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Abstract

Structured protocols offer a transparent and systematic way to elicit and combine/aggregate,

probabilistic predictions from multiple experts. These judgements can be aggregated beha-

viourally or mathematically to derive a final group prediction. Mathematical rules (e.g.,

weighted linear combinations of judgments) provide an objective approach to aggregation.

The quality of this aggregation can be defined in terms of accuracy, calibration and informa-

tiveness. These measures can be used to compare different aggregation approaches and

help decide on which aggregation produces the “best” final prediction. When experts’ perfor-

mance can be scored on similar questions ahead of time, these scores can be translated into

performance-based weights, and a performance-based weighted aggregation can then be

used. When this is not possible though, several other aggregation methods, informed by mea-

surable proxies for good performance, can be formulated and compared. Here, we develop a

suite of aggregation methods, informed by previous experience and the available literature.

We differentially weight our experts’ estimates by measures of reasoning, engagement, open-

ness to changing their mind, informativeness, prior knowledge, and extremity, asymmetry or

granularity of estimates. Next, we investigate the relative performance of these aggregation

methods using three datasets. The main goal of this research is to explore how measures of

knowledge and behaviour of individuals can be leveraged to produce a better performing

combined group judgment. Although the accuracy, calibration, and informativeness of the

majority of methods are very similar, a couple of the aggregation methods consistently distin-

guish themselves as among the best or worst. Moreover, the majority of methods outperform

the usual benchmarks provided by the simple average or the median of estimates.

1 Introduction

Forecasting events or outcomes relies heavily on judgements elicited from people with exper-

tise and knowledge in a relevant domain, whom we often call experts [1–3]. We ask experts to
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predict what might happen under a set of circumstances, when we do not know what the

future holds. In epidemiology, we might ask experts to forecast the prevalence of a disease in a

population in five years’ time, or when a given number of vaccine doses will be administered

(e.g., see Good Judgment’s Superforecasters). Intelligence analysts might seek predictions of

the outcome of an important election, or the price of oil at some point in the future (e.g., [4]).

Forecasting, and quantifying uncertainty through expert elicitation, may take two forms: elicit-

ing probabilities, or eliciting values of a potentially measurable variable (like the future price of

oil). Here, we are concerned with eliciting probabilities, which can be either thought of as a

subjective degree of belief, or as a relative frequency.

Rather than rely on the subjective judgement of a single expert, it is typically considered

best practice to elicit judgements from diverse groups [1, 5, 6], where group members can

bring different perspectives, cross-examine each other’s reasoning, and share information.

When we have input from more than one individual, their judgements or forecasts need to be

combined into a single estimate. They can either be combined behaviourally, where group

members need to agree on a single judgement, or mathematically, where multiple judgements

are aggregated using a mathematical rule, such as taking a simple group average (e.g., [7]).

Like any other type of data, expert judgements can be prone to errors and contextual biases.

Since we use expert judgements in the same way we use empirical data, we should apply the

same level of care and methodological rigor when eliciting and aggregating expert judgements.

Methods for doing so are sometimes called structured protocols (e.g., [3, 8, 9]) and they aim to

ensure that judgements are as reliable as possible, and are open to the same level of review and

scrutiny as other forms of data.

Two of the three datasets analysed in this paper were elicited using a structured protocol

called the IDEA protocol (e.g., [10]). The IDEA protocol encourages experts to Investigate,

Discuss, and Estimate, and concludes with a mathematical Aggregation of judgements. For

each event to be assessed, individuals research background information and investigate related

sources of information; provide an anonymous estimate of the probability, together with their

justifications for their estimates; receive feedback that reveals how their individual estimates

differ from others’ (a plot of all group members’ estimates, together with their justifications);

discuss differences in opinion and ‘consider the opposite’ (i.e., reasons why an event may or

may not occur, or why a claim may or may not be true, as a group); and finally, provide a sec-

ond anonymous estimate of the probability, incorporating insights gained through feedback

and discussion.

To reflect imprecision around the elicited probability, we seek upper and lower bounds, in

addition to a best estimate. When the probabilities can be interpreted as relative frequencies,

the bounds can be interpreted as percentiles of the expert subjective probability distribution.

When the relative frequency interpretation is not appropriate (i.e., when the probability of a

unique event is elicited) the bounds may be criticised for lacking operational definitions (in a

“classical” probabilistic framework). Many argue that the main reason to elicit bounds in such

cases is to improve thinking about the best estimates [8, 9]. However, more research is needed

to confirm these arguments (e.g., [11] and references therein).

The IDEA protocol results in two sets of probabilities for each event (prior and post group

discussion and feedback). In this paper, an aggregation uses the final estimates (after discus-

sion), unless otherwise specified. In a sense, the IDEA protocol benefits from both the wisdom

of crowds (by aggregating more experts’ estimates) and the “wisdom of the inner crowd” (e.g.,

[12]) by eliciting multiple estimates from the same individual. Although we do not average the

multiple estimates of the same individual (instead, we combine estimates from multiple

experts), we nevertheless consider the updated second estimate to be better than the first.

When giving their second estimate, not only have the experts received (and had the chance to
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challenge) feedback from their peers, but they have also sampled the evidence available to

them multiple times, through the 3-step interval elicitation format [13], and across two rounds

of elicitation.

There are many ways in which probability judgements can be mathematically aggregated

(e.g., [3, 14]) and the IDEA protocol does not prescribe a certain mathematical aggregation.

The most common method used in applications is the simple average, or an equally weighted

aggregation method. However, evidence from cross-validation studies shows that perfor-

mance-weighted aggregation methods (when more weight is assigned to people who have per-

formed well in similar judgement tasks) lead to more calibrated, accurate and informative

combined judgements, compared to equal-weighting of judgements [15–17]. To calculate dif-

ferential weights for performance-weighted aggregations, seed (or calibration) data are needed.

Seed data consists of experts’ answers to seed questions, which are questions from the same

domain as the target questions, for which the outcomes are known, or will become known,

within the time frame of the study [18] (unlike the answers to the target questions). However,

all the results and insights about performance-weighted aggregation methods’ better perfor-

mance (when compared to equally weighted aggregations) are obtained for elicitations of

uncertain (theoretically) measurable, continuous quantities and their probability distributions

(through a finite number of percentiles), rather than event probabilities.

In the current study, we focus on the elicitation of event probabilities, not the distribution

of quantities. The number of seed questions needed to measure performance reliably, when

probabilities are elicited is much larger than the number needed when eliciting quantiles of

continuous quantities (e.g., [3]). This is a consequence of the instability of calibration and

accuracy measures proposed for evaluating elicited probabilities [19]. To keep the elicitation

burden manageable, and to reduce expert fatigue, seed questions are often avoided in probabil-

ity elicitations. In this research we are interested in alternative ways of developing unequal

weights, in the absence of seed questions. We propose using proxies for good performance to

form weights. Such proxies are informed by previous research that investigated experts behav-

iour and particularities of their estimates that correlate with good performance. We differen-

tially weight our experts’ estimates by measures of reasoning, engagement, openness to

changing their mind, extremity of estimates, informativeness, asymmetry of the elicited inter-

vals surrounding best estimates, granularity of estimates, and prior knowledge. Using mea-

sures of experts’ prior knowledge (or seed questions from adjacent domains, rather than the

same domain as the target questions) is as close as we have to a seed dataset. Using such seed

datasets to predict expert performance on the target questions is analogous to the transfer

learning techniques from machine learning (e.g., [20]), but in a very data poor context and

with much less sophisticated methods.

The vast majority of the aggregation methods that we outline in this paper are weighted lin-

ear combinations of experts’ probability estimates (a.k.a. linear opinion pools), informed by

our hypothesised proxies for good forecasting performance. The intuitive appeal, or the evi-

dence behind these proxies is detailed when the methods are introduced. For comparison, we

also consider the most popular aggregation methods used in the expert judgement literature—

namely, simple averages of the experts’ estimates or transformed estimates, and the median.

Apart from linear opinion pools, Bayesian methods are sometimes proposed as mathematical

aggregations of expert judgements. We propose two Bayesian aggregations as well. We mea-

sure the performance of these aggregation methods using three datasets. We introduce these

datasets before the (aggregation) methods, since some of the aggregation methods are specific

to one particular dataset, which is richer than the others. Nonetheless, future exercises for

obtaining expert judgements may benefit from eliciting comparable additional information

from the experts or participants, if it can be used to improve the quality of aggregated forecasts.
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It is worth mentioning that the goal of this research is to understand human behaviour that

predicts good performance so we only use real data. Simulation studies may prove useful for

comparing aggregation methods, after we develop a better understanding of the limitations of

the proposed aggregations. In this paper, we evaluate and compare each of the aggregation

methods in terms of their accuracy, calibration and informativeness; with each of these mea-

sures reflecting different qualities of good judgement/performance.

The remainder of the paper is organised as follows: Section 2 details the specific measures

of performance we are using to evaluate the different aggregations, Section 3 details the pro-

posed aggregation methods, and the datasets they are compared on, and Section 4 shows these

comparisons. The paper concludes with a discussion of findings, and the mathematical formu-

lations of the aggregation methods can be found in S1 File.

2 Performance and scoring

When experts represent their uncertainty as a subjective probability, their assessments may

then be scored. Roughly speaking, a scoring rule compares probabilistic forecasts against actual

outcomes [21–23]. Despite the simplicity of this idea, there are many possible ways to score

experts, each rewarding a different quality of the predictions. Some properties of the predic-

tions need not be assessed relative to actual outcomes. We are concerned with scoring as a way

of measuring those properties of expert subjective probability assessments that we value posi-

tively. Three properties that define expert performance will be discussed further: accuracy, cali-

bration and informativeness.

2.1 Accuracy

Accuracy measures how close an expert’s best estimate is to the true value or outcome. One

widely used measure of accuracy is the Brier score [24]. The Brier score for events is the

squared difference between an estimated probability (an expert’s best estimate) and the actual

outcome; hence it takes values between 0 and 1. Consider event or claim c with two possible

outcomes j. The Brier score of expert i assessing event/claim c is calculated as follows:

BrierScorei;c ¼
X2

j¼1

ðpi;c;j � xc;jÞ
2
;

where pi,c,j is expert i’s probability for event/claim c and outcome j, and xc,j is 1 if outcome j
occurs and 0 otherwise. The above formula measures the accuracy of one estimate made by

one expert about one event. Lower values are better (with zero representing perfect accuracy)

and can be achieved if an expert assigns large probabilities to events that occur, or small proba-

bilities to events that do not occur. An expert’s accuracy can be then measured over many

claims (C claims) and averaged to represent overall accuracy:

BrierScorei ¼
1

C

XC

c¼1

X2

j¼1

ðpic;j � xc;jÞ
2

ð1Þ

The number of events and their overall sample distribution play an important role in inter-

preting such a score. By an overall sample distribution, we mean the inherent uncertainty of

the events. This is also called the base rate and it is different (and often unknown) for each dif-

ferent set of events. However, its value, which has nothing to do with the expert’s skill, contrib-

utes to the value of the average Brier score. This challenges the comparison of experts’ scores

calculated for different sets of events (e.g., [25]). Nevertheless comparisons will be meaningful

when made on the same set of events.
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Another measure of accuracy used for binary events is area under the curve (AUC). To

define AUC we need to define the receiver operating characteristic (ROC) curve (e.g., [26]).

The ROC curve represents the diagnostic ability of a binary classifier (in our case an expert)

and it is obtained by plotting the true positive rate against the false positive rate. The best possi-

ble predictor yields a point in the upper left corner, the (0, 1) point of the ROC space, repre-

senting no false negatives and no false positives. A random guess (e.g. the flip of a coin) would

give a point along a diagonal line. The AUC ranges from 0 to 1. An expert i whose predictions

are 100% wrong has an AUCi of 0; one whose predictions are 100% correct has an AUCi of 1

(e.g. [27]). AUC is threshold independent because it considers all possible thresholds.

2.2 Calibration

Calibration compares the probabilities predicted by experts to the empirical probabilities. For

example, if we group all instances where a 0.8 probability of events’ occurrence was forecasted,

we obtain a perfect calibration only if four out of five events occurred after such forecasts were

issued. Before formally discussing one (of the many) calibration scores, let us introduce some

necessary notation. Assume the experts are asked to assign events to probability bins of the fol-

lowing form Bin1 = (0.1, 0.9), Bin2 = (0.2, 0.8), Bin3 = (0.3, 0.7), etc. where the first number cor-

responds to the probability of the event occurring and the second number is the probability of

the event not occurring (the probability of the complement). An expert would assign an event

to Bin2 if their best guess about the probability of that event’s occurrence is 0.2. Let pk be the

probability of occurrence that corresponds to bin Bink. Each expert assigns events to the differ-

ent bins. Let nk denote the number of events assigned (by an expert) to the bin Bink, where k
takes integer values between 1 and 10, corresponding to the ten probability bins. Let sk denote

the proportion of these events that actually occur; sk can be thought of as the empirical distri-

bution of Bink, whose theoretical distribution is pk. Ideally sk and pk should coincide. Neverthe-

less, in practice, they often do not.

The calibration is essentially a comparison between the empirical and theoretical distribu-

tions, per bin, per expert. For ck independent events/claims whose probability of occurrence is

pk we can measure calibration through the average Brier score discussed in Section 2.1. The

average Brier score can be decomposed into two additive components called calibration and

refinement [28]. The calibration term, which is the component we are interested in, for a total

of C events/claims can be calculated as follows:

X10

k¼1

ckðpk � skÞ
2

C
ð2Þ

Very roughly, the refinement term (not precisely defined, nor used in this research) is an

aggregation of the resolution and the inherent uncertainty of the events assessed. The resolu-

tion term measures the distance between the empirical distributions of the probability bins

and the base rate.

2.3 Informativeness

Measuring the informativeness of experts’ predictions does not require the actual outcomes.

That is to say that an informative expert may well be poorly calibrated and/or not accurate.

Hence, high informativeness is a desirable property only in conjunction with good calibration,

or accuracy.

Experts’ informativeness may be measured with respect to their choice of the probability

bins. The choice (alone) of a more extreme probability bin (i.e., Bin1 or Bin10, which
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correspond to probabilities close to 0 or 1) can give an indication of the expert’s informative-

ness. The average response informativeness is measured as the average discrepancy between

the expert’s choice of probability bins and Bin5, which corresponds to the (0.5, 0.5) uniform

(least informative) distribution. The discrepancy is measured using the Kullback–Leibler

divergence [29], also called the relative information of one distribution with respect to another.

The response informativeness is defined in [30] as:

Info ¼
1

C

X10

i¼k

ckIðpk; 0:5Þ ð3Þ

where I(pk, 0.5) is the Kullback–Leibler divergence of pk from 0.5. The response informative-

ness attains its minimum at zero, when all the variables are placed in the (0.5, 0.5) bin. A higher

informativeness score is preferred since it indicates that more variables were placed in more

extreme bins.

Some of the above measures assume that experts have placed events/claims in probability

bins. However, most elicitation protocols ask experts to provide a best guess and an uncer-

tainty interval around their best guess (e.g. [31]). The width of these intervals is a measure of

the experts’ confidence (sometimes called precision), or lack thereof, and can be an indication

of how appropriate the size of the probability bins is. The width of the interval is sometimes

used as a measure of informativeness as well (e.g., [32]). However, in this research we do not

use this measure to evaluate the quality of predictions. Instead, we use it to form weights for

some of the proposed aggregation methods.

2.4 Performance of aggregated predictions

The measures discussed in this section can indicate probabilistic prediction quality and serve

multiple purposes. If they are applied to individual experts’ predictions, they can be used to form

weights which will then be used to construct a differentially weighted linear combination of

judgements. This mathematically aggregated judgement can be thought of as a virtual expert

whose prediction incorporates all experts’ judgements, weighted according to their validity (as

measured by prior performance). These aggregated judgements (virtual experts) represent the

group’s predictions and can be scored in the same way as experts’ judgements. The measures

described above will be used for comparing different mathematically aggregated judgements,

rather than as a reward system for individual experts. The goal of constructing different aggrega-

tions and scoring them is to find the one that performs the best (according to one or more mea-

sures). This will further inform research into proxies for good performance, in those situations

where performance cannot be measured as part of an expert elicitation due to various limitations.

3 Mathematical aggregation of elicited estimates

We present a suite of methods inspired by the available literature and current research.

Because this research was motivated by the repliCATS project mentioned in Section 1, some of

the aggregations we propose are specific to the information elicited in this project. So, before

we launch into a description of our aggregation methods, we will first introduce the datasets

on which they will be evaluated. The anonymised datasets are available on the OSF project

page RepliCATS aggregation methods.

3.1 Datasets

Apart from the data collected for the repliCATS project (DARPA/SCORE), hereafter referred

to as the repliCATS dataset, and described in Section 3.1.1, two other datasets informed this
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research. These were collected by two separate research teams during a program funded by the

US Intelligence Advanced Research Projects Activity (IARPA) and are described in Section

3.1.2.

3.1.1 DARPA/SCORE. The SCORE program (Systematizing Confidence in Open

Research and Evidence) is funded by DARPA (Defense Advanced Research Projects Agency)

in the US, and is one of the largest replication projects in history. It aims to develop tools to

assign “confidence scores” to research results and claims from the social and behavioural sci-

ences. Our team contributes to the this program, through the repliCATS project which uses a

structured iterative approach for collecting participants’ evaluations of the replicability of find-

ings (a.k.a. claims) from the social and behavioural sciences. Specifically, we ask participants to

estimate the “probability that direct replications of a study would find a statistically significant

effect in the same direction as the original claim”.

As part of this project, we conducted an experiment to explore how well IDEA groups

(groups of participants using the IDEA protocol to estimate the probability of events/claims)

performed when evaluating replicability using a set of “known-outcome” claims. These are

social and behavioural science claims that have already been subject to a replication study and

can be validated. These replication studies came from previous large scale replication projects,

i.e., from Many labs 1, 2 or 3 [33–35] the Social Sciences Replication Project [36] or the origi-

nal Reproducibility Project Psychology [37].

Data for this repliCATS dataset was collected using the IDEA protocol at a 2-day workshop

in the Netherlands, in July 2019. The data collection was approved as part of the larger repli-

CATS project by the ethics board at the University of Melbourne (Ethics ID: 1853445). All par-

ticipants signed consent forms prior to data collection. Participants were predominantly

postgraduate students and early career researchers in psychology and behavioural research,

with an interest in open science and metaresearch. Forecasts were validated against the out-

come of the previous, high-powered replication study.

For each of the 25 claims assessed, participants were asked to provide (in addition to the

probabilistic estimates) a comprehensibility rating and reasoning to support their quantitative

estimates (see [38] for more detail). Prior to the workshop, participants also completed a quiz

containing items relevant to evaluating replicability of research claims (statistical concepts and

meta-research). The quiz was not compulsory and it was designed to cover subjects we expect

the participants to be familiar with in order to reliably answer the target questions. Unlike cali-

bration questions, the quiz questions may cover substantive and adaptive expertise, but less so

normative expertise. However, quiz responses are the closest we have to a seed dataset, on

which we can formulate performance weights.

The participants used the repliCATS platform [39] to answer all the questions and to record

the accompanying reasoning. This allowed us to collect an extensive set of comments and rea-

sons, which we then used to construct measures of reasoning breadth and engagement.

3.1.2 IARPA/ACE. The ACE program (Aggregative Contingent Estimation) was a fore-

casting “tournament” (2011–2015) funded by IARPA, aimed at improving the accuracy, preci-

sion, and timeliness of intelligence forecasts. The program engaged five university-based

research teams to develop a range of best practice protocols for eliciting and aggregating accu-

rate probabilistic forecasts. Teams deployed these tools to predict the outcomes of hundreds of

real geopolitical, economic and military events that resolved, one way or another, typically

within 12 months. An example question was “Will the Turkish government release imprisoned

Kurdish rebel leader Abdullah Ocalan before 1 April 2013?”. The near-future resolution dates

allowed IARPA to validate the accuracy of the forecasts. Throughout the program, thousands

of forecasters made over a million forecasts on hundreds of questions [40, 41].
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Researchers from the University of Melbourne were part of one of the teams participating

in the ACE program. This team elicited forecasts from IDEA groups, initially via email, and

then through an online platform. Participants were asked to evaluate the questions, provide

uncertainty judgements and justifications, and share materials and resources. Participants

were also encouraged to rate and comment on the quality of the information shared by others.

In the current paper, we refer to this as the ACE-IDEA dataset. Participants’ domain-relevant

expertise ranged from self-taught individuals to intelligence analysts. The number of IDEA

groups varied from 4 to 10 throughout the years, with each containing approximately 10 par-

ticipants (but not all individuals answered all questions posed to their group). From the third

year Super-groups were formed, comprising the best performing participants from the previous

year. Super-group participants were unaware that their group was unique.

Another team in the ACE program was The Good Judgment Project (GJP), who won the

tournament [41]. Data collected by the GJP team is available from the official GJP ACE data

repository. We extracted data provided by 4844 participants who predicted subsets of 304

events. Even though participants had the chance to revise their estimate more than once, we

have only extracted final estimates. We have also ignored any existing participant groupings,

to minimise assumptions about how groups were organised across the large dataset, and over

time. Instead, to mimic ACE-IDEA database and number and sizes of the IDEA groups, we

used random subsets of this data. For each question we randomly chose 10 assessments and

generated 10 random groups, assessing the same questions, but with no more that 10 assess-

ments per question. We analyse these random subsets of the data, hereafter called the

ACE-GJP dataset, and we present averaged results.

The GJP elicited point estimate probabilities only, i.e., no upper or lower bounds. Partici-

pants in the GJP teams received training on how to interact effectively as a group, but engaged

without external oversight. The GJP team encouraged think again and consider the opposite style

practices [6] similar to the IDEA protocol, but without following a strict elicitation protocol.

3.2 Aggregation methods

The proposed aggregation methods can be organised in three different groups, each of which

contain several related proposals. We introduce the motivation for these proposals, but leave

the details and exact mathematical formulations for the S1 File. Each aggregation method is

given an ID which is an abbreviation of the mathematical operations used to calculate it. The

intention is to keep the aggregation methods names as intuitive and self-explanatory as possi-

ble, even though sometimes this will result in somewhat unconventional naming.

Several individuals (experts or participants) will assess events or claims (hereafter, “claims”)

whose outcomes are coded as 1 if the claim is considered true, and 0 otherwise. For each claim

c, each individual i provides assessments that the claim in question is true or false, by estimat-

ing three probabilities: Li,c, which is a lower bound; Ui,c, an upper bound and Bi,c which corre-

sponds to the best estimate for the probability given by individual i for claim c. These estimates

satisfy the following inequalities: 0� Li,c� Bi,c� Ui,c� 1.

Each claim is assessed by more than one individual and we aggregate their probabilities to

obtain a group probability, denoted p̂c. We will further denote p̂cðMethod IDÞ as the aggre-

gated probability calculated using the aggregation method with a given ID. For example, the

simple average (the arithmetic mean) aggregation on N individuals’ assessments for claim c is:

p̂c ArMeanð Þ ¼
1

N

XN

i¼1

Bi;c ð4Þ
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Taking the average of the best estimates is the simplest and the most popular aggregation

method. However its disadvantages are well known (and discussed in Section 3.2.1). A few

alternatives proposed in order to overcome these disadvantages include transforming the best

estimates prior- or post-averaging, or taking the median of the estimates, instead of the mean.

Another type of average, proposed in some situations, is the average of the distributions fitted

on the three estimates per claim given by each participant (in two of the datasets). We consider

the average-type aggregations as one group. The second group of aggregations proposed (the

largest of the three), is formed by a set of unequally weighted linear combinations of best esti-

mates. The aggregations from this group only differ in how the weights are constructed,

namely by different potential proxies for good forecasting performance. The last group of pro-

posed aggregations contains two Bayesian approaches.

3.2.1 Transformed averages and the median. The simplest way to aggregate group esti-

mates is to take the unweighted linear average (i.e., the simple average or arithmetic mean of

the best estimates Bi,c for each claim). The aggregate estimate for claim c is therefore calculated

using Eq (4).

The simple average (arithmetic mean) of point probability estimates has proven to outper-

form individual estimates in numerous contexts (e.g., [8, 14]) and it is often used as a bench-

mark for which to compare other aggregation techniques. However taking a simple average of

the estimates has several disadvantages (discussed in e.g., [42]) among which the lack of infor-

mativeness (often probability averages converge towards 0.5) and the sensitivity to outliers. To

overcome the latter, taking the median rather than the mean is recommended (e.g., [43]). Not

being influenced by outliers is an advantage as long as the outliers are not in the direction of

the true outcome. If they are, the median’s performance will be worse than the mean. We use

both the simple average and the median as benchmark aggregations, and we call them ArMean
andMedian, respectively.

Modelling probabilistic estimates often involves transforming the probabilities to a more

convenient scale. Log odds are often used to model probabilities (e.g., see [44, 45] for examples

in generalised linear models and state estimation algorithms), typically due to the advantages

of mapping probabilities onto a scale where very small values are still differentiable, and well

studied distributions (like the Normal distribution) can be assumed when modelling. If we

think of the discrepancy between the true probabilities and the probabilities estimated by the

experts as errors, the error distribution on a probability scale, will not be symmetric, given that

the scale is strictly bounded at both ends. However, when transformed, this inconvenience dis-

appears. Numerical inconsistencies that may occur when extreme values are predicted (as zero

or one) are avoided by slightly modifying such values away from the extremes. In the literature

on expert elicited probabilities, the average of the log odds transformed individual best esti-

mates has outperformed other benchmarks [43, 46]. Other aggregations of odds (e.g., the

geometric mean of the odds, or logarithmic opinion pools), and other transformation of prob-

abilities (e.g., probit transformations) have been proposed and shown to theoretically improve

on several aspects of aggregations. It is however unclear that more sophisticated methods

(requiring more theoretical assumptions) outperform the simplest ones on real, diverse and

often small datasets. We refer to the simple average of log odds aggregation as LOArMean.

Previous research showed that averages of well-calibrated elicited probabilities are under-

confident and methods to overcome this disadvantage were proposed by several authors (e.g.

[42, 46, 47]). These methods basically propose different ways to extremise the simple average

or any other linear opinion pool by shifting the aggregated value closer to either one or zero.

Extremising by shifting the aggregated value farther from the base rate (instead of zero or

one) was proposed in [48]. While this is a fascinating idea theoretically, in practice, more

often than not, the base rate of the elicited events is unknown. We use the simplest
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extremising technique initially proposed in [42], namely a beta-transformed arithmetic

mean (called BetaArMean). This method takes the average of best estimates and transforms

it using the cumulative distribution function (CDF) of a Beta distribution. The Beta distribu-

tion is parameterised by two parameters α and β, and in this analysis, we chose α equal to β
and larger than one. The justification for equal parameters is outlined in e.g., [46] and the

references therein. The parameters for the Beta distributions used on the three datasets were

optimised to maximise performance, which is impossible to do for datasets without known

outcomes. However, we hypothesized that the Beta transformation will have a similar perfor-

mance on datasets sharing the same characteristics (e.g., elicited with the same protocol, hav-

ing similar groups sizes, asking for the probabilities of similar events). For example, the Beta

parameters were equal to 7 for the repliCATS dataset, and the same value was used when

aggregating predictions with unknown outcomes made throughout the project. Fig 1 shows

how the values between 0 and 1 (solid line) are modified when transformed using the CDF of

a Beta(7, 7), represented by the dashed line.

Another type of average, but this time of the distributions (constructed using all three esti-

mates of participants per question) rather than of the best estimates alone, is proposed and

calledDistribArMean. This method assumes that the elicited best estimates and bounds can

be considered to represent participants’ subjective distributions associated with the elicited

probability. That is to say that we considered that the lower bound of the individual per claim

corresponds to the 5% percentile of their subjective distribution on the probability of replica-

tion, denoted q5,i, the best estimate corresponds to the median q50,i, and the upper bound cor-

responds to the 95% percentile, q95,i. With these three percentiles, we build a minimally

informative non-parametric distribution that spreads the mass uniformly between the three

percentiles, such that the constructed distribution agrees with participant’s assessments and

makes no extra assumptions. This approach is inspired by methods for eliciting, constructing

and aggregating distributions of continuous quantities, rather than probabilities [3].

Fig 1. Extremised probability scale. The solid line represents the identity transformation (equivalent with a Beta(1, 1),

which is the uniform distribution) and the dashed line represents the Beta(7, 7) transformation.

https://doi.org/10.1371/journal.pone.0256919.g001
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For example, assume three participants’ estimates for a given claim are {q5,1 = 60%, q50,1 =

70%, q95,1 = 99%}, {q5,2 = 38%, q50,2 = 58%, q95,2 = 60%}, and {q5,3 = 50%, q50,3 = 85%, q95,3 =

90%}. The three cumulative distribution functions built using these percentiles are shown in

Fig 2. Their average is the aggregated distribution and the median of this aggregated distribu-

tion is the aggregated prediction.

3.2.2 Weighted linear combinations of best estimates. Even though weighted linear

combinations of best estimates (of probability predictions) were shown to lack both calibration

and informativeness even when the individual probabilities are calibrated (e.g., [42, 49]) these

results are theoretical and were never strong enough to render weighted linear combinations

useless in practice. Moreover, in practice, weighted linear combinations are more robust than

sophisticated methods requiring more parameters’ estimation (e.g., [50]).

The group of methods proposed in this section involves weighted linear combinations of

individual assessments. All the weights are constructed based on properties of the participants’

assessments, or on behaviours of the participants, which were either observed to correlate with

good performance (in previous studies), or simply speculated to do so. The relative perfor-

mance of these methods will be scrutinised and compared to gain insights into good proxies

for good performance.

We denote the unnormalized weights by w_method (with subscripts denoting correspond-

ing individuals or claims) and the normalised versions by ~w method. All weights need to be

normalised (i.e., to sum to one), but as the process is the same for all of them, in the S1 File, we

will provide the formulae for the unnormalized weights. All differentially weighted combina-

tions will take the form: p̂cðMethod IDÞ ¼
PN
i¼1

~w methodi;cBi;c.
IntWAgg gives more weight to predictions accompanied by narrower intervals. The width

of the interval (sometimes called precision, e.g., [51]) provided by individuals may be an indi-

cator of certainty, and arguably of accuracy of the best estimate contained between the bounds

of the interval. At least, this may be the case for quantitative judgements (rather than probabili-

ties). For example, [52] found that experts provided narrower intervals with midpoints closer

to the truth than novices (although both groups were overconfident). Similarly, [51] found

that as the intervals provided by novices got narrower, the midpoints of those intervals were

closer to the truth. There are many different ways to use interval width to weight the best esti-

mates, with one possible approach being to weight according to the interval width across indi-

viduals for that claim. Previous studies that have weighted the best estimates or midpoints of

Fig 2. The minimally informative non-parametric distributions associated with the estimates given by three

participants for a particular claim and the average aggregated distribution.

https://doi.org/10.1371/journal.pone.0256919.g002
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intervals by precision (interval width) have produced a more accurate aggregate than the sim-

ple average [51, 53]. However, these studies involved judgements where bounds were associ-

ated with a given level of confidence, and the true value was a quantity measured on a

continuous scale rather than a binary outcome.

IndIntWAgg uses a re-scaled form of the individual interval width. Building on the previ-

ous method, we construct similar weights, but this time we account for the general tendency

of an individual to be more or less confident (as expressed by the width of their intervals).

Because of the variability in the widths of intervals participants give for different claims, we re-

scale interval widths across all claims per individual, in this way rewarding certainty more if it

is not their usual behaviour. We hypothesise that when a participant is more certain than

usual, this certainty is informed by extra knowledge.

VarIndIntWAgg rewards larger variation in individuals’ interval widths. Another specula-

tion related to the ones above is that when a participant varies substantially in the given inter-

val widths, this indicates a higher responsiveness to the existing supporting evidence to

different claims. Such responsiveness might be predictive of more accurate assessors.

AsymWAgg rewards asymmetric intervals. Just as the width of an interval may be an indica-

tor of knowledge and responsiveness to the existing supporting evidence, the asymmetry of an

interval relative to the corresponding best estimate may likewise be an indicator. The implica-

tion is that participants who place their best estimate away from the middle of their uncertainty

interval may have more thoughtfully considered the balance of evidence they entertained

when producing their upper and lower bounds. However, this logic may be more appropriate

for unbounded quantity judgements rather than for bounded probability judgements.

IndIntAsymWAgg combines the rewards for narrow intervals and asymmetry. The simplest

way of achieving this is to multiply the previously defined and normalised weights.

KitchSinkWAgg uses weights that reward everything “but the kitchen sink”. Building on all

speculations discussed so far in this section, KitchSinkWAgg is an ad-hoc method developed

and refined (but not yet publicly documented) using a single dataset (ACE-IDEA). This

method is informed by the intuition that we want to reward narrow and asymmetric intervals,

as well as variability between individuals’ interval widths (across their estimates). However, the

more desirable properties we add, the more parameters we have to estimate.

DistLimitWAgg rewards best estimates that are closer to the certainty limits. As mentioned

when introducing informativeness, the choice of a more extreme best estimate may be a sign

of confidence, hopefully driven by more knowledge on a particular subject. A preliminary

analysis of the repliCATS dataset, showed a positive correlation (r = 0.33) between accuracy,

as measured by the average Brier score, and distance from the nearest certainty limit, at the

claim level. This indicates that better performance (small Brier scores) may be accompanied by

shorter distances of best estimates to zero or one.

ShiftWAgg uses weights that are proportional with the change in estimates after discussion

(with more emphasis on changes in the best estimates). An expert’s openness to changing their

mind after discussion is considered desirable and hence a proxy for potentially good perfor-

mance. Calculating these weights is only possible when multiple rounds of judgements are elic-

ited (like in the IDEA protocol). Previous analyses from [32] and [54] indicate that when

participants change their second round judgement, often they become more accurate or more

informative, or both. Therefore, weighting individuals’ best estimates by the change in their

estimates from the first round to the second round (after discussion) on a given claim may be

beneficial.

GranWAgg rewards granularity of best estimates. Probability scales can be broken down

into segments, with the level of segmentation reflecting granularity (i.e., 0.4 − 0.5, versus 0.4

− 0.44, 0.45 − 0.49, and so on) [55]. More skilled forecasters might be expected to have a finer
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grained appreciation of uncertainty and thus make more granular forecasts. Accordingly, it

may be sensible to give greater weight to participants who more frequently use “granular” esti-

mates like 0.63 or 0.67 instead of rounded ones like 0.65 or 0.7. This is supported by the find-

ings in [6] (who found that best performing forecasters made more granular forecasts than

other forecasters) and [56].

EngWAgg uses individuals’ verbosity to measure of engagement. When assessing claims,

individuals have the chance to comment and engage in discussion with other participants.

Previous studies showed that a high level of engagement may predict better accuracy of

judgements [6, 9]. Therefore, this method gives greater weight to best estimates that are

accompanied by longer comments.

ReasonWAgg rewards the breadth and diversity of reasons provided to support the individ-

uals’ estimates. When individuals provide multiple unique reasons in support of their judg-

ment, this may indicate a breadth of thinking, understanding and knowledge about the claim

and its context, and may also reflect engagement and conscientiousness. Qualitative statements

made by individuals as they evaluate claims/studies were coded by the repliCATS Reasoning

team, according to a detailed coding manual developed to ensure analysts were each coding

for common units of meaning in the same sets of textual data. This manual emerged through

an iterative process.

A preliminary analysis of the repliCATS dataset found a negative correlation between the

participants’ average Brier score and number of (unique) reasons they have flagged in the com-

ments accompanying the numerical estimates. This means that participants who offer a larger

number of distinct reasons to support their judgements are, on average, more accurate.

A variant of ReasonWAgg (called ReasonWAgg2) was formulated to incorporate not only

the number of coded reasons listed by a given individual on a given claim, but also the diversity

of reasons provided by a given individual across multiple claims. We refer the reader to the S1

File for details.

Even though most of the structured protocols for eliciting expert judgements encourage

experts to provide reasons and rationales together with their numerical judgements, to the best

of our knowledge, none formally model these qualitative datasets to inform mathematical

aggregation of estimates. This is the first proposal of this kind, and much more qualitative data

(and analysis) is needed to evaluate the extent of its advantages.

QuizWAgg uses quiz scores to calculate weights. As mentioned in Section 1, despite their

usefulness (e.g., [16]), compulsory seed questions are often avoided, such that the elicitation

burden is manageable. In the repliCATS project, we compromised by asking individuals to

take on optional quiz before commencing the main task of evaluating research claims. Instead

of a measure of prior performance on similar tasks, we can use a measure of participants’

knowledge on a relevant domain, and how well they have understood the task or the question;

these too might provide good indicators of their ability to make accurate predictions in that

same domain. A separate analysis found a weak but statistically significant correlation between

quiz scores and accuracy of prediction [57].

CompWAgg rewards higher (self-rated) comprehension levels. In the repliCATS project,

before assessing a claim, individuals were asked to assess how well they understood it. A

7-point scale, where 1 corresponds to “I have no idea what it means” and 7 corresponds to “It

is perfectly clear to me” is used for this comprehensibility question. Intuitively, the numerical

estimates of the individuals who are confident they understood the claim may be weighted

more. This is a speculation based on common sense, rather than supported by prior evidence.

3.2.3 Bayesian aggregations. Another type of mathematical aggregation proposed in the

expert elicitation literature is Bayesian aggregation (e.g., [58–60]). Bayesian approaches treat the

numerical judgements as data and seek to update a prior distribution using Bayesian methods.
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This requires the analyst to develop priors and appropriate likelihood functions to represent the

information implicit in the experts’ statements. This is an incredibly hard and, in practice, a

somewhat arbitrary task. Despite its theoretical appeal, in practice, Bayesian aggregation is

much less used than opinion pooling. We propose two fairly simple, and fairly new Bayesian

models which incorporate and take advantage of the particularities of the repliCATS dataset.

BayTriVar considers three kinds of variability around best estimates: generic claim vari-

ability, generic participant variability, and claim—participant specific uncertainty (operationa-

lised by bounds). The model takes the log odds transformed individual best estimates as input

(data), uses a normal likelihood function and derives a posterior distribution for the probabil-

ity of replication. To complete the specification of the Bayesian model, normal and uniform

priors need to be specified. The quantity of interest is the median of the posterior distribution

of the mean estimated probability of replication. In Bayesian statistics the posterior distribu-

tion is proportional to the product of the likelihood and the prior and in this instance a Monte

Carlo Markov Chain algorithm [61] is used to sample from this posterior distribution.

BayPRIORsAgg builds on the method above. The main difference between the two is that

the parameters of the prior distributions are informed by the PRIORS model [62] which is a

multilevel logistic regression model that predicts the probability of replication using attributes

of the original study.

We summarise the aggregation methods and the proxies for good performance used to con-

struct them (or the properties they represent) in Table 1. All these methods are implemented

in the new aggreCAT R package [63].

4 Evaluations and comparisons

Before presenting and comparing results of the aggregation methods formulated in Section 3,

a few properties of the datasets used in the analyses will be briefly discussed.

Table 1. Aggregation methods.

Group Method ID Proxy/Property

Transformed averages and the median ArMean Wisdom of crowds

Median “Middle of the road”

LOArMean Skewed/Re-scaled wisdom of crowds

BetaArMean Extremised wisdom of crowds

DistrArMean Wisdom of crowds incorporating within expert uncertainty

Weighted linear combinations IntWAgg Precision

IndIntWAgg Precision relative to participants’ behaviour

VarIndIntWAgg Variability in precision

AsymWAgg Considering the balance of evidence

IndIntAsymWAgg Precision & Considering the balance of evidence

KitchSinkWAgg All of the above (from this group)

DistLimitWAgg Extreme estimates

ShiftWAgg Openness to change their mind

GranWAgg Precision of point estimates

EngWAgg Engagement

ReasonWAgg Reasoning

QuizWAgg Prior knowledge

CompWAgg Comprehension

Bayesian aggregations BayTriVar Claim, Participant and Claim-Participant variability

BayPRIORSAgg Claim, Participant and Claim-Participant variability & Study characteristics

https://doi.org/10.1371/journal.pone.0256919.t001
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Two of the datasets were obtained using the IDEA elicitation protocol described in Section

1, hence all estimates consist of lower bounds, upper bounds and best estimates for probabili-

ties, elicited over two rounds. On the other hand, the third data set, namely the ACE-GJP data-

set that we have extracted and used in this analysis contains point probability estimates only,

equivalent to one round. Moreover the repliCATS dataset is much richer than the other two

since it contains extra information on comprehensibility, engagement, reasoning, quiz perfor-

mance, and prior information about the particular research that needs replication. A summary

of what is elicited, from how many participants, for how many claims, and for what sort of

claims (true or false) is presented in Table 2.

Apart from the differences summarised in Table 2, a few others are worth mentioning. The

type of questions is different between the ACE datasets and the repliCATS dataset. Thinking of

the probability of a study to be replicated involves different cognitive needs than thinking of

the probability of a future sociopolitical event to occur. Not only the knowledge pool is differ-

ent, but so is the time frame for the predictions.

4.1 Comparisons

All the differences discussed in the previous section will render any comparison of the aggrega-

tions’ performance between datasets impossible. As a consequence we will only be signaling

consistent relative behaviour of the aggregation methods, if any is observed. Moreover, we

expect performance on the same dataset, but measured with a different measure of perfor-

mance to vary as well. We will discuss these variations within and between datasets. [64] dis-

cuss these issues and propose a quantile metric to evaluate different aggregations under similar

circumstances. In a sense, our approach of evaluating relative ranking is similar with the one

proposed in [64].

Fig 3 shows the four scores discussed in Section 2, calculated for 15 of the proposed aggre-

gation methods, for the three datasets described in Section 3.1. Because of the properties of the

ACE-GJP dataset, only six of the 15 aggregations could be performed and scored. For the AUC
and the informativeness, higher scores are better, whereas for the average Brier score and the

calibration, lower scores correspond to better performance.

We are interested in the relative rankings of the aggregation methods (from worst to best)

and how consistent these are across datasets. At a first glance we can notice that the scores

(irrespective of the measure) are not very different between the methods, when evaluated on

the same dataset. The average Brier scores and the AUC scores are the best examples of this

“uniformity”.

The average Brier scores range from 0.11 to 0.15 on the repliCATS dataset, from 0.09 to 0.1

on the ACE-IDEA dataset, and from 0.06 to 0.08 on the ACE-GJP dataset. While all these

scores indicate good accuracy, differences of order 10−2 are hardly enough to justify strong

orderings.

Table 2. Datasets characteristics.

repliCATS ACE-IDEA ACE-GJP

Number of participants 25 150 4844

Number of events/claims 25 155 304

Number of predictions per claim/event 25 between 6 and 48 10

Extra information elicited bounds, comprehensibility, reasoning, quiz bounds NA

Base rate 0.52 0.19 0.26

https://doi.org/10.1371/journal.pone.0256919.t002
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The same signal is observed when looking at the AUC scores. These range (for all aggrega-

tions and datasets) from 0.85 to 0.97 which can all be considered very good scores. Unfortu-

nately, no absolute threshold, or objective definition a “good” AUC score exist; scores closest

to one are better, but how much better is entirely application dependent. The Y − axis range

of the AUC was cropped to make the differences more visible, but it is difficult to objectively

interpret the magnitude of these differences.

The calibration measure is the most unreliable of these measures as it is very sensitive to the

number of questions participants answer [19]. Notably, on this measure, BetaArMean has one

of the worst scores on the repliCATS data set, but amongst the best on the other two datasets.

For the informativeness scores, one method clearly outperforms the rest on the repliCATS

and ACE-IDEA datasets and comes second on the ACE-GJP dataset. This is the BetaArMean

aggregation. For the ACE-GJP, BetaArMean is very close to the best (0.4), with the best being

LOArMean (0.43). ArMean is amongst the methods with the lowest informativeness scores

(on all dataset), which is not surprising. Informativeness measures departure from a 0.5 proba-

bility assessment, hence, it makes perfect sense for the BetaArMean aggregation, which is an

extremising method to score amongst the most informative.

Fig 3. The performance of 15 of the aggregation methods on the three datasets as measured by four performance

measures.

https://doi.org/10.1371/journal.pone.0256919.g003
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As mentioned, none of the numerical differences are significant, but for the sake of com-

pleteness and a better visualisation of the aggregation methods’ ranking we present the numer-

ical results (rounded to two decimals) in Fig 4. A grey scale is used to indicate best to worst

performance, with darker shades representing better performance.

BetaArMean’s performance stands out as the best on at least three measures of performance

on each of the datasets. On the other hand, ArMean’s performance stands out as the worst on

at least two of the measures, on each dataset. This indicates that most aggregation methods

outperformed the standard benchmark represented by the simple average. The other some-

times used benchmark, the Median is also amongst the worst ranked methods on at least one

measure, on each dataset. An aggregation whose performance is slightly puzzling is the Shift-

WAgg which is the best performer as measured by the AUC on the repliCATS dataset and the

amongst the worst on all the other measures and on the ACE-IDEA dataset.

As mentioned, the full set of aggregation methods can only be used on the repliCATS data-

set. Fig 5 shows the same scores as above, calculated for all the aggregation methods described

in Section 3, but only for the repliCATS dataset. Despite the redundancy of the information

presented, Fig 5 allows a complete comparison between all methods, albeit on only one dataset.

There are 21 different aggregation methods, with the two reasoning-weighted linear combina-

tions having very similar formulations.

For each of the four scoring measures, the values are ordered from worst to best perfor-

mance, and so the order of the aggregation methods changes per subplot accordingly. On the

right hand side of Fig 5 we can observe the best performers and on the left hand side the worst

ones. BetaArMean is one of the most accurate (both in terms of the AUC and the Brier score)

and the most informative relative to the other methods, and so is KitchSinkWAgg if we only

measure accuracy in terms of the Brier score. However the AUC for KitchSinkWAgg is

amongst the worst. Apart from a good AUC score for ArMean, both ArMean and the Median

are outperformed by the majority of methods. LOArMean has mediocre performance on all

measures apart from the calibration (the most unstable measure), where it ranks amongst the

best. IntWAgg and IndIntWAgg have almost equal performance on all measures, suggesting

that re scaling the weights with respect to the largest interval does not do much to improve per-

formance of the aggregation. However, four of the five best performing methods, in terms of

the Brier score, do incorporate interval width in one form or another. VarIndIntWAgg does

Fig 4. Numerical scores measuring the performance of 15 of the aggregation methods on the three datasets. The

table is ordered from best to worst performance as measured by the average Brier score (ABS) on the repliCATS

dataset.

https://doi.org/10.1371/journal.pone.0256919.g004
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not outperform IntWAgg, suggesting that variability in the interval lengths do not tell us much

in this dataset. IntWAgg and AsymWAgg have very similar performance and their combina-

tion produces slightly improved Brier score and informativeness, but worse calibration and

AUC. We speculate that these differences are equivalent to sampling fluctuations rather than

true signals. Many other datasets should be investigated and compared in order to increase the

credibility of these signals.

The Bayesian methods produce equal scores on all measures, which may indicate that the

influence of the prior distribution is very weak. Their accuracy as measured by the Brier score

and their informativeness are among the best, but their AUC is the worst (though still larger

than 0.85).

The reasoning-weighted methods have mediocre performance on all measures apart from

the Brier score which indicates bad performance relative to the other methods. One of the pos-

sible reasons may be the setting of the data collection. The repliCATS data was collected via a

face-to-face workshop where participants had the chance to discuss live with their fellow par-

ticipants but they were encouraged to record their reasoning on a dedicated platform. The

extent of their diligence in doing so is questionable.

5 Discussion

In this paper, we have explored the performance of 21 methods for aggregating probability

judgements from experts. Although we were unable to compare every method on all three

datasets, we could nonetheless detect consistent signals.

The beta-transformed arithmetic mean (BetaArMean) outperformed most of the other

aggregations on all data sets. BetaArMean takes the average of best estimates and transforms it

using the cumulative distribution function of a beta distribution, effectively extremising the

Fig 5. The relative performance of the 21 aggregation methods on the repliCATS dataset.

https://doi.org/10.1371/journal.pone.0256919.g005
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aggregate. This method also performed well in analyses by [46]. It is not surprising that this

method was so successful in terms of informativeness (since more extreme estimates are closer

to certainty limits). But the method also performed well on the other scoring measures, pro-

ducing aggregates that proved to also be accurate and well calibrated. We caution against valu-

ing extreme estimates based solely on informativeness, since this does not guarantee accuracy;

and judgements that appear informative but turn out to be wrong are the most misleading. It

stands to reason that an extremising method would improve accuracy on datasets where prob-

ability judgements are on the ‘right’ side of 0.5 the majority of the time (corresponding to high

classification accuracy). If the average judgement is already reasonably accurate, the error will

be greater when the aggregate is more moderate (closer to 0.5). For the datasets analysed here,

the average judgements (the ArMean aggregation) had classification accuracy larger than 84%.

This high classification accuracy was driven by a fairly high average participant classification

accuracy (75% for the repliCATS dataset, 79% for the ACE-IDEA, and 78% for the ACE-GJP).

In settings where the classification accuracy is low, an extremising methods will perform

poorly. Anti-extremising methods were proposed in [48]. However, knowledge about specific

base rates is essential to these methods.

A subset of methods that performed reasonably well relative to the others (on all datasets)

are the weighted linear combinations where the weights are informed by the lengths or the

adjustment of the intervals around the best estimates. Although inconclusive, these results

lend some justification for eliciting intervals. In part, uncertainty bounds may reflect subjective

confidence, which has acquired a bad reputation in psychology and other fields [65] through

the abundance of overconfidence research that repeatedly reveals a mismatch between confi-

dence and accuracy [66]. Yet, giving greater weight to more confident judgements on any

given claim (i.e., flexibly adopting or weighting the judgement of one or another judge,

without assuming the same person will always be the best judge, [65]), has shown merit in

improving accuracy, but only in kind versus wicked environments [67]. In this case, a kind

environment is one that is more predictable, where our knowledge of the world, or of the task,

more often reflects reality than it is misguided.

When eliciting judgements from experts, other information could be requested alongside

the focal prediction or estimate (aside from bounds). For example, recent research proposes

eliciting both the point estimate of interest as well as asking the judge to predict the average

estimate that would be given by others, and using this to partly inform weights [68]. This is

underpinned by the idea that judges who have a good grasp of other individuals’ opinions will

be better at judging the question itself [69]. [68] suggest that this approach might be particu-

larly useful in group contexts where participants are given the opportunity to share informa-

tion and cross-examine each other’s judgements (as when using the IDEA protocol). Future

research could compare the usefulness of eliciting different types of additional information

beyond the target judgement.

One method that had a constant mediocre performance on all datasets and measures was

DistribArMean, which takes the mean of the non-parametric distributions. In order to con-

struct and aggregate percentiles, rather than probabilities, it assumed that the lower bound

given by the participants corresponded to the 5% percentile of their subjective distribution on

the probability of an outcome, the best estimate corresponded to the median, and the upper

bound corresponded to the 95% percentile. This is quite a strong and arguably arbitrary

assumption, especially as experts were not told to give bounds that corresponded to any partic-

ular percentile. Even if participants were asked to think of bounds as percentiles of subjective

distributions, but these percentiles were not fixed (to the 5% and 95%), these bounds would

not represent the same percentiles for all experts or all claims. We conjecture that this faulty
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assumption is a possible contributing factor for the unremarkable performance of this aggrega-

tion method.

The ArMean and the Median aggregations ranked amongst the worst performing methods

consistently. Outperforming these two benchmark methods suggests that the hypothesised

proxies for good performance may indeed improve aggregated predictions. The poor perfor-

mance of the Median lends some support to the idea that outliers may contain valuable infor-

mation; that is, outliers may be in the direction of the right answer. These results are somewhat

in contradiction to results presented in [64], and even with the performance of the median in

the ACE-GJP dataset (which is slightly better than the that of the mean). In both cases, the elic-

itation did not benefit from the settings, hence the advantages of the IDEA protocol. When the

IDEA protocol is employed, the participants have the opportunity to change their estimates in

light of discussion. If they choose to stay with their original estimates (rather than move in the

direction of the majority), they may have good reasons for doing so.

Do these results support our hypotheses that weighting by proxies for good performance is

worthwhile? It is not clear from our results that this is the case. From these results alone, it

may be difficult to justify the additional elicitation burden of gathering additional information

from participants (e.g., asking them to complete a quiz). But since a large subset of proxy per-

formance-weighted methods could only be applied in a single, relatively small dataset, caution

should be employed before these findings are generalised beyond this specific case. This dem-

onstrates, once more, the importance of gathering more calibration data to further explore this

question.

Similarly, we cannot conclude much about the Bayesian methods, which displayed contra-

dicting performance when measured on the AUC versus the Brier score. Their informativeness

is attractive but not on its own. Nonetheless, the Bayesian aggregation methods are interesting

as a proof of concept, and also as a reminder that although incorporating prior information

may be helpful, it may be insufficient or misleading. Prior information is however crucial

when formulating performance based weights, or informing parameters of the BetaArMean.

From a decision-theoretic perspective, the tension between the accuracy, the calibration,

and the informativeness of predictions poses an important challenge for evaluating elicited

and aggregated forecasts. Decisions about the most appropriate aggregation method should

consider that high informativeness should only be valued subject to good calibration, or good

accuracy. The choice between these two though can be further informed by the end-user

values.

None of the results of our analysis can be considered definitive or strongly conclusive;

while some corroborated pre-existing findings, others countered the evidence of published

studies. However, the main contribution of this study is to explore proxies for good predictive

performance informed by human judgment behaviour and prior knowledge, and to build this

information into better performing aggregation methods. Although we detected promising

signals, further research is needed for stronger conclusions.
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Manolopoulos Y, Hammer B, Iliadis L, Maglogiannis I, editors. Artificial Neural Networks and Machine

Learning–ICANN 2018. Cham: Springer International Publishing; 2018. p. 270–279.

21. de Finetti B. Does it make sense to speak of’good probability appraisers’? In: The scientist speculates:

an anthology of partly baked ideas. vol. Eds. Good J. Basic Books, New York; 1962. p. 357–363.

22. Savage LJ. Elicitation of personal probabilities and expectations. Journal of the American Statistical

Association. 1971; 66:783–801. https://doi.org/10.1080/01621459.1971.10482346

23. Winkler RL, Jose VRR. Scoring rules. Wiley Encyclopaedia of Operations Research and Management

Science; 2010.

24. Brier GW. Verification of forecasts expressed in terms of probability. Monthly Weather Review. 1950;

78:1–3. https://doi.org/10.1175/1520-0493(1950)078%3C0001:VOFEIT%3E2.0.CO;2

25. Winkler RL, Grushka-Cockayne Y, Lichtendahl KC Jr, Jose VRR. Probability forecasts and their combi-

nation: A research perspective. Decision Analysis. 2019; 16(4):239–260. https://doi.org/10.1287/deca.

2019.0391

26. Fawcett T. An Introduction to ROC Analysis. Pattern Recognition Letters. 2006; 27(8):861–874. https://

doi.org/10.1016/j.patrec.2005.10.010

27. Byrne S. A note on the use of empirical AUC for evaluating probabilistic forecasts. Electronic Journal of

Statistics. 2016; 10(1):380–393. https://doi.org/10.1214/16-EJS1109

28. Murphy AH. A new vector partition of the probability score. Journal of Applied Meteorology. 1973; 12

(4):595–600. https://doi.org/10.1175/1520-0450(1973)012%3C0595:ANVPOT%3E2.0.CO;2

29. Kullback S. Information Theory and Statistics. New York: Wiley; 1959.

30. Hanea A, McBride M, Burgman M, Wintle B. Classical meets modern in the IDEA protocol for structured

expert judgement. Journal of Risk Research. 2016;.

31. McBride MF, Garnett ST, Szabo JK, Burbidge AH, Butchart SHM, Christidis L, et al. Structured elicita-

tion of expert judgments for threatened species assessment: A case study on a continental scale using

email. Methods in Ecology and Evolution. 2012; 3:906–920. https://doi.org/10.1111/j.2041-210X.2012.

00221.x

32. Hemming V, Walshe T, Hanea AM, Fidler F, Burgman MA. Eliciting improved quantitative judgements

using the IDEA protocol: A case study in natural resource management. PLOS ONE. 2018 6; 13(6):1–

34. Available from: https://doi.org/10.1371/journal.pone.0198468 PMID: 29933407

33. Klein RA, Ratliff KA, Vianello M, Bahnik S, Bernstein MJ, Bocian K, et al. Investigating Variation in Repli-

cability. Social Psychology. 2014; 45:142–152. https://doi.org/10.1027/1864-9335/a000178

34. Klein RA, Vianello M, Hasselman F, Adams BG, Adams RB, Alper S, et al. Many Labs 2: Investigating

Variation in Replicability Across Samples and Settings. Advances in Methods and Practices in Psycho-

logical Science. 2018; 1:443–490. https://doi.org/10.1177/2515245918810225

35. Ebersole CR, Atherton OE, Belanger AL, Skulborstad HM, Allen JM, Banks JB, et al. Many Labs 3:

Evaluating participant pool quality across the academic semester via replication. Journal of Experimen-

tal Social Psychology. 2016; 67:68–82. https://doi.org/10.1016/j.jesp.2015.10.012

36. Camerer CF, Dreber A, Holzmeister F, Ho TH, Huber J, Johannesson M, et al. Evaluating the replicabil-

ity of social science experiments in Nature and Science between 2010 and 2015. Nature Human Behav-

iour 2. 2018; 337. PMID: 31346273

37. OpenScienceCollaboration. Estimating the reproducibility of psychological science. Science. 2015;

349 (6251). Available from: https://science.sciencemag.org/content/349/6251/aac4716. PMID:

26315443

38. Fraser H, Bush M, Wintle B, Mody F, Smith ET, Hanea AM, et al. Predicting reliability through structured

expert elicitation with repliCATS (Collaborative Assessments for Trustworthy Science). MetaArXiv Pre-

prints. 2021; Available from: https://doi.org/10.31222/osf.io/2pczv.

39. Pearson R, Fraser H, Bush M, Mody F, Widjaja I, Head A, et al. Eliciting Group Judgements about Repli-

cability: A Technical Implementation of the IDEA Protocol. In: Proceedings of the 54th Hawaii Interna-

tional Conference on System Sciences, Hawaii; 2021.
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