutyrate. The study provides
solid evidence that DODA catabolism yields anaplerotic acetyl-CoA and succinyl-CoA in
the liver [31]. Under our experimental conditions, acyl-CoA pools were under the limit of
detection in fibroblasts however, we analyzed cellular Krebs cycle intermediates (Figure 3).
At the baseline, VLCAD deficient cells demonstrated decreased levels of succinate, α-KG,
and citrate (Figure 3). A depletion of Krebs cycle intermediates that was recently also
reported in VLCAD (−/−) mice [40] and eight VLCAD patients [18] contributes further to
energy-related impairments associated with the VLCAD phenotype.

In agreement with the anaplerotic effect of DODA reported by others, 1 mM DODA
loading resulted in an increase in succinate level in both control and VLCAD-deficient
cells by 1.17 and 1.45 fold changes, respectively. A similar fold change increase was also
observed in cellular fumarate levels. These findings support DODA anaplerotic activity. A
marked reduction in cellular citrate in both control and VLCAD-deficient fibroblasts under
DODA supplementation is consistent with the citrate synthase inhibition by the succinyl-
CoA [41] produced from DODA. A marked reduction in cellular citrate in both control and
VLCAD-deficient fibroblasts under DODA supplementation can be possibly explained by
the succinyl-CoA inhibitory effect on citrate synthase. Tucci et al. highlight that citrate
synthase activity response is tissue-specific [42]. The study reports a decrease in wild-type
mice heart citrate synthase activity under anaplerotic triheptanoin diet with no change in
enzyme activity in VLCAD-deficient mice heart. At the same time, there is an increase in
citrate synthase activity in the liver for both wild-type and VLCAD genotypes. Although
triheptanoin is metabolized differently from DODA, it similarly results in succinyl-CoA
production. Despite the prospect that succinyl-CoA produced from DODA may lead to the



Metabolites 2021, 11, 538 7 of 12

decrease of the total cellular citrate pool, high succinyl-CoA is converted to the succinate
and may increase the respiratory activities of the electron transport chain and thus have an
overall positive impact on VLCAD deficiency-induced overall mitochondrial dysfunction.
Indeed, we found that the lactate/pyruvate ratio that represents a clinical, marker of
mitochondrial function and oxidative metabolism is normalized in VLCAD deficient cells
post DODA treatment (Table 3).

Table 3. 13C3 lactate/13C3 pyruvate ratio (n = 5).

Cell Type 13C3 Lactate/13C3 Pyruvate

Control cells 2.31
VLCADD cells 3.31

Control cells/1 mM DODA 2.70
VLCADD cells/1 mM DODA 2.86

Intermittent hypoglycemia is one of the clinical manifestations of fatty acid oxidation
disorders. In VLCADD, the inability to oxidize fatty acids leads to hypoketotic hypo-
glycemia due to a deficit in ketones as an energy source and an increase in glucose uptake
by the peripheral tissues [43]. In comparison to the control cells, VLCAD-deficient fibrob-
lasts demonstrate a significantly higher baseline 13C6-glucose uptake (Figure 4), providing
evidence of metabolic adaptation to the VLCAD deficiency. At the same time, cellular
levels of 13C3-pyruvate in VLCAD fibroblasts were also mildly elevated suggesting that
induced glycolytic flux contributes to the excessive glucose uptake. A marked increase in
cellular 13C3 lactate levels is a biochemical hallmark of mitochondrial dysfunction. It also
provides evidence of an increased compensatory rate of anaerobic glycolysis to meet energy
demands at the time that VLCFA utilization is restricted. An increase in lactate in our study
is in contrast to a study by Ventura et al. [44] which reported a normal lactate/pyruvate
ratio in VLCAD-deficient fibroblasts. The discrepancy in the ratios can be explained by
the heterogeneous presentation of VLCADD associated with different mutations. 1 mM
DODA loading did not significantly affect 13C3-lactate and 13C3-pyruvate levels in control
cells (Figure 4 and Table 3). The observed increase in 13C3-lactate/13C3-pyruvate in control
cells post DODA incubation from 2.31 to 2.70 is statistically insignificant as a result of a
large standard deviation in 13C3-lactate levels (Figure 4). In VLCAD-deficient cells, DODA
led to a decrease in lactate/pyruvate ratio that can be attributed to the attenuation of
glycolytic flux as evident by reduced glucose uptake and a decrease in the downstream
glycolytic 13C3-pyruvate.

Accumulation of circulating long-chain acylcarnitines is a biochemical diagnostic hall-
mark of VLCADD. In humans, circulating levels of acylcarnitines reflect tissue pools, and
an increase in long and long-chain acylcarnitine pools is associated with processes that are
detrimental to cardiac work [45–47]. VLCAD-deficient cells supplemented with a mixture
of fatty acids exhibit a significant accumulation of C14 and C14:2 (Figure 5) in agreement
with the VLCAD phenotype. Affected fibroblasts also demonstrated a marked decrease in
short-chain acylcarnitines C3 and C5 which is consistent with a decrease in branched-chain
amino acid utilization (BCAA). C4 acylcarnitine that derives from amino acids and lipid
metabolism was also markedly decreased. After incubation with 1mM DODA for sixteen
hours in VLCAD deficient cells, we observed a decrease in some short-chain acylcarnitines
(Figure 5) and a total concentration of long-chain acylcarnitines (C14-C18) including un-
saturated species (Table 2) with the most significant changes in C14:2, C18:1 and C18:2
(Figure 5). In contrast, in control cells, DODA impact on long-chain acylcarnitines is not
significant, however, alterations in short-chain species (C3–C5) are similar to the VLCAD
deficient cells. The etiology of free carnitine decrease in control fibroblast post-DODA
addition is not clear at this moment. Intracellular C12DC carnitine was not detected, so it
is unlikely that DODA binds free carnitine and depletes carnitine pool however, we didn’t
analyze acylcarnitines that possibly eliminated to the cell media. Some anticancer drugs
(etoposide, actinomycin D, and vinblastine) and antibiotics (cephaloridine, cefepime, and
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cefluprenam, levofloxacin, and grepafloxacin) can inhibit carnitine transporter OCTN2
leading to secondary carnitine deficiency [48,49]. The clinical manifestation of the sec-
ondary carnitine deficiency was not reported in human studies with DODA. In fact, DODA
was suggested as a component of parental nutrition [22,32,50]. It is established that DODA
is first shortened in peroxisomes followed by final oxidation steps inside the mitochon-
dria [30,31]. Once produced in peroxisomes, medium-chain acyl-CoAs are transported for
further oxidation in the mitochondria through the carnitine shuttle [31,51]. The mechanism
of the medium-chain acylcarnitines increase in cells post DODA treatment is unclear at
the moment. DODA feeding in mice induces expression of peroxisomal FAO enzymes
and MCAD/LCAD genes expression, suggesting induced production of medium-chain
acylcarnitines. More studies with stable isotope tracers are needed to clarify the increase
in medium-chain C6–C12 acylcarnitines in our cellular model. Overall, the observed acyl-
carnitines pattern in VLCAD deficient cells indicates that through anaplerotic acyl-CoA
production, DODA loading modifies substrate preferences, reducing utilization of BCAA
and VLCFA as carbon substrates.

While our data demonstrate DODA metabolic impact in VLCAD deficient fibroblasts
these findings however are presented in vitro cellular model. Dicarboxylic acidemia in
VLCAD deficiency is a result of compensatory and protective mechanisms where a non-
metabolized VLCFAs are channeled towards ω-oxidation. Once generated through ω-
oxidation mainly in the liver and kidney, DAs are activated to the corresponding CoAs and
are degraded through β-oxidation by peroxisomal and mitochondrial enzymes [30,52–54].
During fasting and metabolic instability, this protective mechanism is upregulated as
fasting induces CYP4A ω-hydroxylases and acyl CoA thioesterases (ACOTs) involved
in synthesis and degradation of DAs, respectively [55]. Indeed, when the rate of DA
production during metabolic decompensation exceeds tissue catabolic capacities, DAs
accumulate in the blood and consequently will be eliminated in urine. The metabolic effect
of DODA is also likely to be tissue-specific. Nevertheless, DODA is an alternative carbon
substrate, it is not clear to what extent the most compromised VLCAD deficient tissues
such as muscle and heart are capable to uptake it. In our study, fibroblasts consumed only
twenty-one percent of DODA (mean of control and VLCAD deficient cells) during a sixteen-
hour experiment, although Salinari et al. report that following DODA oral administration
in diabetes type 2 subjects the total tissue uptake is forty-seven percent [56].

The perspective and the clinical significance: The defect in VLCFA oxidation underlies
the metabolic inflexibility and aberrant energy metabolism in the heart and muscle leading
to the clinical manifestation of VLCAD deficiency. Alternative energy carbon substrates
improve cardiac symptoms and muscle energy balance during exercise performance. Do-
decanedioic acid is an alternative carbon energy substrate that bypasses the defective
pathway in the course of β-oxidation and exhibits high caloric energy density. Our study
reveals that 1 mM DODA intervention leads to a decrease in glucose uptake, normalizes
lactate/pyruvate ratio, and reduces some long-chain acylcarnitines. Taken together, our
findings indicate that DODA potentially can ameliorate VLCAD symptoms, however,
additional studies are needed to elucidate DODA fate in muscle and heart as well as its
impact on metabolism during exercise.

Study limitations: VLCAD deficiency has a wide spectrum of clinical manifestation
and heterogenic phenotypic variation. Our proof-of-principle study is focused on one
single mutation. We predict that DODA metabolic response is mutation dependent whereas
further studies are needed to fully assess DODA metabolic impact with more VLCADD-
deficient fibroblasts and matching control cell lines

4. Materials and Methods
4.1. Cells

Human control and VLCAD-deficient fibroblasts (364 A>G) were obtained from
Coriell Institute (control GM08680 5-month-old at sampling, disease GM17475, 10 days old
at sampling). Based on the provided characteristics, the patient has severe early onset of the
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disease, presenting with cardiomyopathy and hypoglycemia. The patient is homozygous
for an A>G transition at nucleotide 364 of the ACADVL gene resulting in an asparagine to
aspartic acid change at codon 122 in the precursor protein [Asn122Asp (N122D)]; Approval
of the Institutional Review Board was not required upon purchase. The material transfer
agreement was approved by Cleveland State University institutional board. Fibroblasts
were grown in 5 mM glucose DMEM containing 10% FBS, 100 mg/mL penicillin, 0.4 mM
L-carnitine, and 0.2 mM linoleic, oleic, and palmitic acids BSA conjugated at 37 ◦C in
5% CO2. For the treatment experiments, DODA was added to the cell media at a final
concentration of 1 mM. This concentration was determined empirically as the optimal
concentration for the anaplerotic effect in our system.

4.2. Dodecanedioic Acid Uptake Assay

To the 20 µL aliquot of cell media, 10 µL of undecanedioic acid (1 mM) was added
(as an internal standard) followed by the addition of 0.3 µL of 3N HCl and 300 µL of
ethyl acetate. Samples were vortexed and centrifuged at 15,000 rpm for 10 min. An
aliquot (200 µL) of the upper organic phase was transferred to a new tube and dried
at room temperature under nitrogen, followed by derivatization with 100 µL of N,O-
Bis(trimethylsilyl)trifluoroacetamide (MilliporeSigma, Burlington, MA, USA) at 90 ◦C for
30 min. Samples were injected onto GCMS (Agilent, Santa Clara, CA, USA) operated in elec-
tron impact (EI) mode- single ion monitoring (SIM) mode with m/z 359 and m/z 345 target
ions for dodecanedioic (Table S1) and undecanedioic acids, respectively.

4.3. Glucose Uptake Assay

Glucose uptake was assayed as described previously [57]. More details can be found
in supplemental materials.

4.4. Krebs Cycle Intermediates, Cellular Lactate, and Pyruvate

Cells were washed two times with cold Dulbecco’s phosphate-buffered saline (DPBS)
followed by one cold water wash. Metabolism quenching was achieved by the addition of
cold methanol/5% acetic acid. Cells were scraped, vortexed, then centrifuged at 5000 rpm
for 15 min. Cell lysates were separated, dried, and derivatized with methoxyamine (Milli-
pore Sigma) in pyridine (20 mg/mL, 40 µL, 80 ◦C for 60 min) followed by N-methyl-N-tert-
butyldimethylsilyltrifluoroacetamide (MilliporeSigma 60 µL, 70 ◦C for 45 min). Krebs cycle
intermediates were analyzed by EI-GCMS. Target ions and retention times can be found in
supplemental materials (Table S1).

4.5. Acylcarnitine Analysis

Cells were washed two times with cold Dulbecco’s phosphate-buffered saline (DPBS)
followed by one cold water wash. Metabolism quenching was achieved by the addition
of cold methanol/5% acetic acid then 100 µL of internal standard solution (Cambridge
Isotopes, Tewksbury, MA, USA, NSK B, working solution) was added. Samples were dried
under a nitrogen stream at room temperature, followed by derivatization with 60 µL of 3 N
HCl/n-butanol for 45 min at 65 ◦C. The derivatized samples were dried and reconstituted
in mobile phase B. LC-MS/MS analysis was carried out with a SCIEX 5500 QTrap mass
spectrometer operated in +ESI/multiple reaction monitoring scans (MRM). Chromatog-
raphy and mass spectrometry method details can be found in supplemental materials
(Tables S2–S4).

4.6. Statistical Analysis

Relative metabolites levels or percent fraction of 13C labeled metabolite are given
as mean ± SD. There were five biological replicates for each condition. Significance was
tested with Student’s t-test. A difference of p ≤ 0.05 was considered significant.
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Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/
article/10.3390/metabo11080538/s1. Figure S1: Optimization of DODA concentration. Change
in succinate level in normal fibroblasts in different DODA concentrations (6 h), Figure S2: DODA
EI-GCMS spectrum as trimethylsilyl derivative, Figure S3: Total ion chromatogram. EI-GCMS,
Table S1: Target ions as tert-Butyltrimethylsilyl derivatives, Table S2: LC gradient program for acyl
carnitines analysis, Table S3: Acylcarnitines mass spectrometry parameters, Table S4: Acylcarnitines
retention times.
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DA Dicarboxylic acid
α-KG α-Ketoglutarate
VLCFA Very long-chain fatty acids
VLCADD Very long-chain acyl-CoA dehydrogenase deficiency
LC-FAOD Long-chain fatty acid oxidations disorders

References
1. Schiff, M.; Mohsen, A.-W.; Karunanidhi, A.; McCracken, E.; Yeasted, R.; Vockley, J. Molecular and cellular pathology of

very-long-chain acyl-CoA dehydrogenase deficiency. Mol. Genet. Metab. 2013, 109, 21–27. [CrossRef]
2. Pena, L.D.M.; van Calcar, S.C.; Hansen, J.; Edick, M.J.; Walsh Vockley, C.; Leslie, N.; Cameron, C.; Mohsen, A.W.; Berry, S.A.;

Arnold, G.L.; et al. Outcomes and genotype-phenotype correlations in 52 individuals with VLCAD deficiency diagnosed by NBS
and enrolled in the IBEM-IS database. Mol. Genet. Metab. 2016, 118, 272–281. [CrossRef] [PubMed]

3. Yamada, K.; Saito, M.; Matsuoka, H.; Inagaki, N. A real-time method of imaging glucose uptake in single, living mammalian cells.
Nat. Protoc. 2007, 2, 753–762. [CrossRef] [PubMed]

4. Vockley, J. Long-chain fatty acid oxidation disorders and current management strategies. Am. J. Manag. Care 2020, 26, S147–S154.
5. Behrend, A.M.; Harding, C.O.; Shoemaker, J.D.; Matern, D.; Sahn, D.J.; Elliot, D.L.; Gillingham, M.B. Substrate oxidation and

cardiac performance during exercise in disorders of long chain fatty acid oxidation. Mol. Genet. Metab. 2012, 105, 110–115.
[CrossRef] [PubMed]

6. Vockley, J.; Burton, B.; Berry, G.T.; Longo, N.; Phillips, J.; Sanchez-Valle, A.; Tanpaiboon, P.; Grunewald, S.; Murphy, E.;
Humphrey, R.; et al. UX007 for the treatment of long chain-fatty acid oxidation disorders: Safety and efficacy in children and
adults following 24 weeks of treatment. Mol. Genet. Metab. 2017, 120, 370–377. [CrossRef] [PubMed]

7. Wang, Y.; Palmfeldt, J.; Gregersen, N.; Makhov, A.M.; Conway, J.F.; Wang, M.; McCalley, S.P.; Basu, S.; Alharbi, H.;
St Croix, C.; et al. Mitochondrial fatty acid oxidation and the electron transport chain comprise a multifunctional mitochondrial
protein complex running title: Structural architecture of mitochondrial energy metabolism. J. Biol. Chem. 2019, 294, 12380–12391.
[CrossRef] [PubMed]

8. Cecatto, C.; Amaral, A.U.; da Silva, J.C.; Wajner, A.; Schimit, M.D.O.V.; da Silva, L.H.R.; Wajner, S.M.; Zanatta, Â.; Castilho, R.F.;
Wajner, M. Metabolite accumulation in VLCAD deficiency markedly disrupts mitochondrial bioenergetics and Ca2+ homeostasis
in the heart. FEBS J. 2018, 285, 1437–1455. [CrossRef]

https://www.mdpi.com/article/10.3390/metabo11080538/s1
https://www.mdpi.com/article/10.3390/metabo11080538/s1
http://doi.org/10.1016/j.ymgme.2013.02.002
http://doi.org/10.1016/j.ymgme.2016.05.007
http://www.ncbi.nlm.nih.gov/pubmed/27209629
http://doi.org/10.1038/nprot.2007.76
http://www.ncbi.nlm.nih.gov/pubmed/17406637
http://doi.org/10.1016/j.ymgme.2011.09.030
http://www.ncbi.nlm.nih.gov/pubmed/22030098
http://doi.org/10.1016/j.ymgme.2017.02.005
http://www.ncbi.nlm.nih.gov/pubmed/28189603
http://doi.org/10.1074/jbc.RA119.008680
http://www.ncbi.nlm.nih.gov/pubmed/31235473
http://doi.org/10.1111/febs.14419


Metabolites 2021, 11, 538 11 of 12

9. Seminotti, B.; Leipnitz, G.; Karunanidhi, A.; Kochersperger, C.; Roginskaya, V.Y.; Basu, S.; Wang, Y.; Wipf, P.; Van Houten, B.;
Mohsen, A.W.; et al. Mitochondrial energetics is impaired in very long-chain acyl-CoA dehydrogenase deficiency and can be
rescued by treatment with mitochondria-targeted electron scavengers. Hum. Mol. Genet. 2019, 28, 928–941. [CrossRef]

10. Diekman, E.F.; Visser, G.; Schmitz, J.P.J.; Nievelstein, R.A.J.; de Sain-van der Velden, M.; Wardrop, M.; Van der Pol, W.L.; Houten,
S.M.; van Riel, N.A.W.; Takken, T.; et al. Altered Energetics of Exercise Explain Risk of Rhabdomyolysis in very long-chain
acyl-CoA dehydrogenase deficiency. PLoS ONE 2016, 11, e0147818. [CrossRef]

11. Tucci, S.; Flögel, U.; Hermann, S.; Sturm, M.; Schäfers, M.; Spiekerkoetter, U. Development and pathomechanisms of cardiomy-
opathy in very long-chain acyl-CoA dehydrogenase deficient (VLCAD−/−) mice. Biochim. Biophys. Acta Mol. Basis Dis. 2014,
1842, 677–685. [CrossRef]

12. Roe, C.R.; Sweetman, L.; Roe, D.S.; David, F.; Brunengraber, H. Treatment of cardiomyopathy and rhabdomyolysis in long-chain
fat oxidation disorders using an anaplerotic odd-chain triglyceride. J. Clin. Investig. 2002, 110, 259–269. [CrossRef]

13. Roe, C.R.; Mochel, F. Anaplerotic diet therapy in inherited metabolic disease: Therapeutic potential. J. Inherit. Metab. Dis. 2006,
29, 332–340. [CrossRef]

14. Brunengraber, H.; Roe, C.R. Anaplerotic molecules: Current and future. J. Inherit. Metab. Dis. 2006, 29, 327–331. [CrossRef]
15. Roe, C.R.; Brunengraber, H. Anaplerotic treatment of long-chain fat oxidation disorders with triheptanoin: Review of 15 years

experience. Mol. Genet. Metab. 2015, 116, 260–268. [CrossRef]
16. Vockley, J.; Charrow, J.; Ganesh, J.; Eswara, M.; Diaz, G.A.; McCracken, E.; Conway, R.; Enns, G.M.; Starr, J.; Wang, R.; et al.

Triheptanoin treatment in patients with pediatric cardiomyopathy associated with long chain-fatty acid oxidation disorders. Mol.
Genet. Metab. 2016, 119, 223–231. [CrossRef] [PubMed]

17. Gillingham, M.B.; Heitner, S.B.; Martin, J.; Rose, S.; Goldstein, A.; El-Gharbawy, A.H.; Deward, S.; Lasarev, M.R.; Pollaro, J.;
DeLany, J.P.; et al. Triheptanoin versus trioctanoin for long-chain fatty acid oxidation disorders: A double blinded, randomized
controlled trial. J. Inherit. Metab. Dis. 2017, 40, 831–843. [CrossRef] [PubMed]

18. Sklirou, E.; Alodaib, A.N.; Dobrowolski, S.F.; Mohsen, A.-W.A.; Vockley, J. Physiological perspectives on the use of triheptanoin
as anaplerotic therapy for long chain fatty acid oxidation disorders. Front. Genet. 2021, 11, 1–14. [CrossRef]

19. Kinman, R.P.; Kasumov, T.; Jobbins, K.A.; Thomas, K.R.; Adams, J.E.; Brunengraber, L.N.; Kutz, G.; Brewer, W.U.; Roe, C.R.;
Brunengraber, H. Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. Am. J. Physiol. Endocrinol. Metab.
2006, 291, E860–E866. [CrossRef] [PubMed]

20. Bleeker, J.C.; Visser, G.; Clarke, K.; Ferdinandusse, S.; Haan, F.H.; Houtkooper, R.H.; IJlst, L.; Kok, I.L.; Langeveld, M.;
Pol, W.L.; et al. Nutritional ketosis improves exercise metabolism in patients with very long-chain acyl-CoA dehydrogenase
deficiency. J. Inherit. Metab. Dis. 2020, 43, 787–799. [CrossRef] [PubMed]

21. Mingrone, G.; Castagneto, M. Medium-chain, even-numbered dicarboxylic acids as novel energy substrates: An update. Nutr.
Rev. 2006, 64, 449–456. [CrossRef]

22. Grego, A.V.; Mingrone, G. Dicarboxylic acids, an alternate fuel substrate in parenteral nutrition: An update. Clin. Nutr. 1995,
14, 143–148. [CrossRef]

23. Mingrone, G.; De Gaetano, A.; Greco, A.V.; Capristo, E.; Benedetti, G.; Castagneto, M.; Gasbarrini, G. Dodecanedioic acid infusion
induces a sparing effect on whole-body glucose uptake, mainly in non-insulin-dependent diabetes mellitus. Br. J. Nutr. 1997,
78, 723–735. [CrossRef]

24. Vickers, A.E.M. Characterization of hepatic mitochondrial injury induced by fatty acid oxidation inhibitors. Toxicol. Pathol. 2009,
37, 78–88. [CrossRef] [PubMed]

25. Wanders, R.J.A.; Komen, J.; Kemp, S. Fatty acid omega-oxidation as a rescue pathway for fatty acid oxidation disorders in humans.
FEBS J. 2011, 278, 182–194. [CrossRef] [PubMed]

26. Wood, J.C.; Magera, M.J.; Rinaldo, P.; Reed Seashore, M.; Strauss, A.W.; Friedman, A. Diagnosis of very long chain acyl-
dehydrogenase deficiency from an infant’s newborn screening card. Pediatrics 2001, 108, e19. [CrossRef] [PubMed]

27. Kølvraa, S.; Gregersen, N. In vitro studies on the oxidation of medium-chain dicarboxylic acids in rat liver. Biochim. Biophys. Acta
(BBA) Lipids Lipid Metab. 1986, 876, 515–525. [CrossRef]

28. Vamecq, J.; Draye, J.P.; Brison, J. Rat liver metabolism of dicarboxylic acids. Am. J. Physiol. 1989, 256, G680–G688. [CrossRef]
[PubMed]

29. Mingrone, G.; Greco, A.V.; Tataranni, A.; Raguso, C.; de Gaetano, A.; Castagneto, M. Pharmacokinetic profile of dodecanedioic
acid, a proposed alternative fuel substrate. J. Parenter. Enter. Nutr. 1994, 18, 225–230. [CrossRef]

30. Bharathi, S.S.; Zhang, Y.; Gong, Z.; Muzumdar, R.; Goetzman, E.S. Role of mitochondrial acyl-CoA dehydrogenases in the
metabolism of dicarboxylic fatty acids. Biochem. Biophys. Res. Commun. 2020, 527, 162–166. [CrossRef] [PubMed]

31. Jin, Z.; Bian, F.; Tomcik, K.; Kelleher, J.K.; Zhang, G.-F.; Brunengraber, H. Compartmentation of metabolism of the C12-, C9-, and
C5-n-dicarboxylates in rat liver, investigated by mass isotopomer analysis. J. Biol. Chem. 2015, 290, 18671–18677. [CrossRef]
[PubMed]

32. Mingrone, G.; De Gaetano, A.; Greco, A.V.; Benedetti, G.; Capristo, E.; Castagneto, M.; Gasbarrini, G. Plasma clearance and
oxidation of dodecanedioic acid in humans. J. Parenter. Enter. Nutr. 1996, 20, 38–42. [CrossRef] [PubMed]

33. Bertuzzi, A.; Mingrone, G.; Gandolfi, A.; Greco, A.V.; Salinari, S. Disposition of dodecanedioic acid in humans. J. Pharmacol. Exp.
Ther. 2000, 292, 846–852.

http://doi.org/10.1093/hmg/ddy403
http://doi.org/10.1371/journal.pone.0147818
http://doi.org/10.1016/j.bbadis.2014.02.001
http://doi.org/10.1172/JCI0215311
http://doi.org/10.1007/s10545-006-0290-3
http://doi.org/10.1007/s10545-006-0320-1
http://doi.org/10.1016/j.ymgme.2015.10.005
http://doi.org/10.1016/j.ymgme.2016.08.008
http://www.ncbi.nlm.nih.gov/pubmed/27590926
http://doi.org/10.1007/s10545-017-0085-8
http://www.ncbi.nlm.nih.gov/pubmed/28871440
http://doi.org/10.3389/fgene.2020.598760
http://doi.org/10.1152/ajpendo.00366.2005
http://www.ncbi.nlm.nih.gov/pubmed/16705058
http://doi.org/10.1002/jimd.12217
http://www.ncbi.nlm.nih.gov/pubmed/31955429
http://doi.org/10.1111/j.1753-4887.2006.tb00175.x
http://doi.org/10.1016/S0261-5614(95)80011-5
http://doi.org/10.1079/BJN19970190
http://doi.org/10.1177/0192623308329285
http://www.ncbi.nlm.nih.gov/pubmed/19234235
http://doi.org/10.1111/j.1742-4658.2010.07947.x
http://www.ncbi.nlm.nih.gov/pubmed/21156023
http://doi.org/10.1542/peds.108.1.e19
http://www.ncbi.nlm.nih.gov/pubmed/11433098
http://doi.org/10.1016/0005-2760(86)90039-1
http://doi.org/10.1152/ajpgi.1989.256.4.G680
http://www.ncbi.nlm.nih.gov/pubmed/2705528
http://doi.org/10.1177/0148607194018003225
http://doi.org/10.1016/j.bbrc.2020.04.105
http://www.ncbi.nlm.nih.gov/pubmed/32446361
http://doi.org/10.1074/jbc.M115.651737
http://www.ncbi.nlm.nih.gov/pubmed/26070565
http://doi.org/10.1177/014860719602000138
http://www.ncbi.nlm.nih.gov/pubmed/8788261


Metabolites 2021, 11, 538 12 of 12

34. Bertuzzi, A.; Mingrone, G.; Gandolfi, A.; Greco, A.V.; Salinari, S. Pharmacokinetic analysis of dodecanedioic acid in humans from
bolus data. J. Parenter. Enter. Nutr. 1995, 19, 498–501. [CrossRef] [PubMed]

35. Vockley, J.; Marsden, D.; McCracken, E.; DeWard, S.; Barone, A.; Hsu, K.; Kakkis, E. Long-term major clinical outcomes in patients
with long chain fatty acid oxidation disorders before and after transition to triheptanoin treatment—A retrospective chart review.
Mol. Genet. Metab. 2015, 116, 53–60. [CrossRef]

36. Mingrone, G.; Castagneto-Gissey, L.; Macé, K. Use of dicarboxylic acids in type 2 diabetes. Br. J. Clin. Pharmacol. 2013, 75, 671–676.
[CrossRef] [PubMed]

37. Tserngg, K.-Y.; Jin, S.-J. Metabolic conversion of dicarboxylic acids to succinate in rat liver homogenates. A stable isotope tracer
study. J. Biol. Chem. 1991, 266, 2924–2929. [CrossRef]

38. Roe, C.R.; Yang, B.-Z.; Brunengraber, H.; Roe, D.S.; Wallace, M.; Garritson, B.K. Carnitine palmitoyltransferase II deficiency:
Successful anaplerotic diet therapy. Neurology 2008, 71, 260–264. [CrossRef] [PubMed]

39. Longo, N.; Price, L.B.; Gappmaier, E.; Cantor, N.L.; Ernst, S.L.; Bailey, C.; Pasquali, M. Anaplerotic therapy in propionic acidemia.
Mol. Genet. Metab. 2017, 122, 51–59. [CrossRef]

40. Gaston, G.; Gangoiti, J.A.; Winn, S.; Chan, B.; Barshop, B.A.; Harding, C.O.; Gillingham, M.B. Cardiac tissue citric acid cycle
intermediates in exercised very long-chain acyl-CoA dehydrogenase-deficient mice fed triheptanoin or medium-chain triglyceride.
J. Inherit. Metab. Dis. 2020, 43, 1232–1242. [CrossRef]

41. Smith, C.M.; Williamson, J.R. Inhibition of citrate synthase by succinyl-CoA and other metabolites. FEBS Lett. 1971, 18, 35–38.
[CrossRef]

42. Tucci, S.; Floegel, U.; Beermann, F.; Behringer, S.; Spiekerkoetter, U. Triheptanoin: Long-term effects in the very long-chain
acyl-CoA dehydrogenase-deficient mouse. J. Lipid Res. 2017, 58, 196–207. [CrossRef]

43. Houten, S.M.; Herrema, H.; Te Brinke, H.; Denis, S.; Ruiter, J.P.N.; Van Dijk, T.H.; Argmann, C.A.; Ottenhoff, R.; Mü Ller, M.;
Groen, A.K.; et al. Impaired amino acid metabolism contributes to fasting-induced hypoglycemia in fatty acid oxidation defects.
Hum. Mol. Genet. 2013, 22, 5249–5261. [CrossRef]

44. Ventura, F.V.; Ruiter, J.P.N.; IJlst, L.; Tavares De Almeida, I.; Wanders, R.J.A. Lactic acidosis in long-chain fatty acid β-oxidation
disorders. J. Inherit. Metab. Dis. 1998, 21, 645–654. [CrossRef]

45. Yamada, K.A.; McHowat, J.; Yan, G.X.; Donahue, K.; Peirick, J.; Kleber, A.G.; Corr, P.B. Cellular uncoupling induced by
accumulation of long-chain acylcarnitine during ischemia. Circ. Res. 1994, 74, 83–95. [CrossRef]

46. Rutkowsky, J.M.; Knotts, T.A.; Ono-Moore, K.D.; McCoin, C.S.; Huang, S.; Schneider, D.; Singh, S.; Adams, S.H.; Hwang, D.H.
Acylcarnitines activate proinflammatory signaling pathways. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E1378–E1387. [CrossRef]
[PubMed]

47. Knabb, M.T.; Saffitz, J.E.; Corr, P.B.; Sobel, B.E. The dependence of electrophysiological derangements on accumulation of
endogenous long-chain acyl carnitine in hypoxic neonatal rat myocytes. Circ. Res. 1986, 58, 230–240. [CrossRef] [PubMed]

48. Dahash, B.A.; Sankararaman, S. Carnitine Deficiency; StatPearls Publishing: Treasure Island, FL, USA, 2021.
49. Longo, N.; Frigeni, M.; Pasquali, M. Carnitine transport and fatty acid oxidation. Biochim. Biophys. Acta Mol. Cell Res. 2016,

1863, 2422–2435. [CrossRef]
50. Mingrone, G.; De Gaetano, A.; Greco, A.V.; Capristo, E.; Benedetti, G.; Castagneto, M.; Gasbarrini, G. Comparison between

dodecanedioic acid and long-chain triglycerides as an energy source in liquid formula diets. J. Parenter. Enter. Nutr. 1999,
23, 80–84. [CrossRef] [PubMed]

51. McCann, M.R.; De la Rosa, M.V.G.; Rosania, G.R.; Stringer, K.A. L-carnitine and acylcarnitines: Mitochondrial biomarkers for
precision medicine. Metabolites 2021, 11, 51. [CrossRef] [PubMed]

52. Suzuki, H.; Yamada, J.; Watanabe, T.; Suga, T. Compartmentation of dicarboxylic acid β-oxidation in rat liver: Importance of
peroxisomes in the metabolism of dicarboxylic acids. Biochim. Biophys. Acta Gen. Subj. 1989, 990, 25–30. [CrossRef]

53. Ferdinandusse, S.; Denis, S.; Van Roermund, C.W.T.; Wanders, R.J.A.; Dacremont, G. Identification of the peroxisomal beta-
oxidation enzymes involved in the degradation of long-chain dicarboxylic acids. J. Lipid Res. 2004, 45, 1104–1111. [CrossRef]
[PubMed]

54. Westin, M.A.K.; Hunt, M.C.; Alexson, S.E.H. The identification of a succinyl-CoA thioesterase suggests a novel pathway for
succinate production in peroxisomes. J. Biol. Chem. 2005, 280, 38125–38132. [CrossRef]

55. Hardwick, J.P. Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases. Biochem.
Pharmacol. 2008, 75, 2263–2275. [CrossRef] [PubMed]

56. Salinari, S.; Bertuzzi, A.; Gandolfi, A.; Greco, A.V.; Scarfone, A.; Manco, M.; Mingrone, G. Dodecanedioic acid overcomes
metabolic inflexibility in type 2 diabetic subjects. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E1051–E1058. [CrossRef]

57. House, A.; Fatica, E.; Shah, R.; Stergar, J.; Pearce, R.; Sandlers, Y. A protocol for metabolic characterization of human induced
pluripotent derived cardiomyocytes (iPSCM). MethodsX 2019, 7, 100572. [CrossRef]

http://doi.org/10.1177/0148607195019006498
http://www.ncbi.nlm.nih.gov/pubmed/8748365
http://doi.org/10.1016/j.ymgme.2015.06.006
http://doi.org/10.1111/j.1365-2125.2012.04177.x
http://www.ncbi.nlm.nih.gov/pubmed/22242741
http://doi.org/10.1016/S0021-9258(18)49936-X
http://doi.org/10.1212/01.wnl.0000318283.42961.e9
http://www.ncbi.nlm.nih.gov/pubmed/18645163
http://doi.org/10.1016/j.ymgme.2017.07.003
http://doi.org/10.1002/jimd.12284
http://doi.org/10.1016/0014-5793(71)80400-3
http://doi.org/10.1194/jlr.M072033
http://doi.org/10.1093/hmg/ddt382
http://doi.org/10.1023/A:1005480516801
http://doi.org/10.1161/01.RES.74.1.83
http://doi.org/10.1152/ajpendo.00656.2013
http://www.ncbi.nlm.nih.gov/pubmed/24760988
http://doi.org/10.1161/01.RES.58.2.230
http://www.ncbi.nlm.nih.gov/pubmed/3948341
http://doi.org/10.1016/j.bbamcr.2016.01.023
http://doi.org/10.1177/014860719902300280
http://www.ncbi.nlm.nih.gov/pubmed/10081997
http://doi.org/10.3390/metabo11010051
http://www.ncbi.nlm.nih.gov/pubmed/33466750
http://doi.org/10.1016/S0304-4165(89)80007-8
http://doi.org/10.1194/jlr.M300512-JLR200
http://www.ncbi.nlm.nih.gov/pubmed/15060085
http://doi.org/10.1074/jbc.M508479200
http://doi.org/10.1016/j.bcp.2008.03.004
http://www.ncbi.nlm.nih.gov/pubmed/18433732
http://doi.org/10.1152/ajpendo.00631.2005
http://doi.org/10.1016/j.mex.2019.05.028

	Introduction 
	Results 
	DODA Cellular Uptake 
	Krebs Cycle Intermediate 
	Glucose Uptake and Glycolytic Flux 
	Acylcarnitines Profiles 

	Discussion 
	Materials and Methods 
	Cells 
	Dodecanedioic Acid Uptake Assay 
	Glucose Uptake Assay 
	Krebs Cycle Intermediates, Cellular Lactate, and Pyruvate 
	Acylcarnitine Analysis 
	Statistical Analysis 

	References

