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Abstract

In multisite neuroimaging studies there is often unwanted technical variation across scanners and 

sites. These “scanner effects” can hinder detection of biological features of interest, produce 
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inconsistent results, and lead to spurious associations. We propose mica (multisite image 

harmonization by cumulative distribution function alignment), a tool to harmonize images taken 

on different scanners by identifying and removing within-subject scanner effects. Our goals in the 

present study were to (1) establish a method that removes scanner effects by leveraging multiple 

scans collected on the same subject, and, building on this, (2) develop a technique to quantify 

scanner effects in large multisite studies so these can be reduced as a preprocessing step. We 

illustrate scanner effects in a brain MRI study in which the same subject was measured twice 

on seven scanners, and assess our method’s performance in a second study in which ten subjects 

were scanned on two machines. We found that unharmonized images were highly variable across 

site and scanner type, and our method effectively removed this variability by aligning intensity 

distributions. We further studied the ability to predict image harmonization results for a scan taken 

on an existing subject at a new site using cross-validation.
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1. Introduction

Medical imaging has become an established practice in clinical studies and medical 

research, leading to situations where images must be compared across site locations, 

scanners, or scanner types. Upgrades in scanner technology within a site may render old data 

incomparable to data collected on a newer machine, and this presents challenges in studies 

where acquisition techniques change over time. Multisite studies have become common 

as well; examples include large neuroimaging studies such as the Alzheimer’s Disease 

Neuroimaging Initiative [1] and the Human Connectome Project [2], as well as targeted 

clinical trials studying interventions for neurological diseases such as multiple sclerosis [3, 

4].

Measurement across multiple sites and scanners introduces unwanted technical variability in 

the images [5]. Going forward we will refer to technical artifacts introduced across either 

sites or scanners as “scanner effects.” Scanner effects in imaging studies can reduce power 

to detect true differences across images and distort downstream measurements of regional 

volumes, brain lesions, and other biological features of interest [6, 7, 8, 9, 10]. In structural 

magnetic resonance imaging (MRI) studies, detection of scanner effects is particularly 

challenging because images are collected in arbitrary units of intensity; as a result, raw MRI 

intensities are often not comparable across study visits even within the same subject and 

scanner. We refer to unwanted technical variability within the same scanner and subject that 

are due to arbitrary unit intensity values as “intensity unit effects.” Though often conflated, 

intensity unit effects and scanner effects are distinct sources of unwanted technical variation 

and should be treated separately.

We refer to methods intended to address intensity unit effects as “intensity normalization” 

methods to distinguish them from methods intended to reduce scanner effects, which we 

term “image harmonization” methods. Both scanner effects and unit effects are present in 
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multisite MRI studies, and in practice they can be challenging to separate. Specifically, 

intensity normalization methods are applied to each scan in a study separately, without an 

integrated analysis or dependence on additional variables. In contrast, image harmonization 

methods target unwanted variation attributable to some additional variable; that is, they 

harmonize images with respect to a covariate.

Scanner effects can be due to differences in scanner hardware, scanner software, scan 

acquisition protocol, or other unknown sources. Examples include head and body coil 

effects, imaging gradient effects, pulse sequence implementation effects, and image scaling 

factor effects. Coil effects and pulse sequence implementation effects can be mitigated 

through the use of inhomogeneity correction algorithms such as N4 [11] and well-calibrated 

scanner protocols, respectively, but residual scanner effects remain. When present, images 

collected at different sites may have systematically different distributions of intensity values. 

For example, [12] showed substantial differences in volumetries across sites and scanner 

types even for a single, biologically stable subject measured under standardized protocols at 

the same held strength on platforms produced by the same vendor. The left panel of Figure 

1 shows histograms of intensity values for this single subject, who was scanned twice at 

each of seven sites across the U.S. Large scanner effects are evident; smaller but visible 

differences within site show that intensity unit effects are present as well. In subsequent 

analyses, scanner effects produced inconsistent measurements of MS lesion volume both 

when lesions were segmented manually or by a variety of automated software pipelines [12].

The issue of arbitrary units has long been recognized and is the subject of a large 

literature on intensity normalization [13, 14, 15, 16]. Intensity normalization methods 

facilitate comparability across subjects measured on the same scanner and standardize 

voxel intensity values; for a review of several methods see [17]. Histogram matching is 

an early approach that aligns densities of voxel intensities to quantiles of an image template 

constructed from several control subjects. Though popular, histogram matching often fails 

to preserve biological characteristics of individual scans and removes useful information 

regarding variation among subjects. [15] formalized the principles of image normalization 

and introduced the White Stripe method. White Stripe normalizes images using patches of 

normal appearing white matter (NAWM), so that rescaled intensity values are biologically 

interpretable as units of NAWM. White Stripe can effectively normalize white matter across 

subjects and is a useful preprocessing step for automated lesion segmentation in MS [18, 19, 

20], but technical variability can remain in the gray matter. Additionally, many studies have 

shown alterations in NAWM for subjects with MS, and this caveat should be considered 

when using this method [21, 22].

Unlike intensity normalization methods, which target intensity unit effects, harmonization 

methods aim to reduce scanner effects so that downstream analyses are more comparable 

across sites and scanners [23, 24]. [25] and [26] focused on diffusion MRI data, harmonizing 

these data across sites and scanners, and scans collected with different acquisition 

parameters, respectively. [27] described a voxel-wise regression method, based on tools 

from genomics, that harmonizes cortical thickness measurements from MRI scans. This 

method succeeds in removing scanner effects for measurements extracted from each image; 

in contrast, our goal in the present study was to develop an effective harmonization method 
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that can be applied to the entire brain. Similar tools from genomics are used to correct for 

scanner effects in multisite diffusion tensor imaging data [23] and multisite functional MRI 

data [24]. However, these harmonization methods require spatial registration to a population 

template, which can lower image resolution and make it challenging to detect important 

disease features such as MS lesions. Ideally, an all-purpose harmonization method would 

remove scanner effects from the whole brain without requiring that all subjects be spatially 

registered to the same template image.

In the past, “normalization” has been used to simultaneously address the problems we 

characterize as unit and scanner effects, although these are more correctly viewed as distinct 

problems. As a result, intensity normalization techniques such as histogram matching 

and White Stripe are often used to address harmonization issues [5, 15, 28]. Unlike 

harmonization techniques mentioned previously, these normalization techniques can be 

applied to the whole brain, do not require spatial registration, and reduce intensity unit 

effects. When scanner effects are due to the same voxel intensity transformations used 

to reduce unit effects, the normalization techniques will reduce scanner effects as well. 

However, often they fail to reduce much of the variability across sites, especially when large 

nonlinear scanner effects are present. Additionally, histogram matching normalizes voxel 

intensities across images at the cost of removing biological variability across subjects which 

can distort structures and mask inter-subject differences of interest.

Here, we introduce a new image harmonization framework for multisite studies. We use data 

in which a subject was scanned on multiple scanners closely enough in time that any image 

differences can be attributed to differences across acquisition platforms (scanner effects) 

rather than biological effects. Our objectives in this study were to (1) establish a method 

that removes scanner effects by leveraging multiple scans collected on the same subject, 

and, building on this, (2) develop a technique to estimate scanner effects in large multisite 

studies so these can be reduced with preprocessing steps. The first objective establishes a 

framework for understanding harmonization, and the second relates to the practical use of 

this framework in multisite studies.

We propose multisite image harmonization by CDF alignment (mica), which harmonizes 

images by aligning cumulative distribution functions (CDFs) of voxel intensities. Our 

approach estimates nonlinear, monotonically increasing transformations of the voxel 

intensity values in one scan such that the resulting intensity CDF perfectly matches the 

intensity CDF from a second (“target”) scan. CDFs can be perfectly aligned using standard 

approaches to curve registration, a problem with an extensive history in the functional 

data analysis literature, see, for example, [29] and references therein. These intensity 

transformations, called warping functions, define a one-to-one mapping between intensity 

values from an initial scan and corresponding intensity values from the target scanner. This 

transformation is then applied to intensity values at each voxel in the initial scan to produce 

a harmonized image. For a subject measured on different scanners in close succession, this 

allows us to identify and remove scanner effects; CDF mappings established in this way can 

be used to reduce the impact of scanner effects in multisite studies.
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We motivate and assess our harmonization approach using two data sets with distinct but 

related problems. The North American Imaging in Multiple Sclerosis (NAIMS) pilot study 

[12, 30, 31, 32, 10] found large scanner effects in a single subject with biologically stable 

MS. We use these data to highlight differences between intensity units and scanner effects 

and show that mica reduces technical variability across sites while preserving the ability 

to detect MS lesions. A second study, which we refer to as the trio2prisma study, scanned 

ten healthy subjects on two different machines and found systematic nonlinear differences 

between the scanners. We used mica to harmonize images from the first scanner so that 

they are comparable to images collected on the second scanner; this demonstrates how our 

method can be used to create a mapping between scanners, and that scanner effects can 

be removed when data are available from both scanners for all subjects. Since scan-rescan 

data are often only available for a subset of study subjects, we also employed a leave-one

scan-out cross-validation approach to assess the utility of our harmonization method in this 

common setting. For both studies, we used mica to understand and, to the extent possible, 

remove scanner variability.

In the next section, we describe our data and the mica methodology. We then present the 

results of our technique in different settings, followed by a discussion.

2. Materials and Methods

2.1. Data and processing

2.1.1. NAIMS dataset—The NAIMS steering committee developed a brain MRI 

protocol relevant to MS lesion quantification [12]. Using this protocol, two scans were 

collected at each of seven sites across the United States on a 45-year-old man with clinically 

stable relapsing-remitting MS. All scans were performed on 3T Siemens scanners (four 

Skyra, two TimTrio, and one Verio). At each site, scan-rescan imaging was performed on 

the same day, with the subject exiting the machine between scans. The participant was also 

assessed at the beginning and end of the study on the same scanner to confirm disease 

stability by clinical and MRI assessments.

Each image was bias-corrected using the N4 inhomogeneity correction algorithm [11], 

including the --rescale-intensities option to correct for intensity drift, then brain extraction 

was performed using the FSL BET skull-stripping algorithm [33]. T1-weighted (T1-w) and 

fluid attenuated inversion recovery (FLAIR) images were White Stripe normalized [34] to 

remove intensity unit effects, mica harmonization was then performed on the White Stripe 

normalized images as described in Section (2.2). We paired our method with White Stripe to 

remove intensity unit effects and enable automated MS lesion detection using the MIMoSA 

[20] software pipeline, though in principle other intensity normalization methods could be 

used instead.

2.1.2. trio2prisma dataset—The trio2prisma data were collected from ten healthy 

subjects ages 19 to 29 at the University of Pennsylvania. For each subject, brain MRI scans 

were obtained on both a Siemens Trio machine and a Prisma scanner. Scans were performed 

between 2 and 11 days apart for each subject (mean 4.2 days), a time window in which 

we expect only minor structural changes in the brain. We focused on T1-w images for 
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the trio2prisma data, though our method can easily be applied to other modalities as well. 

Images were bias-corrected and skull-stripped using the same algorithms described for the 

NAIMS data. Because normalization methods have often been used for harmonization in the 

past, we compared mica to White Stripe and histogram matching normalization. To assess 

method performance on this data, we compared white and gray matter segmentations for 

mica-harmonized images to White Stripe and histogram matching normalized images. All 

white and gray matter segmentations were obtained using a combination of multi-atlas Joint 

Label Fusion [35] and FSL FAST [36].

While spatial registration is not required for our harmonization method in general, for the 

purpose of validating our method in this paper we spatially registered the Prisma scan to 

the Trio scan for each subject in the trio2prisma dataset. This was performed using ANTsR 

software [37], and enables a voxel-wise comparison of mica to methods and raw images.

2.2. Methodology

Our framework for image harmonization uses non-linear transformations of image intensity 

values to remove scanner effects. The transformations were calculated by aligning 

distribution functions of intensity values. For a particular imaging modality (for example, 

T1-w), Yijk(v) represents the intensity at a given voxel v for scan j of subject i measured 

at site k. Then fijk(x) and Fijk(x) represent the probability density function (PDF) and CDF, 

respectively, for the voxel intensities of image Yijk measured over intensities x. Within each 

subject we assumed variability in voxel intensities across visits j and sites k is due to scanner 

and intensity unit effects rather than biological change, and that non-biological differences 

could be removed by aligning all CDFs for the ith subject to a subject-specific “template 

CDF,” Fit(x), for template t; template choices for our motivating studies are described below.

For image Yijk we estimate the nonlinear monotonic transformation of the intensity values, 

or warping function, ℎijk
−1(x) = x, which aligns the CDF Fijk(x) to its template via

Fijk ℎijk
−1(x) = Fijk(x) = Fit(x) . (1)

After alignment, the CDF of the original images becomes identical to the CDF of the 

template. For this reason, we use the notation Fit(x) to represent the mica-harmonized CDF 

as well as the template for alignment. We further denote fijk ℎijk
−1(x) = fit(x) and Yit(v) to 

be the mica-harmonized PDFs and images, respectively. The aligned PDFs, fit(x), can be 

recovered from CDFs differentiation.

The warping functions ℎijk
−1(x) = x define a new intensity value, x, for each original intensity 

value in x. The novelty of our approach lies in the use of warping functions to achieve 

image harmonization; many techniques to estimate these warping functions exist, and we 

implemented a warping approach that is straightforward and computationally efficient. 

Specifically, our approach takes a large (1000 or more) number of equally spaced intensity 

values along the range of x for the target and template images, aligns the target and template 

Wrobel et al. Page 6

Neuroimage. Author manuscript; available in PMC 2021 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CDF at these values, and uses linear interpolation to estimate ℎijk
−1(x) at values between 

sampled intensities.

Since each Yijk(v) is a voxel intensity in x, harmonized images Yit take values in x and are 

obtained by ℎijk
−1 {Y ijk(v)} = Y it(v). Wed Appendix Figure (A.1) shows a high-level schematic 

of this process: images were bias corrected and skull-stripped, CDFs were computed from 

voxel-intensities, CDFs were aligned, and warping functions from CDF alignment were used 

to generate harmonized images.

Given this framework for quantifying scanner effects, we now address objectives (1) and (2) 

stated in Section (1). Our first objective, to establish a method that removes scanner effects, 

is illustrated using both the NAIMS and the trio2prisma data. For NAIMS data, we obtained 

empirical CDFs of T1-w and FLAIR images from the NAIMS dataset. Within an imaging 

modality, each CDF is given by Fijk(x), i = 1, j ∈ {1, 2}, k ∈ {1, …, 7}. We used the baseline 

taken taken at the NIH site, referred to as NIH scan 1, as the common template Fit(x) to 

which all CDFs within a modality are aligned, though in principle other templates could be 

used. For the trio2prisma data, we obtained empirical CDFs of T1-w images. Each CDF is 

given by Fijk(x), i ∈ {1, …, 10}, j = 1, k ∈ {Trio, Prisma}. For each subject, we used the 

CDF from the Prisma image, FiPrisma(x), as the template to which we align the CDF from 

the Trio image, FiTrio(x).

Our second objective was to develop a technique to mitigate scanner effects in large 

multisite studies. In such studies, most subjects are only measured on a single scanner; 

at best, only a subset of subjects will have scans collected at all locations in the study. 

In order to harmonize scans for all subjects in this real-world setting, we propose to 

White Stripe scans to remove intensity unit effects and then use mica to estimate warping 

functions for the subset of subjects who have multiple scans. The average of these warping 

functions across subjects can be used to harmonize images for subjects with only a single 

available scan. We assessed the performance of this approach using leave-one-scan-out 

cross validation in the trio2prisma data. Specifically, we removed the Prisma scan for one 

subject and computed the mica warping functions {ℎi
−1(x)} for the remaining subjects. We 

then computed the pointwise mean of these warping functions; using this as the warping 

function for the removed subject, we obtained a predicted Prisma scan from the known Trio 

scan. This process was repeated for each of the ten subjects. In subsequent sections, scans 

harmonized using this leave-one-scan-out (mica-loso) approach will be referred to below as 

mica-loso-harmonized images and Trio scans harmonized using the full data will be referred 

to as mica-harmonized scans.

2.3. Statistical performance

All analyses were performed in the R software environment.

2.3.1. NAIMS data—To assess the performance of our method on the NAIMS data we 

quantified T2-hyperintense lesion volume from the 3D FLAIR and T1-w images in both the 

White Stripe normalized images and images that had been both White Stripe normalized and 

mica-harmonized. MIMoSA [20] was used for automated lesion segmentation. Because the 
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number and volume of lesions are important metrics for monitoring MS disease progression 

[38] and the evaluation of therapeutic efficacy [39], eliminating non-biological variability in 

detected lesion volumes will help clinicians deliver the best possible care to their patients.

We quantified mean and variance of lesion volumes within and across sites after applying 

White Stripe alone and after applying White Stripe followed by mica.

2.3.2. trio2prisma data—For the trio2prisma data, we compared mica and mica-loso 
to the histogram matching algorithm proposed by [13], as implemented in [28]. For better 

performance we first removed background voxels before running the histogram matching 

algorithm. To quantify performance of the methods we computed Hellinger distance of 

images before and after normalization, both within and across subjects. The Hellinger 

distance operates on PDFs of intensities, and its square is given by

ℎ2(fl, fk) = 1
2∫ fl(x) − fk(x) 2dx (2)

for PDFs fl(x) and fk(x). We visualized CDFs and calculated Hellinger distances (Figures 3 

and 4, respectively) using images that had been mica or mica-loso-harmonized but not yet 

White Stripe normalized or spatially registered. This is to identify and visualize the effects 

of our method.

Finally, to quantify the difference between Trio and Prisma images at each voxel, we 

calculated the normalized root mean square voxel-wise error (NRMSE) for raw image pairs, 

histogram matched pairs, White Stripe processed pairs, mica aligned pairs, and mica-loso 
aligned pairs. The NRMSE was calculated for trio2prisma brain volumes in which the Trio 

scan was spatially registered to the Prisma scan for each subject. To statistically compare 

performance of White Stripe and mica with respect to NRMSE, we performed a two-sided 

paired t-test.

3. Results

For the NAIMS pilot data, we compared White Stripe normalized images to images 

processed using the mica approach outlined in Section (2). For the trio2prisma data, we 

compared four harmonization strategies: no harmonization, histogram matching, mica, and 

mica-loso. The main findings from these comparisons are summarized in the following two 

sections.

3.1. mica reduces variation in lesion volumes across sites in the NAIMS study

We White Stripe normalized then mica-harmonized the NAIMS scans, and then quantified 

MS lesion volume to assess the effect of scanner variability on a common downstream 

analysis before and after mica harmonization. The left panel of Figure 1 shows PDFs of raw 

voxel intensities from the NAIMS study images, and the right panel shows PDFs of images 

that have been White Stripe normalized then mica-harmonized. The raw PDFs show small 

differences within site, which are attributable to intensity unit effects, and larger differences 

across site, which are attributable to scanner effects. Scanner effects are particularly large 

between the UCSF site and other sites. After mica harmonization, the images across and 
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within site have the same distributions of voxel intensities. An extension of this Figure 

showing PDFs after White Stripe alone and mica alone is available in the Appendix.

Figure 2 shows estimated T2-hyperintense lesion volume across sites for both White Stripe 

alone and White Stripe in conjunction with mica for scan-rescan pairs across the seven 

NAIMS sites. Compared to White Stripe alone, mica in conjunction with White Stripe 

yielded less variable lesion volume measurements across sites (variance 3.37 ml2 [mica] 

vs. 11.8 ml2 [White Stripe]) and within sites (variance 1.5 ml2 [mica] vs. 12.4 ml2 [White 

Stripe]). The reduction in variability across sites suggests that our method, together with 

White Stripe, decreases site-to-site variance as expected. On average, our method performs 

better than White Stripe alone for within-site variance as well, though it is worth noting that 

at some sites the intra-site variability is lower for White Stripe alone.

3.2. mica preserves variation across subjects in the trio2prisma study

An appropriate harmonization method for multisite studies should reduce variability across 

scanners within the same subject but preserve biological differences across subjects. Here, 

we evaluate results from the trio2prisma data with these goals in mind. We compared mica 
and mica-loso-harmonized images to images processed by histogram matching.

Figure 3 shows CDFs under different harmonization scenarios. A similar figure showing 

PDFs is given in the Web Appendix. Visual inspection of intensity CDFs in untransformed 

images suggests differences across scanners: the Prisma scans tend to have lower intensity 

values and higher peaks than the Trio scans. For both mica and histogram matching, 

within-subject technical variability is reduced because CDFs of Trio scans and Prisma 

scans are aligned. mica accomplishes this by mapping the CDF of the Trio scan to the 

CDF of the original Prisma scan, thus preserving the original features of the Prisma 

scans including variability across subjects. Histogram matching must be applied to scans 

from both the Trio and Prisma scanners, and reduces within-subject variability at the 

expense of eliminating desired differences across subjects. mica-loso provides reasonable 

harmonization in that it maps Trio scans into the same range of intensity values as Prisma 

scans, but has less accuracy in reducing within-subject variability than mica or histogram 

matching. However, much of the desired across-subject variability is retained. Figure 3 

provides visual confirmation that mica retains biological variability across subjects while 

histogram matching removes much of it, and these observations are directly quantified next.

We quantified the variability across subjects using the Hellinger distance from equation (2) 

on PDFs of voxel intensities. Figure 4 displays boxplots of these pairwise distances for 

the original Trio scans, original Prisma scans, and scans processed by histogram matching, 

mica-loso, and mica. Figure 4 is divided into distances calculated on the full skull-stripped 

images (left column), white matter (middle column), and gray matter (right column). The 

mica-harmonized Trio scans have similar across-subject variability to the Prisma scans. The 

mica-loso scans have variability comparable to the original Trio scans but smaller than the 

Prisma scans. After histogram matching, pairwise distances across subjects are nearly zero. 

Together, these results suggest that mica can harmonize images while preserving differences 

across subjects, as can mica-loso to a somewhat lesser extent; histogram matching, in 
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contrast virtually eliminates inter-subject variability, including that which is presumably 

biological.

The left panel and top row of Figure 5 shows an axial slice of an image for one subject 

from the trio2prisma dataset. The slice is shown for raw intensity values collected on the 

Prisma and Trio scanners (left and top right, respectively), intensity values after applying 

mica harmonization to the Trio scan, and intensity values after applying histogram matching 

to the Trio scan. Here, mica-harmonization brightens the contrast between white and gray 

matter but does not distort the shape of biological features in the tissue. Histogram matching, 

however, drastically changes the appearance of the image, converting some gray matter 

to CSF and some white matter to gray matter. The bottom row of Figure 5 shows image 

residuals indicating the voxelwise differences between the Prisma image and the Trio, 

mica harmonized, and histogram matching normalized images, respectively. The smallest 

residuals are seen in the mica image, while the largest are in the F1M image. Overall, Figure 

5 indicates that the mica-harmonized image retains biologically relevant features better than 

histogram matching.

The left panel of Figure 6 shows boxplots across methods of normalized root mean square 

voxel-wise error (NRMSE) for (Trio, Prisma) image within-subject pairs. The NRMSE 

comparison allows us to directly compare how well corrected intensities match on a voxel

wise level. Histogram matching and White Stripe transform data to a different scale because 

they are normalization rather than harmonization methods, and thus normalized RMSE is 

needed to compare across methods.

There are several important features here, which relate both to the relative performance 

of methods and to the separability of intensity unit effects and scanner effects. First, we 

note that mica performs best among these methods, suggesting that mica successfully 

harmonizes images across sites; White Stripe also performs well, particularly in comparison 

to histogram matching, though the difference between White Stripe and mica is statistically 

significant (p = 0.0062). The difference between the performance of mica and White Stripe 

reflects the degree to which the scanner effect is non-linear: White Stripe implements linear 

transformations of intensity values on both the trio and prisma images, which implies a 

linear intensity CDF mapping from the Trio scan to the Prisma scan, while mica explicitly 

defines a non-linear intensity CDF mapping for each subject. mica-loso, which mitigates 

both intensity unit effects and scanner effects, performs somewhat less well than mica 
but better than White Stripe alone. Overall, Figure 6 suggests that mica and mica-loso 
outperform competing methods in terms of NRMSE, and the degree to which they are 

superior will depend on the amount of non-linearity in the transformation that underlies 

scanner effects.

We obtained white matter/gray matter segmentations on the trio2prisma images both before 

and after White Stripe normalization and mica harmonization. Our aim was to show that 

white matter and gray matter volumes within a subject comparing Trio to Prisma are more 

similar after mica than before normalization or harmonization. The center and right panels 

of Figure 6 show boxplots of the difference in these white and gray matter volumes across 

methods. In Figure 6, Trio and Prisma volumes for both white matter and gray matter are 
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more comparable within a subject for mica harmonized image pairs than for White Stripe 

normalized or raw image pairs, and the variability in volume difference is smallest for mica. 

Along with Figure 2, Figure 6 provides evidence that mica harmonization reduces unwanted 

variation in downstream analyses.

4. Discussion

Unwanted technical variability due to scanner effects in multisite clinical trials and 

observational studies is an increasingly common problem; to mitigate these scanner effects 

we introdce mica, a method that harmonizes structural MRI images by defining nonlinear 

transformations between CDFs of voxel intensities. To specifically target scanner effects, 

we developed a paradigm for understanding scanner effects and intensity unit effects as 

related but distinct sources of technical variability in MRI scans. Intensity unit effects 

are due to arbitrary MRI unit intensities within a single scanner, and scanner effects 

are unwanted technical artifacts introduced across scanners or sites. We also distinguish 

between approaches targeting these sources of variability: normalization methods address 

intensity unit effects, and harmonization methods, the focus of our study, address scanner 

effects. Though we focus on across-scanner harmonization, within-scanner variability across 

software upgrades or protocol changes is also a major problem, and the harmonization 

technique we pose will likely apply directly in these scenarios.

In the statistical harmonization literature, there are two fundamental approaches: the first 

aims to reduce inter-scanner variation in derived measures which are extracted from 

imaging data. These approaches, including [28], benefit from the ability to focus on the 

features under study for the harmonization process and thus can be more transparent and 

low-dimensional in their modeling strategies. The second approach, which is under study 

in this work, aims to reduce inter-scanner differences in the acquired images directly. 

This approach, if successful, will lead to more comparable extracted features. Benefits of 

this approach continue to be explored, but could potentially include the use of nuisance 

information for inter-scanner harmonization as well as the ability to assess harmonization 

performance in subsequently extracted features. In addition, by reducing biases in images 

as opposed to extracted features, modeling of coherent patterns of variation that are due 

to technical factors and are present in the acquired image space may be conducted more 

parsimoniously than in the context of subsequently extracted features.

Our data came from two small studies, the NAIMS pilot study and the trio2prisma study, 

with multiple images per subject taken on multiple scanners, and nonlinear scanner effects. 

We found that mica reduced within-subject variability in whole brain scans as well as white 

and gray matter while preserving biological variability across subjects. We also found that 

mica, paired with White Stripe, enhanced reproducibility of measurements of MS lesion 

volume across sites.

Normalization methods such as histogram matching and White Stripe are sometimes used 

for harmonization, but they are inadequate in cases where across-site differences are 

much larger than those within site. Additionally, histogram matching can reduce biological 

variability across subjects and White Stripe can leave residual technical variability in the 
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gray matter. While we differentiate conceptually between intensity unit effects and scanner 

effects, we also acknowledge that in reality these artifacts can be challenging to separate. 

As a result, mica is likely to remove some intensity unit effects and intensity normalization 

methods are likely to remove some scanner effects when applied separately. In particular, 

White Stripe alone will likely perform well as a harmonization method when scanner effects 

are small, linear transformations. Histogram matching, however, is likely to remove desired 

variability across subjects and bias results.

Because our method is flexible and operates on the full brain, we can map images from 

one scanner to another. This mapping is only exact for a particular subject when images 

are available from both scanners, which is not realistic for most studies. That said, our 

leave-one-scan-out analysis suggests that when systematic site differences are present, mica 
can help understand scanner effects and mitigate those differences. Before conducting 

multisite studies, we recommend obtaining a baseline measurement of scanner variability 

by having a subset of patients measured at all sites, and using standardized scanner protocols 

to mitigate sensitivity to adjustable scanner parameters. Our method can then be applied 

to all images collected to remove average scanner variability. We acknowledge that this 

solution is imperfect in the sense that average scanner variability collected from a subset 

of patients in a trial will not always capture the true scanner variability for each subject. 

However, our simple and easy-to-apply methodology is an important step forward for an 

increasingly prevalent problem. Scanner effects may vary across covariates such as gender 

and age, so extensions to mica that incorporate covariates may address some of the issues 

outlined above. One question we do not directly address in our paper is the optimal number 

of scan-rescan subjects required to estimate a stable scanner effect. Due to limited available 

data, the optimal allocation of participants in our pilot studies across multiple sites is 

unclear, and is the subject of future work.

5. Software

To enable use of mica we have written an R software package which is available for 

download at https://github.com/julia-wrobel/mica.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Histograms of voxel intensities for scan-rescan data on a single subject with MS across 

seven sites in the NAIMS pilot study: Brigham and Women’s Hospital (Brigham), Cedars

Sinai, Johns Hopkins University (JHU), National Institutes of Health (NIH), Oregon Health 

& Sciences University (OHSU), University of California San Francisco (UCSF), and Yale 

University (Yale). Left panel shows raw voxel intensities; right panel shows densities after 

mica harmonization and White Stripe normalization. At each site two scans were collected; 

a 1 or 2 after site name indicates the first or second scan, respectively.
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Figure 2: 
Estimated T2 lesion volumes for scan-rescan pairs at each of 7 sites in the NAIMS study. 

Circles indicate scan 1 and triangles indicate scan 2. Light and dark colors are volumes for 

White Stripe normalized images and mica normalized images, respectively.
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Figure 3: 
CDFs of intensities before and after harmonization by tissue type in the trio2prisma study. 

Rows indicate tissue type, with whole brain, white matter, and gray matter shown in rows 1, 

2, and 3, respectively. Columns correspond to different harmonization methods.
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Figure 4: 
Boxplots of pairwise Hellinger distances across all subjects, shaded by method. Columns 

show results for full brain (left), white matter (middle), and gray matter (right). Pairwise 

distances for Prisma and Trio scans are included for reference.
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Figure 5: 
Axial slice of skull-stripped, T1-weighted images from a single subject in the trio2prisma 

dataset. At left is an image collected on the Prisma scanner. The top row from left to 

right show an image collected on the Trio scanner that has been spatially registered to the 

Prisma image, the Trio image after mica harmonization, and the Trio image after histogram 

matching, respectively. The bottom row shows image residuals indicating the voxelwise 

differences between the Prisma image and the Trio, mica harmonized, and histogram 

matching normalized images, respectively.
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Figure 6: 
Left Panel: boxplots of normalized root mean square voxel-wise error for trio2prisma 

image pairs across methods. Shown are raw image pairs (raw: median interquartile range = 

0.3998 {0.0545}), histogram matched pairs (hm: 0.1003 {0.0055}), White Stripe normalized 

pairs (ws: 0.0428 {0.0052}), mica harmonized pairs (mica: 0.0394 {0.0051}), and pairs 

harmonized using the leave-one-scan-out approach (mica-loso: 0.0410 {0.0049}). Center 

and Right Panels: boxplots of difference in Trio and Prisma volumes of white matter (WM) 

and gray matter (GM), where WM/GM segmentation was performed after normalization/

harmonization for White Stripe and mica, respectively.
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