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Neurons in the PFC are typically activated by different cognitive tasks, and also by different stimuli and abstract variables
within these tasks. A single neuron’s selectivity for a given stimulus dimension often changes depending on its context, a
phenomenon known as nonlinear mixed selectivity (NMS). It has previously been hypothesized that NMS emerges as a result
of training to perform tasks in different contexts. We tested this hypothesis directly by examining the neuronal responses of
different PFC areas before and after male monkeys were trained to perform different working memory tasks involving visual
stimulus locations and/or shapes. We found that training induces a modest increase in the proportion of PFC neurons with
NMS exclusively for spatial working memory, but not for shape working memory tasks, with area 9/46 undergoing the most
significant increase in NMS cell proportion. We also found that increased working memory task complexity, in the form of
simultaneously storing location and shape combinations, does not increase the degree of NMS for stimulus shape with other
task variables. Lastly, in contrast to the previous studies, we did not find evidence that NMS is predictive of task perform-
ance. Our results thus provide critical insights on the representation of stimuli and task information in neuronal populations,
in working memory.
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Significance Statement

How multiple types of information are represented in working memory remains a complex computational problem. It has
been hypothesized that nonlinear mixed selectivity allows neurons to efficiently encode multiple stimuli in different contexts,
after subjects have been trained in complex tasks. Our analysis of prefrontal recordings obtained before and after training
monkeys to perform working memory tasks only partially agreed with this prediction, in that nonlinear mixed selectivity
emerged for spatial but not shape information, and mostly in mid-dorsal PFC. Nonlinear mixed selectivity also displayed little
modulation across either task complexity or correct performance. These results point to other mechanisms, in addition to
nonlinear mixed selectivity, representing complex information about stimulus and task context in neuronal activity.

Introduction
Working memory (WM) is broadly defined as the ability to
encode, maintain, and manipulate information in the conscious
mind over a period of seconds without the presence of any

sensory inputs. As a core component of complex cognitive abil-
ities, such as planning and reasoning, the true importance of
WM ultimately depends on whether it can maintain and manip-
ulate information in a task-relevant manner (Baddeley, 2012).
Multiple variables, including external sensory inputs and internal
task requirements, must be encoded to achieve the level of adapt-
ability in WM that is necessary for complex tasks. The mecha-
nisms that underlie this encoding process across time and
neuronal population is one of the most important questions in
current WM research.

When individuals are required to maintain objects in their
WM, neurons from a network of brain regions may exhibit selec-
tive and sustained increases or decreases in their activity to rep-
resent the remembered objects through these unique patterns of
activity (Constantinidis and Procyk, 2004). The PFC plays a lead-
ing role in this network, and by extension, in the use of WM
(Riley and Constantinidis, 2016). For example, when the PFC is
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damaged or degraded, whether through trauma, illness, or exper-
imental lesions, performance inWM tasks seems to decrease dra-
matically (Morris and Baddeley, 1988; Curtis and D’Esposito,
2004; Rossi et al., 2007).

Individual PFC neurons typically encode more than one vari-
able in their activity, and the exact variables encoded are task-de-
pendent (Asaad et al., 2000; Mansouri et al., 2006; Machens et
al., 2010; Warden and Miller, 2010; Qi et al., 2015). More inter-
estingly, a portion of neurons exhibit nonlinear mixed selectivity
(NMS) for different variables, which means that their response
to the combination of variables cannot be predicted by the linear
summation of their responses to single variables (Rigotti et al.,
2013; Parthasarathy et al., 2017; Johnston et al., 2020).
Theoretical studies have shown that NMS is useful for linear
readouts of flexible, arbitrary combinations of variables
(Buonomano and Maass, 2009; Rigotti et al., 2010; Fusi et al.,
2016), and may also control the trade-off between discrimination
and generalization (Barak et al., 2013; Johnston et al., 2020).

Despite the proposed importance of NMS on theoretical
grounds, some experimental studies have failed to detect neurons
with NMS (Cavanagh et al., 2018). It is therefore possible that
NMS may manifest exclusively in a limited set of PFC subdivi-
sions or, alternatively, that NMS emerges exclusively after train-
ing to perform specific types of cognitive tasks. Moreover, the
implications of NMS on other aspects of neural encoding, such
as code stability, have not yet been investigated. We were there-
fore motivated to analyze and compare neural data from rhesus
macaque monkeys before and after training. Here we report
results of NMS as a function of task training, performance of dif-
ferent types of working memory tasks, and correct and error tri-
als, across different prefrontal areas.

Materials and Methods
Animals. Data obtained from 6 male rhesus monkeys (Macaca

mulatta, ages 5-9 years, weighing 5-12 kg), as previously documented
(Riley et al., 2018), were analyzed in this study. None of these animals
had any prior experimentation experience at the onset of our study.
Monkeys were either single-housed or pair-housed in communal rooms
with sensory interactions with other monkeys. All experimental proce-
dures followed guidelines set by the US Public Health Service Policy on
Humane Care and Use of Laboratory Animals and the National
Research Council’s Guide for the care and use of laboratory animals and
were reviewed and approved by the Wake Forest University Institutional
Animal Care and Use Committee.

Experimental setup. Monkeys sat with their heads fixed in a primate
chair while viewing a monitor positioned 68 cm away from their eyes
with dim ambient illumination and were required to fixate on a 0.2°
white square appearing in the center of the screen. During each trial and
to receive a liquid reward (typically fruit juice), the animals maintained
fixation on the square while visual stimuli were presented either at a pe-
ripheral location or over the fovea. Any break of fixation immediately
terminated the trial, and no reward was given. Eye position was moni-
tored throughout the trial using a noninvasive, infrared eye position
scanning system (model RK-716; ISCAN). The system achieved a,0.3°
resolution around the center of vision. Eye position was sampled at
240Hz, digitized, and recorded. The visual stimulus display, monitoring
of eye position, and synchronization of stimuli with neurophysiological
data were performed with in-house software implemented on the
MATLAB environment (The MathWorks), using the Psychophysics
Toolbox (Meyer and Constantinidis, 2005).

Pretraining task. Following a brief period of fixation training and
acclimation to the stimuli, monkeys were required to fixate on a center
position while stimuli were displayed on the screen. The stimuli shown
in the pretraining passive spatial task were white 2° squares, presented in
one of nine possible locations arranged in a 3� 3 grid with 10° distance

between adjacent stimuli. The stimuli shown in the pretraining passive
feature task were white 2° geometric shapes drawn from a set comprising
a circle, diamond, the letter H, the hashtag symbol, the plus sign, a
square, a triangle, and an inverted Y-letter. These stimuli could also be
presented in one of nine possible locations arranged in a 3� 3 grid with
10° distance between adjacent stimuli.

Presentation began with a fixation interval of 1 s where only the fixa-
tion point was displayed, followed by 500ms of stimulus presentation
(referred to hereafter as cue), followed by a 1.5 s “delay” interval
(referred to hereafter as delay1) where, again, only the fixation point was
displayed. A second stimulus (referred to hereafter as sample) was subse-
quently shown for 500ms. In the spatial task, this second stimulus would
be either identical in location to the initial stimulus or diametrically op-
posite the first stimulus. In the feature task, this second stimulus would
appear in the same location to the initial stimulus and would either be
an identical shape or the corresponding nonmatch shape (each shape
was paired with one nonmatch shape). Only one nonmatch stimulus
was paired with each cue, so that the number of match and nonmatch
trials were balanced in each set. In both the spatial and feature task, this
second stimulus display was followed by another “delay” period (referred
to hereafter as delay2) of 1.5 s where only the fixation point was dis-
played. The location and identity of stimuli were of no behavioral rele-
vance to the monkeys during the “pretraining” phase, as fixation was the
only necessary action for obtaining reward.

Post-training task. Four of the six monkeys were trained to complete
the active spatial, feature, and conjunction WM task. These tasks
involved presentation of identical stimuli as the spatial and feature tasks
during the “pretraining” phase, but now monkeys were required to
remember the spatial location and/or shape of the first presented stimu-
lus, and report whether the second stimulus was identical to the first or
not, via saccading to one of two target stimuli (green for matching stim-
uli, blue for nonmatching). Each target stimulus could appear at one of
two locations orthogonal to the cue/sample stimuli, pseudo-randomized
in each trial.

The conjunction task combined the active spatial and feature tasks,
using the same shape stimuli and presented at the same possible loca-
tions, with the same timing. In a single recording session, only four
shape-location combinations involving two shapes and two locations
were used. The conjunction task was the most complex task in the cur-
rent study, as the monkeys were required to simultaneously store two
different types of information, location and shape, in their working
memory.

Surgery and neurophysiology. A 20-mm-diameter craniotomy was
performed over the PFC, and a recording cylinder was implanted over
the site. The location of the cylinder was visualized through anatomic
MRI and stereotaxic coordinates after surgery. For 2 of the 4 monkeys
that were trained to complete active spatial, feature, and conjunction
WM tasks, the recording cylinder was moved after an initial round of
recordings in the post-training phase to sample an additional surface of
the PFC.

Anatomical localization. Each monkey underwent an MRI scan
before neurophysiological recordings. Electrode penetrations were
mapped onto the cortical surface. We identified six lateral PFC regions:
a posterior-dorsal region that included area 8A, a mid-dorsal region that
included area 8B and area 9/46, an anterior-dorsal region that included
area 9 and area 46, a posterior-ventral region that included area 45, an
anterior-ventral region that included area 47/12, and a frontopolar
region that included area 10. However, the frontopolar region was not
sampled sufficiently to be included in the present analyses.

Neuronal recordings. Neural recordings were conducted in the afore-
mentioned areas of the PFC both before and after training in each WM
task. Subsets of the data presented here were previously used to deter-
mine the collective properties of neurons in the dorsal and ventral PFC,
as well as the properties of neurons before and after training in the poste-
rior-dorsal, mid-dorsal, anterior-dorsal, posterior-ventral, and anterior-
ventral PFC subdivisions. Extracellular recordings were performed with
multiple microelectrodes that were either glass- or epoxylite-coated
tungsten, with a 250-mm-diameter and 1-4 MV impedance at 1 kHz
(Alpha-Omega Engineering). A Microdrive system (EPS drive, Alpha-
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Omega Engineering) advanced arrays of up to 8 micro-
electrodes, spaced 0.2-1.5 mm apart, through the dura
and into the PFC. The signal from each electrode was
amplified and bandpass filtered between 500Hz and
8 kHz while being recorded with a modular data acqui-
sition system (APM system, FHC). Waveforms that
exceeded a user-defined threshold were sampled at 25
ms resolution, digitized, and stored for offline analysis.
Neurons were sampled in an unbiased fashion, collect-
ing data from all units isolated from our electrodes,
with no regard to the response properties of the isolated
neurons. A semiautomated cluster analysis relied on
the KlustaKwik algorithm, which applied principal
component analysis of the waveforms to sort recorded
spike waveforms into separate units. To ensure a stable
firing rate in the analyzed recordings, we identified
recordings in which a significant effect of trial sequence
was evident at the baseline firing rate (ANOVA,
p, 0.05), for example, because of a neuron disappear-
ing or appearing during a run, as we were collecting
data from multiple electrodes. Data from these ses-
sions were truncated so that analysis was only per-
formed on a range of trials with stable firing rate. Less
than 10% of neurons were corrected in this way.
Identical data collection procedures, recording equip-
ment, and spike sorting algorithms were used before
and after training to prevent any analytical confounds.

Data analysis: neural selection. Data analysis was
implemented with the MATLAB computational envi-
ronment (The MathWorks), with additional statistic
tests implemented through Originlab and StatsDirect.
Peristimulus time histograms for illustrations were cal-
culated through the moving window average method
with a Gaussian window that had 200ms SD, with the
shaded area representing 2� SE cross trials. For all
tasks, only cells with at least 12 correct trials for each
cue-sample location/shape pair were included in the
analysis. To classify neurons of the spatial task into dif-
ferent categories of selectivity, we performed two-way
ANOVAs determining the influence of task factors on
the neuron’s spatial tuning. We set up this analysis in
two different ways. In the initial two-way ANOVA, we
analyzed firing only for the sample (second) stimulus
in the task. The two factors were the location of the
sample stimulus and its match or nonmatch status,
thus quantifying whether tuning for the sample loca-
tion depends on whether it is match or nonmatch. In a
subsequent two-way ANOVA, we analyzed firing rate
of both the cue (first) and sample (second) stimulus
presentations, from match trials only. The two factors
were stimulus location and the task epoch (first or sec-
ond stimulus presentation), thus quantifying whether tuning is depend-
ent on the order of stimulus presentation. Neurons with classical
selectivity (CS) exhibited a main effect of only one factor without signifi-
cant interaction term. Neurons with linear mixed selectivity (LMS)
exhibited main effects of both factors without a significant interaction
term. Neurons with NMS exhibited a significant interaction-term.
Finally, nonselective (NS) neurons exhibited no significant main effects
nor interaction term. Similarly, the two factors for feature task ANOVA
analysis were stimuli shape � matching status, and stimuli shape � task
epoch for the trial. The p, 0.05 level was chosen as the threshold for sta-
tistical significance for all ANOVA analysis. The animals were unable to
predict the matching status of the trials during the fixation, cue, and
delay1 periods; and as a result, the proportion of cells with significance
for matching factor and the interaction term would not be expected to
exceed 5% during these first three periods. Time bins used to calculate
spike rate for different task stages are displayed in Figure 1. Choice pe-
riod was defined as the 1 s interval after the choice array appears
onscreen.

Dimensionality reduction. Our method for measuring dimensional-
ity can be explained as follows: Let M be a dataset of size N�T � C,
where N represents number of neurons, T indicates the number of trials,
and C indicates the number of different conditions. In the case of our
task, C would refer to all possible combinations of stimulus identity
(location or feature) and match or nonmatch status. Each entry in this
matrix represents the firing rate in a specified time bin, namely, the
stimulus presentation period, or the delay period that follows it.
Population response can thus be plotted across conditions and trials
in an n-dimensional space. The plotting space is very high dimen-
sional (dimensionality equals the number of cells), but most var-
iance can be accounted for by a smaller number of axes if neural
data are linearly correlated across conditions. As a result, the neural
dimensionality is measured by the number of neural response sub-
space axes that explain this consistent variance, within the original
n-dimensional space. In a fictitious noiseless case, where the
response to each condition is identical in each trial, the dimension-
ality of the matrix could be reduced to that of the trial-averaged ver-
sion of size N � C. The dimensionality of the matrix is equal to the

Figure 1. Task structure and stimuli used. The animals were required to maintain center fixation throughout
both active and passive task trials. At the end of active tasks trials, however, monkeys were required to make a
saccade to a green target if the stimuli matched or to a blue target if the stimuli did not match. A, Spatial location
match-to-sample task. Inset, Nine possible cue locations in a session. B, Shape feature match-to-sample task.
Inset, Eight possible shapes in a session. C, Spatial-shape conjunction task; up to two locations and two stimuli
shapes were used for any single particular session. Stimuli in all tasks extended 2 degrees of visual angle.
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number of nonzero singular values, which can be obtained by singu-
lar value decomposition (SVD), defined as follows:

M ¼ URVT

In our context, M is the real number neural response data matrix. U
is an N � N matrix, the columns of which provide a basis set of eigen-
vectors capturing the correlation among neurons, the weighted linear
combination of which accounts for the variance in the original data. R is
an N � C diagonal matrix with non-negative values equal to the square
root of the eigenvalues, assigning weights to the columns of U. The
dimensionality of the matrix is equal to the number of nonzero singular
values. Finally, V is a C� Cmatrix mapping neuronal responses to stim-
ulus conditions. However, the real data contain random noise that
pushes data points away from a low dimensional manifold; thus, dimen-
sionality results are almost always overestimated. For this reason, we
used the cross-validation method developed by Ahlheim and Love
(2018) to obtain a more accurate estimate of dimensionality for the real-
word data. The basic idea is that the SVD operation could also be written
in a linear equation form as follows:

M ¼ u1s 1v
T
1 1 u2s 2v

T
2 1:::1 ucs cv

T
c

in which s1 � s 2 � ... s c � 0 are singular values, u and v are the corre-
sponding vectors from U and V, respectively. One can create a low
dimensional approximation of M by gradually adding more terms that
explain more variance. In the dimensionality estimation process, data
from a total of j trials from each condition were first partitioned into
three sets: a training set containing j-2 trials, a validation set containing
1 trial, and a testing set containing 1 trial. SVD was then applied to the
averaged training dataset and used to reconstruct the training data from
the U, R, and V-transpose matrices using increasing numbers of dimen-
sions from 1 to the dimensionality of the training data. For each recon-
structed matrix of different dimensionality based on the SVD, the
Pearson correlation coefficient was computed between this result and
the validation trial. This process was repeated over all possible partitions
of the data into training and validation/testing sets. The dimensionality
k that produced the highest mean correlation between the SVD recon-
structed training data and the validation trial determined the dimension-
ality of the neural representation. The correlation of this representation
with the held-out test data provided the final reconstruction correlation,
as an estimate of reconstruction precision. A similar method has also
been recently used to estimate the dimensionality over time for neural
data (Cueva et al., 2020). The dimensionality of the sample and delay2
period in the spatial and feature task was calculated on 50 resamples of a
200-cell pseudo-population in the corresponding datasets.

Comparisons between areas and tasks. Only PFC areas with .50
cells in both pretraining and post-training time points were included in
the subdivision mixed selectivity comparison analysis. Thus, for the fea-
ture task, only data from the mid-dorsal, posterior-dorsal, and posterior-
ventral PFC were analyzed. For the spatial task, data from the mid-dor-
sal, posterior-dorsal, posterior-ventral, anterior-dorsal and anterior-ven-
tral PFC were analyzed.

Neural data from tasks that applied the exact same visual stimuli
were used to compare mixed selectivity between feature/spatial and con-
junction tasks. For example, to compare the feature and the conjunction
tasks, we started by selecting a subset of conjunction trials, in which
both visual stimuli appeared at the same location as the corresponding
feature task trials. The corresponding feature dataset was then drawn
from a subset of feature task trials that used the same shape pairs as the
chosen conjunction task trials. Our prior methods of ANOVAs could
thus be applied for comparison across these datasets.

For comparing mixed selectivity in correct and error trials from the
spatial task, we first examined F scores from the ANOVA of two task
variables: the stimulus location and matching status. In this analysis, we
used neurons that had at least three match and nonmatch trials for both
the correct and error dataset, in at least three stimulus locations. The
number of minimum trials and stimuli locations were chosen to

maximize the average trial number for each cell included into the analy-
sis, while still retaining a sufficiently large sample (i.e., .150 cells). The
same number of trials from each stimuli location were randomly chosen
in the correct and error dataset. This randomized trial selection process
was repeated 50 times to make the best use of the uneven number of
available trials in two datasets. We also analyzed factors of stimuli loca-
tion and task epoch. For this analysis, we used neural data from match
trials only, and from neurons that had at least four correct and error tri-
als, in at least four stimuli locations. To calculate dimensionality in the
spatial task in correct versus erroneous conditions, we first identified 56
cells with at least 4 trials in the same four conditions in both the correct
and error datasets. We then randomly selected 50 cells to construct a
pseudo-population for measuring dimensionality using the previously
described SVD based method. This process was repeated 50 times to
obtain a CI.

For decoding analysis of stimuli identity, matching status, or saccade
directions, spiking responses from 1 s before cue onset to 5 s after cue
onset were first binned using a 400-ms-wide window and 100ms steps
to create a spike count vector with a length of 57 elements. A pseudo-
population was then constructed using the spike count vectors from all
the available neurons of all the available animals, thus resulting in a data-
set with 96 trials, as if they were recorded simultaneously. The popula-
tion response matrix was z score-normalized before being used to train
the decoder. A support vector machine (SVM) decoding algorithm with
a linear kernel was implemented using the MATLAB fitcecoc function to
decode stimuli location, stimuli shape, the match/nonmatch status of tri-
als, or the saccadic direction. A 10-fold cross-validation method was
used to estimate the decoder performance, and 20 random samplings
were implemented to calculate a 95% CI. For the spatial and feature task,
the decoding baseline for sensory information or saccadic direction was
12.5%, since there were 8 different options, and 50% for the matching
status, since there were only 2 different options.

In the pretraining versus post-training decoding analysis, linear (CS
and LMS) and nonlinear (NMS) neurons are first defined by their pre-
training and post-training responses in the sample or delay2 period.
Each classified population was then applied to decode sensory informa-
tion (location and shape) and matching status. A randomization test was
used to determine the time points at which decoding performance was
significantly different between different selectivity categories. In short,
we constructed the null distribution by randomly reassigning the cell se-
lectivity labels under comparison, and recomputing the maximum abso-
lute difference across all time points of the data in each iteration. This
procedure was repeated for 5000 times. A difference was deemed to be
significant if the true response difference occurred at the extremes of this
null distribution (p, 0.05, two-tailed). Since every point in the null dis-
tribution is the maximum of all time points, this method already cor-
rected for the multiple comparisons.

For saccadic decoding in the spatial task, we first constructed
pseudo-populations by identifying neurons with correct and error trials
in the same conditions (defined by saccadic direction and matching sta-
tus). We then used correct trials to train a saccadic direction decoder.
Only correct trials were used in the training dataset, as these would con-
tain accurate representations of the saccadic direction information. Our
decoder was subsequently used to predict saccade direction in a test
dataset of both correct and error trials.

A Random “coloring” process was used as previously described
(Rigotti et al., 2010) for the purpose of calculating the number of imple-
mentable binary classifications. Specifically, trials with 16 experimental
(8 stimuli identities� 2 matching status) conditions were equally and
randomly assigned one of two labels as the correct answer for binary
classification training, making a total of 12,870 combinations with an
equal number of conditions on each side of targeted decision boundary.
An SVM decoder was then trained for every binary classification. A
threshold of 80% correct for cross-validated decoding performance was
used to define an “implementable” binary classification.

To more directly compare our results with previous research, a de-
coder was constructed to decode the matching or nonmatching status of
a trial after pure selectivity for matching information was removed from
each cell as reported previously (Rigotti et al., 2010). An SVM with a
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polynomial kernel was used to decode experimental
conditions defined by cue location � matching status
(16 conditions in total). We used the MATLAB fitcecoc
function for this classification as well. In this case, the
method produced a 16-bit binary output based on the
firing rates of the neurons, which was compared with
the expected binary output of each experimental condi-
tion; data from each trial were then classified into the
category that was most similar (needed the smallest
error correction). Four conditions were compared
using this nonlinear decoder: 200 randomly selected in-
formative cells (CS, LMS, and NMS defined in sample
period) in the post-training condition, with unaltered
selectivity profiles; 200 randomly selected informative
cells in the post-training condition, with classical selec-
tivity for matching status removed; 200 randomly
selected informative cells in the pretraining condition,
with classical selectivity for matching status removed;
and 200 randomly selected classical selective cells in the
post-training condition, with classical selectivity for
matching status removed. The inclusion of the last con-
dition is necessary to confirm the effectiveness of the
pure selectivity removal process. We removed the clas-
sical selectivity for certain variables (e.g., matching sta-
tus) of certain neurons by contaminating the firing rate
recorded during one condition (sample match cue)
with spikes recorded in the other condition (sample
nonmatch to cue). More specifically, every time we
sampled a spike count from a trial in condition c[T1,
an additional noise source was artificially superimposed
by adding a spike count sampled from a randomly
selected trial in the same time bin, but belonging to a
different condition c9[T2, in such a way that the classi-
cal selectivity for task variable T was equalized. The
classical selectivity removal procedure can thus be for-
mally denoted as the following equation:

vci tð Þ ¼ rci tð Þ1
X

c

wrc
9

i ðtÞ

Where ri
c(t) indicates spike count for neuron i at

time t from a trial belonging to condition c, where c
[T1, and vi

c(t) refer to the response of the same neuron
at the same time point, after removing the classical se-
lectivity for task variable T, {T1,T2,...}[T. Finally,
wri

c9(t) represents a random variable that selects a con-
dition c9 62T1 at random.

Only informative neurons (CS, LMS, and NMS
neurons) in the delay2 period were used for the cross
temporal decoding analysis, since we wanted to explore
the decoding dynamics during the delay period. The
linear SVM decoder was trained on individual time
points and thus had 57 linear decision boundaries. The
same dataset was then classified by every decision
boundary in the vector to produce a 57� 57 matrix, a
process that was repeated 20 times to eliminate the noise. The decoding
performance matrix for each condition was normalized individually to
highlight the coding dynamics rather than absolute performance. A per-
mutation-based test was used to determine the difference in the stability
of different cell population recordings. For every permutation cycle, we
randomly shuffled the labels of selectivity category for all cells; then we
trained separate decoders for different populations based on the new
shuffled labels, and two sample t tests were run on all corresponding
pairs between decoding performance matrix of linear and nonlinear
populations. We ran 1000 such permutations to construct a null distri-
bution of the chosen statistic value (p value). p values obtained from the
original dataset that exceeded 5% threshold were considered statistically
significant.

Data availability. All relevant data and code will be available from the
corresponding author on reasonable request. MATLAB decoder code is
available at https://github.com/dwhzlh87/mixed-selectivity.

Results
Extracellular neurophysiological recordings were collected from
the lateral PFC of 6 monkeys before and after they were trained
to perform the match/nonmatch WM tasks (Meyer et al., 2011;
Riley et al., 2018). The task required them to view two stimuli
appearing in sequence with an intervening delay period between
them, and after a second delay period to report whether or not
the second stimulus was identical to the first. The two stimuli

Figure 2. Exemplar neural responses from the spatial task for CS, LMS, and NMS cells, defined by the task vari-
ables of stimulus location and match status. Selectivity classification was based on the spike responses of the
500 ms sample period (indicated by the gray shaded area from 2 to 2.5 s). The locations of the stimuli were color-
coded. Solid line represents the stimulus when it was a match. Dashed line represents the stimulus when it was a
nonmatch. Shaded regions and error bars represent6SE of firing rate.
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could differ in terms of their location (spatial task, Fig. 1A),
shape (feature task, Fig. 1B), or both (conjunction task, Fig. 1C).
If the second stimulus matched with the first, monkeys would
saccade toward a green target during a subsequent interval.
Otherwise, they would saccade to a blue target at a diametrical
location. Monkeys were able to perform all three tasks with accu-
racy much higher than chance level (mean performance: spatial
task 86.2%, feature task 82.1%, conjunction task 81.0%).

A total of 1617 cells from 6 monkeys were recorded while the
animals viewed the spatial stimuli passively, and 1493 cells from 5
monkeys were recorded while the animals viewed the feature stim-
uli passively, before any training. A total of 1104 cells from 3 mon-
keys and 1091 cells from 2 monkeys were collected while the
animals were performing the active spatial and feature tasks,
respectively, which were mutually called “post-training.” We also
collected neural data from 247 neurons for the passive spatial task
from 2 monkeys after they were trained in the active spatial task.
An additional 975 cells from 2 monkeys were collected while they
were performing the active, post-training conjunction task.

Types of selectivity in individual neuronal responses
In our tasks, the context of a given stimulus depends on the task
interval and sequence in which it is presented. We first

considered how selectivity for stimulus location and shape in the
spatial, feature, and conjunction WM tasks may vary when the
same sample stimulus appears as a match (i.e., it is preceded by a
cue at the same location/shape) or a nonmatch (i.e., is preceded
by a cue stimulus of a different location/shape). The neuronal fir-
ing rate in a dataset is therefore a function of the stimulus loca-
tion or shape, and whether the sample stimulus matched the cue
stimulus. We used a two-way ANOVA with factors of stimulus
location/shape and match/nonmatch status to classify neurons
into four categories of selectivity. CS neurons exhibited a signifi-
cant main effect to only one of the factors (stimulus identity or
matching status) and had no significant interaction term. In
Figure 2, the first exemplar set of plots depicts such a CS cell,
selective exclusively for the location of the stimuli, which does
not respond differently regardless of whether the stimulus
appeared as a match or nonmatch. The second exemplar of
Figure 2 displays another CS cell not selective for the location of
the stimuli but demonstrating higher mean response when the
stimulus appeared as a nonmatch. LMS neurons exhibited a sig-
nificant main effect for both factors but had no significant inter-
action term. The third exemplar of Figure 2 displays such an
LMS neuron demonstrating a higher mean response when

Figure 3. Training increased mixed selectivity preferentially in the spatial task. A, Bar graphs represent the proportions of cells tuned to stimuli identities (Location/Shape), matching status,
and their interaction (i.e., NMS) in different stages of the task trials, both before and after the animals were trained for the active tasks. Pie charts represent the proportion of different selectiv-
ity categories (NS, CS, LMS, and NMS) in the sample and delay2 periods of both tasks, both before and after the animals were trained for the active tasks. Green areas in pie chart are the com-
bined proportion of classically selective cells for both factors used in the two-way ANOVA. B, Plots of corresponding proportion changes. C, Same as in A, but examining the interaction
between stimuli identities (Location/Shape), and task epoch (cue/delay1 vs sample/delay2 period), instead of trials matching status. D, Plots of corresponding proportion changes.
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stimuli appear as nonmatch, while simultaneously displaying the
same rank order preference for location. NMS neurons exhibited
a significant interaction effect, as shown in the last exemplar in
Figure 2, a neuron demonstrating different selectivity pattern for
locations under match versus nonmatch conditions. Finally, NS
indicated the neurons with no selectivity to any factors or their
interaction under consideration. These analyses were performed
using the firing rate recorded during the stimulus presentation
period, and again, using the firing rate recorded during the delay
period that followed it.

A second type of NMS was identified in terms of selectivity for
stimulus sequence, that is, whether the same stimulus appeared
first (cue) or second (sample). To avoid the confound of the match
or nonmatch status of the second stimulus, we relied exclusively
on match stimuli. This form of NMS was also evaluated through a
two-way ANOVA model, identifying CS, LMS, NMS, and NS
neurons in terms of how the neurons represented the exact same
stimulus when it appeared as a cue and as a match stimulus.

Effects of training on NMS
For both types of NMS we examined (stimulus selectivity x
match/nonmatch or cue/match), the proportion of NMS neu-
rons after training increased more for the spatial than the feature

working memory task. When we used the factors of stimulus
location/shape and match/nonmatch status for our two-way
ANOVA, we found that training in the spatial WM task increased
the proportion of NMS cells in both the sample period and the
delay period that followed the sample (sample period: pretraining
proportion=6.2%, post-training proportion=12.3%, two-sample
proportion test, z=5.31, p=1.13� 10�7; delay2 period: pretraining
proportion = 2.8%, post-training proportion=6.2%, two-sample
proportion test, z=4.62, p=4.86� 10�5). However, this increase
in selectivity was not exclusive to NMS cells. The proportion of CS
cells also increased in the delay period following the sample (pre-
training proportion = 10.6%, post-training proportion=14.8%,
two-sample proportion test, z=3.19, p=0.0014).

The increase in NMS cells was not evident for all types of
training. When we looked at the proportion of change across
the pretraining and post-training feature task, we only found
an increase of proportion for CS cells (sample period: pre-
training proportion = 12.0%, post-training proportion=15.7%,
two-sample proportion test, z=2.65, p=0.0081; delay2 period: pre-
training proportion = 9.0%, post-training proportion=22.6%, two-
sample proportion test, z=9.37, p=3.4� 10�20). No significant
increase in the proportion of NMS cells was observed (sample pe-
riod: pretraining proportion=5.8%, post-training proportion=

Figure 4. A, Analysis of the F scores from all recorded neurons for the interaction term (stimuli identity� match/nonmatch) shows that the degree of nonlinear mixed selectivity increased
after training for the spatial task only. Black dots in the box represent mean. Box boundaries indicate 25%-75% range. Whiskers represent 1.5 IQR. B, Dimensionality measure of neural
responses in the spatial (left) and feature (right) task, before and after training in the active tasks. To measure dimensionality, SVD was applied to a matrix containing data across all task condi-
tions, based on the factors used for each analysis. In the case of Location� Match/Nonmatch NMS analysis, data included sample firing rates for all location� Match/Nonmatch combinations.
For Location � Epoch NMS analysis, data included firing rates for different locations in either the cue or the sample period of match trials. C, Decoding with pure selectivity removed. Left,
Example of an NMS cell in the sample period with pure selectivity to match/nonmatch status removed. Color in the heat maps coded for the normalized neuronal response ranging from 0
(blue) to 1 (yellow). y axis in the heat map organizes trials by matching status and then by stimuli location. Right, Decoding for matching status for the spatial task before and after removing
pure selectivity of match/nonmatch status across pretraining and post-training; 200 cells in each dataset were randomly chosen to construct 10 pseudo-populations to calculate the CI.
Nonlinear information increased after training. D, Number of implementable binary classifications for different tasks and in different training stages. Data from sample period for both
tasks. * represents p, 0.05.
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6.7%, two-sample proportion test, z=1.01, p=0.314; delay2 period:
pretraining proportion = 4.2%, post-training proportion =
4.6%, two-sample proportion test, z = 0.522, p = 0.602) (Fig.
3A,B).

Similar results were observed when we used the factors of
stimulus location/shape and task epoch (cue vs match) for the
two-way ANOVA (Fig. 3C,D). For the spatial task, training
increased the proportion of NMS cells, at least in the delay period
(stimulus period: pretraining proportion = 5.7%, post-training
proportion= 7.4%, two-sample proportion test, z=1.78, p =
0.075; delay period: pretraining proportion = 2.1%, post-training
proportion=6.2%, two-sample proportion test, z=5.03, p=4.94�
10�7). A similar increase was observed for the CS cells (stim-
ulus period: pretraining proportion = 21.3%, post-training
proportion = 25.3%, two-sample proportion test, z = 2.37,
p = 0.018; delay period: pretraining proportion = 24.2%, post-
training proportion=31.1%, two-sample proportion test, z=3.93,
p=8.53� 10�5). In the feature task, only the proportion of CS
cells changed (stimulus period: pretraining proportion = 21.9%,
post-training proportion = 32.6%, two-sample proportion test,
z=6.05, p = 1.45� 10�9; delay period: pretraining proportion =
27.6%, post-training proportion = 41%, two-sample proportion
test, z = 7.16, p = 8.32� 10�13). The proportion of NMS cells
with an effect in the stimulus period remained relatively
unchanged for the cue/match period (pretraining propor-
tion = 3.4%, post-training proportion = 4.7%, two-sample
proportion test, z = 1.59, p = 0.112), as well as the delay pe-
riod (pretraining proportion = 2.4%, post-training proportion =
3.8%, two-sample proportion test, z=1.95, p=0.051). We did not
have sufficient power to perform this analysis individually for
all animals, but for 2 subjects with sufficient data in both
the feature and spatial tasks, lack of substantial NMS in the
feature task after training was evident in both. For the sam-
ple period in Subject A, the NMS proportion was 3.6% and

6.5% for the pretraining and post-
training periods, respectively (two-
sample proportion test, z = 0.93,
p = 0.352). For Subject A, it was 6.4%
and 6.9%, respectively (two-sample
proportion test, z = 0.37, p = 0.709).
In the delay2 period, the proportion
of NMS neurons in Monkey A was
1.8% and 3.8% for the pretraining
and post-training periods, respec-
tively (two-sample proportion test,
z= 0.93, p= 0.407). For Monkey E, it
was 5.5% and 4.8%, respectively (two-
sample proportion test, z= 0.42,
p= 0.672).

To further validate our proportional
measure for NMS and compare our
results with previous research on NMS
in the PFC, we plotted the F scores for
the interaction term (i.e., stimulus
identity � matching status) in both
the spatial and the feature task (Fig.
4A). We found that this measure of
NMS for individual cells increased
specifically for the spatial task, indi-
cated by slightly higher mean F score
values after training. Importantly, this
slight increase in mean is not trivial
considering that the proportion of
NMS is relatively low.

To quantify the change in NMS in an alternative way, we also
measured the dimensionality of population responses in the sam-
ple and delay2 period for the spatial and feature task. Again, this
analysis confirmed the results of our cell proportion measure
(Fig. 4B). For the spatial task, there was a significant increase of
dimensionality after training for both types of NMS. For NMS
defined as the location � matching effect, that is, different se-
lectivity for the same stimulus when it appeared as a match or a
nonmatch, dimensionality increased after training in the sam-
ple period (pretraining dimensionality = 5.72, post-training
dimensionality=10.33, two-sample t test, t(98) = 12.21, p=2.18�
10�21) as well as in the delay2 period (pretraining=3.25, post-train-
ing dimensionality=6.29, two-sample t test, t(98) = 9.39, p=2.51�
10�15). For NMS defined as the location � epoch effect, that is,
different selectivity for a stimulus when it appears first in the
sequence versus second in the sequence dimensionality increased
after training for the stimulus presentation period (pretraining
dimensionality = 2.58, post-training dimensionality=3.61, two-
sample t test, t(98) = 6.42, p=5.01� 10�9) as well as in the delay
period (pretraining dimensionality = 2.67, post-training dimension-
ality =2.91, two-sample t test, t(98) = 5.76, p=2.51� 10�8). For the
feature task, however, no significant increase was observed in the
mean F score (Fig. 4A) or dimensionality (Fig. 4B). This was true
for both the shape � matching comparisons (sample period: pre-
training dimensionality = 2.72, post-training dimensionality=2.73,
two-sample t test, t(98) = 0.027, p=0.978; delay2 period: pretraining
dimensionality = 2.43, post-training dimensionality=2.11, two-
sample t test, t(98) = 3.49, p=7.29� 10�4) and the shape � epoch
comparisons (stim period: pretraining dimensionality = 3.08, post-
training dimensionality= 2.31, two-sample t test, t(98) = 10.27,
p=1.36� 10�17; delay period: pretraining dimensionality = 2.18,
post-training dimensionality= 2.11, two-sample t test, t(98) = 0.84,
p=0.40). In accordance with previous research (Rigotti et al.,

Figure 5. Cell selectivity changes by brain regions. A, PFC subdivisions that were used for recording in the current study. B,
The effects of training in the active feature task on the proportion of different selectivity categories (NS, CS, LMS, and NMS) in
the sample period. There were significant increases in the proportion of LMS cells in all three PFC regions included for analysis,
but relatively low increases in the proportion of NMS cells. C, The effects of training in the active spatial task on the proportion
of different selectivity categories (NS, CS, LMS, and NMS) in the sample period. The greatest increase in NMS occurred at the
mid-dorsal region.
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2013), we found that the increased
dimensionality in the spatial task was
accompanied by an increased number
of implementable binary classifica-
tions (Fig. 4D), as well as enhanced
decoding after pure selectivity was
removed
(Fig. 4C).

Previous studies of NMS have sug-
gested that increased linear classifi-
cation boundary choices would be
beneficial for downstream readout
cells, which are mostly likely action-
related. We thus investigated the sac-
cade-related signals in recorded cells to
determine whether action information
exists preferentially in different selec-
tive categories (CS vs NMS), by defin-
ing different types of selectivity (CS,
LMS, NMS) through the same method
we used for the sample and delay2
period. Although there was strong se-
lectivity for saccade locations, we ulti-
mately found very little NMS for
saccade direction and matching status
(further discussed in the last section of
the results).

Regional localization of NMS
To assess whether specific subregions of
the PFC may be specialized for NMS, we
divided the lateral PFC into regions (Fig.
5A) and analyzed the respective neuro-
physiological data from five of these
regions to determine the different areas’
proportional contributions to the observed
changes in NMS. We examined NMS
defined by location/shape and match/
nonmatch status in the sample period
and ultimately found that the mid-dor-
sal subdivision underwent the greatest
proportional change in NMS cells for
the spatial task after training (Fig. 5C),
without a comparable increase in the
proportion of CS neurons (mid-dorsal:
CS 21.7% pretraining to 19.0% post-
training, NMS 8.2% pretraining to 21.8%
post-training). For the feature task, how-
ever, the proportional change in NMS cells was relatively
small, with moderate increases in CS and LMS observed in
all three analyzed areas (Fig. 5B).

NMS in task context
Previous theoretical studies linked NMS with more flexible read-
outs of multiple task variables, thus leading to the hypothesis
that task complexity may modulate NMS. To test this hypothesis,
we compared the neural responses to different shapes at the
same location when the stimuli appeared as match or nonmatch
in the conjunction task, to the same neurons’ responses to the
same stimuli when they appeared in the feature task. In the con-
junction task, animals needed to simultaneously remember both

location and shape of visual stimuli, while in the feature task,
they were only required to remember shape. Although the hy-
pothesis predicted that the conjunction task would result in
greater NMS than the feature task when the sensory stimuli were
the same, this was not what we observed. No significant differen-
ces were observed for either flin CS cells or NMS cells in either
the sample period or the delay2 period that followed. For CS cells
in the sample period, the feature task proportion was 11.9%,
whereas the conjunction task proportion was 9.9% (exact
matched pair sample proportion test, F=1.229, p= 0.197); in the
delay2 period, the respective proportions for the feature task was
10.8%, and for the conjunction task, 11.6% (exact matched pair
delay2 proportion test, F=1.069, p= 0.681). For NMS cells in the
sample period, the feature task proportion was 4.1%, and the

Figure 6. Cell selectivity in tasks with different levels of complexity. Analyses were performed on neural data from the
same population of cells, with matching numbers of trials in the feature and the conjunction tasks. Only trials with the same
stimuli were included in this analysis. A, Examining interaction (NMS) across stimulus preference and matching status. Bar
graphs represent the proportions of cells tuned to stimuli shape, trials matching status, and their interaction in different
stages of both the feature and conjunction tasks. Pie charts represent the proportion of different selectivity categories (NS,
CS, LMS, and NMS) in corresponding sample and delay2 periods. B, Flow diagram represents cell selectivity category mapping
across tasks. On the left side of each plot, cell selectivity category (NS, CS, LMS, and NMS) in the feature task was color-
coded. The thickness of lines represents the number of cells. The right side of each plot represents selectivity categories of
the same cells in the conjunction task. The composition of cell selectivity category with reference to the other task is shown
by the proportion of different colored lines. C, F scores of the interaction term in the ANOVA were compared between cells
that were classified as NMS cells in both tasks (overlapping cells), and those only classified as NMS in one of the tasks (nono-
verlapping cells). * represents p, 0.05.
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conjunction task proportion was 4.4% (exact matched pair sam-
ple proportion test, F= 1.031, p=0.901). In the delay2 period, the
feature task proportion = 4.6%, conjunction task proportion=5.9%
(exact matched pair delay2 proportion test, F=1.278, p=0.266)
(Fig. 6A).

We also examined changes in individual cells’ selectivity
across the feature and conjunction tasks. A change in selectivity
type was frequent between tasks; most CS and NMS cells, defined
as such as in the feature task, changed their selectivity type in the
conjunction task (CS cells: 85.2% in sample period, 77.2% in
delay2; NMS cells 88.6% in sample period, 89.7% in delay2). The
finding implies that CS and NMS selectivity is task-specific, and
an unstable mapping exists between different tasks (Fig. 6B).
Although the percentage of NMS neurons was close to that
expected by chance, NMS cells with a larger degree of interaction
in one task tend to also fall into the NMS category in the other
task (Fig. 6C). No significant difference was observed in the pro-
portion of NMS cells when we performed a similar comparison
between the spatial and conjunction task; the proportion of NMS
cells in the spatial task was 18.3%, whereas in the conjunction
task it was = 14.1% (two-sample proportion test, z= 0.68,
p=0.494). In the delay2 period, the same proportions were 7.0%
and 11.3%, respectively (two-sample proportion test, z=0.88,
p=0.381).

The comparison of the naive and trained conditions
allowed us to test the overall incidence of NMS in different
populations of PFC neurons, sampled randomly before and
after training, which was conducted over the course of sev-
eral months. If NMS were critical for the representation of
task-relevant information, we would expect fewer neurons
to exhibit NMS, when animals are passively viewing stimuli
versus when they are actively performing the task and

storing representations of the stimuli
in their WM. We therefore applied a
two-way ANOVA to compare the
neural responses of neurons between
the active and passive spatial tasks af-
ter the monkeys had been trained to
perform the active spatial task. We
ultimately observed a small but not
significant increase in the proportion
of cells that coded matching status
during the sample period, as well as
an increase in the proportion of cells
coding sensory information in the
delay1 period when the animal was
prompted to report the matching decision
(passive proportion = 9.3%, active
proportion=11.7%, exact matched pair
proportion test, F=1.385, p=0.362) (Fig.
7A). Interestingly, a large proportion (CS:
81.8%, NMS: 52.2%) of cells changed their
selectivity category across tasks, especially
for CS cells (Fig. 7B), and the degree of
NMS does not seem to be predictive of
whether a given neuron would fall in the
same selectivity category in both tasks
(Fig. 7C).

Information encoding by NMS
neurons
Prior research has demonstrated that
training leads to increases in both persis-
tent activity and the incorporation of

task-relevant information in neural populations, and these effects
were more pronounced during the delay2 period in our task
(Meyers et al., 2012). We therefore wished to test whether the
increase of neurons exhibiting NMS would be greater in the sec-
ond delay interval, as well. The current study revealed that this
was not the case (delay 2 in Fig. 3A–B). The result suggests that
the plasticity involving the increase in delay period activity and
the increase in the magnitude of NMS are independent of each
other.

We also investigated the relative contribution of NMS to
encoding new task information. We used a linear SVM decoder
to decode sensory information (location and shape) and match/
nonmatch status information to quantify the amount of task-rel-
evant information contained in linear (CS and LMS) and NMS
cells (Fig. 8). Since the cell selectivity category could be defined
by their response in either sample or delay2 period, we randomly
selected equal numbers of linear and nonlinear cells in both task
epochs for each comparison. The random selecting process was
repeated multiple times to obtain a CI. We ultimately found that
linear and nonlinear cells contain comparable amounts of line-
arly decodable information in regard to both sensory informa-
tion and task-relevant information (Fig. 8A). The only observed
difference between the decodable information in the linear and
nonlinear cells occurred in the post-training feature task, where
linear cells were observed to contain more stimulus information
(mean performance 46.6% for CS, 29.6% for NMS during sample
period) in the sample period.

We applied cross temporal decoding to compare classical and
linear mixed cells with regard to population coding dynamics
during the delay period. If information were represented by a
stable pattern of activity, the classifier trained at one time point

Figure 7. Cell selectivity in tasks with the same sensory input but different behavioral requirements. Analyses were per-
formed on neural data from the same population of cells, with matching number of trials in the passive and active spatial
tasks. Only trials that had the exact same stimuli pairs in both tasks were included in this analysis. A, Examining interaction
(NMS) between stimulus preference and matching status. Bar graphs represent the proportions of cells tuned to stimuli loca-
tion, trials matching status, and their interaction in different stages of the tasks. Pie charts represent the proportion of different
selectivity categories (NS, CS, LMS, and NMS) in the sample period. B, Flow diagram represents cell selectivity category map-
ping cross tasks. On the left side of each plot, cell selectivity category (NS, CS, LMS, and NMS) in the passive task was color-
coded. The thickness of lines represents the number of cells. On the right side of each plot, cells belonging to different selectiv-
ity categories in the active spatial task were clustered together, so the composition of cell selectivity category with reference to
the other task is shown by proportion of different colored lines. C, F scores of the interaction term in the ANOVA were com-
pared between cells that were classified as NMS cell in both tasks (overlapping cells) and those only classified as NMS in one of
the tasks (nonoverlapping cells).
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would be expected to work equally effectively at other time
points where the information is present. Conversely, if informa-
tion were represented by dynamic patterns of activity; then the
decision boundary at one time point would not contribute to
decoding information at other time points. The most prominent
result from this analysis is that NMS cells produced significantly
more stable code for matching information in the spatial task,
compared with CS and LMS cells, as indicated by higher per-
formance off the diagonal during the delay2 period (Fig. 9). The
contrast between the CS1LMS versus NMS cells supported the
idea that NMS is particularly important for downstream readout.
A stable code is generally easier to read-out, since it does not
require the downstream circuit to track the time elapsed to
decode information. In the context of our task, the sensory infor-
mation is no longer necessary during the delay2 period for the
behavioral response, posing a likely explanation for why only the
code for match/nonmatch information is stable in the delay2 pe-
riod for NMS cells. Importantly, this stability was not observed
in CS1LMS cells, despite the matching status also being repre-
sented in these cells. Another intriguing and related phenom-
enon revealed by our decoding analysis (Fig. 8B) is that stimulus
information could be decoded above chance level for the spatial,
but not the feature task in the delay2 period, although, as noted,
maintenance in memory of either the first or second stimulus is
no longer necessary at this stage. This supports the idea that PFC
processes the spatial and shape information differently in the
regions we recorded from.

NMS in correct and error trials
The presence of decodable information in the PFC does not nec-
essarily imply that the information is used by the subjects to
guide behavior. In order to decipher the role of NMS in guiding
behaviors, we examined the F score of the main effects and their
interaction in the ANOVA test in correct versus error trials for
the spatial task (Fig. 10A,C), which displayed higher NMS levels
than the feature or conjunction tasks. Similar to the pretraining
versus post-training comparisons, we examined two types of
mixed selectivity: stimulus location versus matching status and
stimulus identity versus task epoch. The number of trials and
task variables were matched for each cell to avoid confounds in
the comparison. The mean F score in for the location variable in
the stimulus epochs for the location � epoch comparison was
equal to 1.86 for correct trials, and 2.59 for error trials (paired
t test, t(147) = 3.38, p=9.42� 10�4). The effect extended into the
delay epochs, where the average F score for location in correct
trials was 1.43, and that of error trials was 1.79 (paired t test,
t(150) = 2.61, p=0.010). However, we did not find any differences
in the F score for the interaction terms in any comparison. The
increased F score in error trials for stimuli location may reflect
higher variability in error trials in coding or maintaining corre-
sponding information. Alternatively, the increased F score may
reflect erroneous association of a combination of conditions. In
either case, however, dimensionality collapse does not seem to be
the primary cause of errors. A direct measurement of neural
response dimensionality revealed that error trials with the most
observed NMS did not undergo a decrease of dimensionality
(active spatial task; Fig. 10B,D).

Figure 8. A, Decoding task variables with an equal number of linear (CS1LMS) and non-
linear cells (NMS), at different task epochs and training stages. The selectivity categories (CS,
LMS, and NMS) were defined by spiking count in corresponding epochs (sample and delay2)
with reference to selectivity to stimuli identity (stimuli location or shape) and matching sta-
tus. Decoding performance for different task epoch and training stage combinations are dis-
played in separate subplots. In each subplot, the y axis represents decoding performance,
with results for stimuli identity and matching status represented by solid and dashed line,
respectively. Cell selectivity categories are color-coded (green represents CS1LMS; purple
represents NMS). Numbers on the x axis represent time relative to onset, with the sample
period occurring from 2 to 2.5 s, and delay2 period occurring from 2.5 to 4 s. Red bars under
each subplot represent the time points when the decoding performance for the matching
status differs significantly between linear and nonlinear cells. Blue bars under each subplot
represent the time points when the decoding performance for the sample stimulus identity
differs significantly between linear and nonlinear cells. For the spatial task, we found that,
despite the significant change in proportion of NMS cells after training, NMS does not seem
to represent increased quantities of linearly decodable information per cell compared with
linear cells. For the feature task, linear cells are generally more selective in many conditions,
especially when coding stimuli identity after training in the active task. B, Incorporation of
new information after training for the spatial and the feature tasks. Linear SVM decoders
were trained to classify either stimulus identity or matching status with z score-normalized

/

pseudo-population response. Color bars represent time points when the performance for
NMS and linear cells differs significantly: red bars represent decoding matching status; blue
bar represents decoding stimuli identity.
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Our analyses above reveal no obvious decrease of NMS repre-
senting stimulus identity and match status in error trials.
However, to determine whether NMS may be involved with con-
verting match status to action in our task, we decoded saccade
direction from correct and error trials by defining different types
of selectivity (CS, LMS, NMS) through the same method we used

for the sample and delay2 period.
Although there was strong selectivity for
saccade locations, we ultimately found
very little NMS for saccade direction and
matching status (Fig. 11A–B). If neurons
exhibiting NMS (now defined by the
interaction of saccade location and match
status) could predict erroneous saccade
direction more effectively, we might be
able to conclude that NMS plays an im-
portant role in behavior, despite the lack
of dimensional collapse for stimuli pre-
sentation and delay error trial representa-
tions of stimuli identity and matching
status. However, our results ultimately
failed to indicate a significant decrease of
such NMS in error trials, either (Fig.
11C–D).

Discussion
Selectivity for different types of informa-
tion is critical in representing the plethora
of stimuli and task contexts that can be
maintained in WM. NMS is thought to be
critical in that respect, as it allows efficient
representation of flexible, arbitrary com-
binations of variables (Buonomano and
Maass, 2009; Rigotti et al., 2010; Barak et
al., 2013; Fusi et al., 2016; Johnston et al.,
2020). Consistent with this idea, increased
dimensionality in NMS has been high-

lighted as a potential means of increasing the efficiency of WM
task performance (Rigotti et al., 2013; Johnston et al., 2020) while
dimensional collapse characterizes task errors (Rigotti et al.,
2013). Moreover, all task-relevant information could be decoded

Figure 9. Coding dynamics of pure and linearly selective cells (CS and LMS) versus NMS cells. Linear kernel SVM decoders were trained to perform cross-temporal decoding with different se-
lectivity populations in the delay2 period, for both spatial and feature tasks, as indicated by the y axis. The decoder was then required to predict whether a match or nonmatch occurred at
each time point based on a different test set of data, as indicated by the x axis. Normalized decoding accuracy is indicated in the color bar, demonstrating how spatial and feature WM repre-
sentations can be decoded from specific patterns of neural activity. Coding of matching information for NMS cells is more stable across time for the spatial task.

Figure 10. A, C, Comparison of cell selectivity in correct and error trials in the same population for the spatial task, after con-
trolling for trial number and location pairs used. Two forms of mixed selectivity were examined (location � matching, location
� task epoch). No change (location� matching delay2 period) or increase (location� task stim and delay epochs, location�
matching sample period) in the mean F score of the interaction term of ANOVA results from all recorded cells were observed.
Higher F score for the variable of stimuli location was observed in error trials in the location� Epoch comparison. Box bounda-
ries represent 25%-75% data range. Whiskers indicate 1.5 IQR. Squares represent means across cells. B, D, Dimensionality mea-
sure for the correct and error spatial task dataset, with different definitions of mixed selectivity: Left, B, location � match/
nonmatch; D, location� Epoch. No decrease of dimensionality was found in error trials. * represents p, 0.05.
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from NMS neurons alone, despite their relative
scarcity, with decoder accuracy actually increas-
ing as the task became more complex (Rigotti et
al., 2013). NMS is assumed to emerge with
training in complex tasks that combine multiple
types of information, or in multiple tasks, even
without an explicit requirement to combine
such information (Lindsay et al., 2017;
Johnston et al., 2020). However, this idea has
not been tested experimentally until now. Our
study, by virtue of analyzing neural recordings
before and after training in a series of cognitive
tasks, directly tested these postulates. We found
that NMS resulted in a modest increase with
training, but only for some tasks; furthermore,
task complexity was not a predictor of NMS
emergence. A causal relationship between suc-
cess and dimensionality—and by extension,
NMS—was also not supported by our results, as
we did not observe any significant changes in
NMS between error and correct trials. These
insights refine and qualify the role NMS plays
in WM, and identify a number of open
questions.

Effects of training on neural responses
WM is considerably plastic; and at least some
aspects of it, such as mental processing speed
and the ability to multitask, can be improved
with training (Klingberg et al., 2002, 2005;
Bherer et al., 2008; Jaeggi et al., 2008; Dux et al.,
2009). WM training has been proven particu-
larly beneficial for clinical populations (e.g., in
the case of traumatic brain injury, attention def-
icit hyperactivity disorder [ADHD], and schizo-
phrenia) (Klingberg et al., 2002; Westerberg et
al., 2007; Subramaniam et al., 2012). However,
the verdict of whether WM training confers
tangible benefits on normal adults, and whether
these benefits transfer to untrained domains,
remains a matter of heated debate (Fukuda et al.,
2010; Owen et al., 2010; Cortese et al., 2015;
Schwaighofer et al., 2015; Constantinidis and
Klingberg, 2016; Peijnenborgh et al., 2016).

This malleability of cognitive performance is
thought to be mediated by the underlying plas-
ticity in neural responses, most importantly
within the PFC (Constantinidis and Klingberg, 2016). In a series
of prior studies, we have investigated changes in PFC responsive-
ness and selectivity (Meyer et al., 2011, 2012; Qi et al., 2011; Riley
et al., 2018), as well as other aspects of neuronal discharges, such
as trial-to-trial variability and correlation between neurons (Qi
and Constantinidis, 2012a,b). This led to our present analysis
where, guided by experimental and theoretical predictions
(Rigotti et al., 2013), we examined NMS as another potential
source of enhanced ability to represent WM information after
training.

In agreement with our hypothesis, we found that training
increased the proportion of neurons that exhibit NMS. However,
training does not seem to be a prerequisite, as NMS was also
observed in animals that were naive to any cognitive training.
Prior research has established that the human and primate PFC
represent stimuli in memory even when not prompted to do so

(Foster et al., 2017), or without training in WM tasks (Meyer et
al., 2007). Our finding of NMS neurons in naive monkeys pro-
vides another example of that principle. However, NMS only
increased for certain types of task information and not for
others. Task variables mixed significantly more with spatial
over shape information, thus suggesting that the role of NMS
is not universal for all types of working memory. Considering
the fact that the spatial information in the current study is
largely nonoverlapping and low dimensional (stimulus identi-
ties could be represented by one or two numbers), while the
shape information is relatively high-dimensional, one possible
explanation of the observed difference is that the distinction
in the degree of NMS may reflect the qualitatively different
ways of representing information with different dimension-
ality in working memory. In any case, our results suggest
that NMS may not be as ubiquitous as previously believed,
across all tasks, all prefrontal areas, and individual subjects.

Figure 11. A, Bar graphs represent the proportions of cells tuned to saccade location, matching status, and their
interaction (i.e., NMS) in different stages of the task trials, for the active spatial task. B, Decoding of saccadic direc-
tion using all recorded cells, or the same number of CS1LMS/NMS cells in the active spatial tasks. Time 0 at the x
axis indicted the onset of the cue. Black line indicates onset of choice array. C, Saccadic direction decoding was
equally effective in correct and error trials, regardless of pseudo-population size. Left, Decoding saccadic direction
using 239 cells with 4 randomly selected correct and error trials (2 trials in 2 the same 2 conditions are randomly
selected, thus resulting in 4 trials for each cell; condition was defined by saccade location � matching status).
Right, Decoding saccadic direction using 155 cells with 2 correct and error trials in the same conditions. D, Decoding
saccadic direction using different populations from the same cells in C. Left, Decoding performance using 54
CS1LMS cells with 4 correct and error trials. Right, Decoding performance using 10 NMS cells with 4 correct and
error trials. In all panels, the shaded range represents 95% CI for 10 randomly constructed pseudo-populations.
Time point 0 is the onset of cue. Black line at 4 s indicates the onset of the choice array.
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These results are consistent with some prior studies that
have also failed to uncover substantial NMS in the tasks they
used (Cavanagh et al., 2018). Examining where NMS failed
to appear, and where WM representations fail to spontane-
ously appear, will be an important area of future investiga-
tion for NMS.

The greatest increase in the proportion of neurons that exhib-
ited NMS for the spatial working memory task was observed at
the mid-dorsal region during the sample presentation period
(Fig. 5). This disproportionate increase in NMS neurons was
associated with a modest decrease in neurons that exhibit CS, as
predicted by theoretical studies (Lindsay et al., 2017). However,
this finding, too, did not generalize across conditions. During the
delay periods of the spatial task, we saw an across-the-board
increase in neurons with CS, which were much more abundant
in the trained than the naive PFC (Fig. 3). Indeed, the increase of
encoding of matching information in the feature task after train-
ing was driven almost exclusively by CS cells, suggesting a poten-
tial division of labor between NMS and CS in the PFC for
different types of information.

Task complexity and difficulty
Another potential factor that determines the emergence of NMS
is task complexity. NMS may arise exclusively in highly complex
tasks that require subjects to maintain and combine multiple
types of information in their WM, simplifying the involved neu-
ral circuits to achieve greater efficiency (Rigotti et al., 2013).
We thus tested this concept by applying a dataset that relied on
three tasks which differed in complexity (and overall difficulty).
The spatial and feature tasks each required maintenance of a sin-
gle stimulus property in memory (location or shape). The con-
junction task required both. Surprisingly, however, we did not
observe a higher incidence of NMS in the conjunction task com-
pared with the feature task. Moreover, we observed a much lower
incidence of NMS in the feature task compared with the spatial
task despite the fact that the latter was no more complex or diffi-
cult for the monkeys to perform (Meyer et al., 2011; Riley et al.,
2018). This implies that NMS in the PFC may not be necessary
for certain types of information, such as object shape, even when
the task complexity is high. Our tasks required modest flexibility
for stimulus representations: presentation of two stimuli in
sequence requires choice of the green or blue target depending
on their relative location, shape, or location-shape combination.
However, the flexibility of the task was bounded by the fact that
the same basic match/nonmatch rule applied across all tasks. It
is possible that a task that required more flexible representation
(e.g., if the monkeys were additionally cued in each trial to select
the green choice target for either the match or the nonmatch)
would result into emergence of even more neurons with mixed
selectivity. Future research is therefore necessary to assess this
possibility.

Regional specialization
Different types of information are represented across the dorso-
ventral and anterior-posterior axes of the PFC (Constantinidis
and Qi, 2018), and examining the regional distribution of NMS
neurons within the PFC therefore bears a clear importance. We
found that NMS was most strongly demonstrated in the mid-
dorsal area for the spatial task and the posterior dorsal area for
the feature task. The specialization of different PFC subregions
in processing location versus feature information is still a topic
of debate. Current evidence suggests that the degree of specializa-
tion may depend on what stimuli are used. For highly specific

stimuli that require within-category discrimination, such as
faces, the selective cells are clustered in anatomically defined
patches in the ventral PFC (O’Scalaidhe et al., 1997, 1999), while
for more general stimuli varying in shape and color, the coding
seems to be distributed in both the dorsal and ventral portions of
the PFC (Rao et al., 1997; Meyer et al., 2011; Kadohisa et al.,
2015). In the current study, we used simple geometrical shapes
to probe the selectivity for feature, and we sampled from both
dorsal and ventral portion of PFC. It is noticeable that, in the
current study, the encoding of spatial information is stronger
compared with feature information in the sampled neurons. This
is in agreement with previous reports that the degree of selectiv-
ity is stronger on a single-neuron level for location compared
with simple geometrical shapes in the dorsal portion of the PFC
(Constantinidis and Qi, 2018).

Information content and task performance
A critical issue regarding the role of mixed selectivity is whether
nonlinear mixed selectivity, by virtue of representing informa-
tion more efficiently, is also more necessary for effective task per-
formance (Rigotti et al., 2013). We relied on a linear SVM
decoder to decipher the specific information that may be repre-
sented by NMS cells, compared with CS cells. In the current
study, we found that similar quantities of information could be
decoded from (equal-sized) populations of CS and NMS neu-
rons, although the coding dynamics for some types of informa-
tion were significantly different between CS and NMS cells.
Similarly, when we compared the NMS levels of successful and
failed task trials, we were surprised to find that there was no
appreciable difference. This suggests that loss of information
encoded in a nonlinear manner may not be the primary factor of
successful WM-guided behavior. An important caveat for this
conclusion is that the combination of small and unbalanced
number of error trials in match versus nonmatch conditions
makes the detection power for the interaction fairly small in our
analysis. Moreover, with very little NMS presented even in cor-
rect trials after matching the trial number for the error condition,
a floor effect may have prevented a further decline from becom-
ing apparent. Nonetheless, our result reinforces the idea that
NMS is not necessary in all tasks, without which performance
fails. An interesting observation in this analysis was that the pro-
portion of cells tuned to spatial location was elevated in error tri-
als. The result may imply that task success also depends on the
task relevance of the represented information, with error trials
incorporating greater quantities of task-irrelevant spatial infor-
mation and therefore unnecessarily drawing awayWM resources
without benefit. Ultimately, by comparing and evaluating the
conditions in which NMS emerges, we may decipher its true role
inWM and other cognitive functions.
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