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The intestinal mucosal immune barrier protects the host from the invasion of foreign pathogenic microorganisms. Immune
cells and cytokines in the intestinal mucosa maintain local and systemic homeostasis by participating in natural and
adaptive immunity. Deficiency of the intestinal mucosal immune barrier is associated with a variety of intestinal illnesses.
Exosomes are phospholipid bilayer nanovesicles that allow cell-cell communication by secreting physiologically active
substances including proteins, lipids, transcription factors, mRNAs, micro-RNAs (miRNAs), and long noncoding RNAs
(lncRNAs). Exosomal lncRNAs are involved in immune cell differentiation and the modulation of the immune response.
This review briefly introduces the potential role of exosomal lncRNAs in the intestinal mucosal immune barrier and
discusses their relevance to intestinal illnesses.

1. Introduction

There are four types of intestinal mucosal barriers: mechan-
ical, immunological, biological, and chemical. Impairment in
any barrier causes an imbalance in intestinal mucosal immu-
nity. The etiology of intestinal mucosal barrier dysfunction
may independently or synergistically trigger a biochemical
cascade leading to chronic inflammation and various intesti-
nal diseases including inflammatory bowel disease (IBD),
irritable bowel syndrome (IBS), and benign and malignant
tumors of the colon [1]. The intestinal mucosal immune bar-
rier is one of the most important protective barriers in the
human body [2], since it maintains intestinal microflora bal-
ance which is crucial to resisting bacterial translocation,
endotoxemia, and secondary damage [3].

Exosomes are extracellular phospholipid bilayer vesicles
with an average diameter of 100nm formed by the fusion
of multivesicular bodies (MVBs) with the plasma mem-
brane. Exosomes have donor cell-specific components
including lipids, proteins, and nucleic acids (DNA, mRNA,
miRNA, and lncRNA) that may be selectively absorbed by
proximal and distal cells. These recipient cells may recode

bioactive substances to influence cell physiological activities
such as cell signal transduction, proliferation, apoptosis, dif-
ferentiation, polarization, immune response, and antigen
presentation [4, 5]. The exosomal pathway in the intestinal
mucosal immune system is involved in maintaining homeo-
stasis by promoting the function of the epithelial barrier and
maintaining its integrity, inducing oral tolerance to harmless
antigens, and exerting inhibitory effect of regulatory T
(Treg) cells. The different exosomal functions suggest that
the exosomal pathway may play a role in treating patholog-
ical intestinal inflammation [6].

lncRNAs are noncoding transcripts above 200 nucleo-
tides which lack the structure of long reading frames [7, 8]
and often exist as secondary stem loop-like structures or ter-
tiary structures [9]. lncRNAs carried by exosomes are widely
involved in intercellular material exchange and signal trans-
duction. They are stable in biological fluids as endogenous
RNA enzymes do not cause their degradation [10]. lncRNAs
may act in the following ways: (1) bind to specific proteins to
regulate their activities; (2) bind to specific proteins to
change their cell localization; (3) act as the precursor mole-
cule of small RNA (such as miRNA); (4) act as scaffolds to
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form nucleic acid-protein complexes; (5) modify the expres-
sion of downstream genes by mediating histone modifica-
tion, chromatin remodelling, or inhibiting RNA
polymerase II; (6) influence the expression of downstream
genes by affecting transcription of the promoter; and (7)
form complementary double strands with protein-coding
gene transcripts to interfere with mRNA splicing or generat-
ing endogenous interfering RNA under the action of ribonu-
clease Dicer to inhibit gene expression [11, 12]. Exosomal
lncRNAs regulate antigen presentation, affect the activity
of immune cells, and induce apoptosis of related effector
cells [13]. In summary, lncRNAs regulate gene expression
at epigenetic, transcriptional, or posttranscriptional levels
by interacting with proteins, DNA, and RNA and are
involved in important processes such as intranuclear trans-
port of chromatin, regulation of protooncogene activation,
differentiation of immune cells, and regulation of the
immune system [14].

A better understanding of the potential role of specific
exosomal lncRNAs in the intestinal mucosal immune barrier
may result in improved disease severity assessment and facil-
itate treatment with the help of biomarker lncRNAs.

2. Intestinal Mucosal Immune Barrier

The intestinal mucosal immune barrier arises to local and
systemic immune reactions under the stimulation of intesti-
nal antigens to protect the host from the damage. This
barrier mainly comprises gut-associated lymphoid tissue
(GALT), secretory immunoglobulin A (sIgA), and
immune-producing substances such as cytokines [15].
GALT mainly includes Peyer’s patches (PPs), isolated lym-
phoid follicles (ILFs), mesenteric lymph nodes (MLNs),
and diffuse GALT. Diffuse GALT mainly includes intrae-
pithelial lymphocytes (IELs) and lamina proprial lympho-
cytes (LPLs).

The immune function of the intestinal mucosal immune
barrier is mainly exerted by the afferent induction sites (PP
and ILF) and efferent effector sites (IEL and LPL). Immune
cells in induced sites can take up, process, and present anti-
gens, while the effector sites generate immune responses.
Microfold cells (M cells) in PP combine with pathogen-
associated molecular patterns (PAMPs) of intestinal patho-
gens through surface pathogen recognition receptors
(PRRs); then, the enteric luminal antigens are endocytosed
and transported to the follicular region for processing, which
causes antigen-specific B- and T-lymphocyte excitation. M
cells also transport antigens to the other side of the cell
membrane and present antigens to antigen-presenting cells
(APCs), which get transferred to the lamina propria and epi-
thelium. Antigens entering the lamina propria and epithe-
lium can stimulate the LPL and IEL of the effector sites
and produce a series of immune responses.

The intestinal innate immune system is composed of
mucus, the epithelial barrier, macrophages, monocytes, neu-
trophils, dendritic cells (DCs), natural killer (NK) cells,
eosinophils, and basophils which nonspecifically recognize
pathogens and maintain intestinal immune tolerance [16].
The innate immune response to pathogenic bacteria

depends on the recognition of PAMPs by toll-like receptors
(TLRs) which deliver risk signals to APCs. This causes the
production of reactive oxygen species, nitrogen dioxide, pro-
inflammatory factors and upregulates costimulatory mole-
cule expression, which causes adaptive immune responses.

IEL is a lymphocyte population mainly composed of
CD8+ T cells that are the closest to antigens. They directly
recognize unprocessed antigens and perform a variety of
immune functions, including NK activity, specific cytotoxic-
ity, and antitumor activity in the acquired immune system.
They produce cytokines such as interleukin- (IL-) 2, IL-3,
IL-4, IL-5, IL-10, interferon- (IFN-) α, and IFN-γ which reg-
ulate T helper (Th or CD4+) cells. LPL mainly includes
CD4+ T cells and B cells. Naive CD4+ T cells may differenti-
ate into various subgroups that are divided according to the
different cytokines and effects they produce after being stim-
ulated by external antigens, such as Th1, Th2, Th9, Th17,
and Treg cells [17] (Figure 1).

3. Exosomal lncRNAs Regulate the Intestinal
Mucosal Immune Barrier

3.1. Exosomal lncRNAs Regulate IBD. IBD is a chronic
inflammatory disease of the gastrointestinal tract, including
Crohn’s disease (CD) and ulcerative colitis (UC). The chief
clinical presentation includes abdominal pain, diarrhea,
mucous bloody stool, and weight loss [18]. Immune dysreg-
ulation of IBD appears as an epithelial injury (abnormal
mucus production and repair defect); inflammatory progres-
sion caused by intestinal flora; numerous inflammatory cell
infiltrations in the lamina propria including T cells, B cells,
macrophages, DCs, and neutrophils; and a failure of the
immune system to regulate the inflammatory response
[19–21]. Several studies have shown that exosomal lncRNAs
participate in maintaining the intestinal mucosal immune
barrier in IBD.

3.1.1. H19. H19 from chromosome 11p15.5 is a 2.3 kb
lncRNA involved in immune and inflammatory responses
[22]. Its levels increase in inflammatory intestinal tissues of
mice and human patients with UC [23]. H19 is an inflam-
matory lncRNA induced by IL-22, which antagonizes the
negative regulatory factors of intestinal epithelial hyperplasia
and suppresses p53 protein expression, and the miRNAs
miR34a and let-7 [23]. It is an important intermediate sig-
naling molecule which connects IL-22 signaling with other
regulatory networks that control the repair of the intestinal
epithelium under inflammatory conditions. An increase in
H19 may be affiliated with the triggering of the mitogen-
activated protein kinase (MAPK) pathway and apoptosis
[24]. H19may also deregulate the homeostatic role of Vitamin
D receptor (VDR) signaling which is involved in regulating
inflammation [25]. Increased H19 expression is correlated
with decreased VDR expression observed in the colon biopsy
of patients with UC [26]. Targeting the interaction between
H19 and VDR receptor may lead to a cure for UC [26].

3.1.2. IFNG-AS1. IFNG-AS1 (TMEVPG1 or NE ST) is a
Th1-specific lncRNA mainly expressed in CD4+ T cells. It
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is correlated with increased expression and secretion of the
inflammatory cytokine, IFN-γ [27], possibly due to its
interaction with the WD repeat domain 5 (WDR5) subunit
of the histone 3 lysine 4 (H3K4) methyltransferase complex
[28]. IFN-γ is vital for maintaining intestinal mucosal
immunity since it is an activator of phagocytes and neutro-
phils, an antagonist of IL-4, and promoter of T- and B-
lymphocyte differentiation. IFNG-AS1 is associated with
IBD susceptibility-related single-nucleotide polymorphism
(SNP), rs7134599 [29]. IFNG-AS1 expression significantly
increases in the intestinal mucosal tissues of IBD patients,
2,4,5-trinitrobenzenesulphonic acid- (TNBS-) induced coli-
tis mouse models, and spontaneous colitis in IL-10 knock-
out mice [29]. IFNG-AS1 induces Th1 cell-specific
expression of signal transducer and activator of transcrip-
tion 4 (STAT4) and T-box expressed in T cells (T-bet)
[30]. The epigenetic modification of T-bet on the proximal
and distal enhancers of IFNG-AS1 may be related to IFN-γ
expression in Th1 cells [28]. Expression of several upstream
inflammatory regulators, including IFN-γ, IL-1, IL-6, and
tumor necrosis factor-α (TNF-α), is elevated in UC
patients, and these regulators enhance inflammatory
responses in patients’ Th1 cells. In summary, IFNG-AS1
may participate in the development of intestinal mucosal
inflammation by regulating CD4+ T cell immune function
in patients with IBD [27]. Its levels may be a marker to dis-

tinguish among active UC patients, remission patients, and
healthy people.

3.1.3. NEAT1. Nuclear paraspeckle assembly transcript 1
(NEAT1) is a nuclear-restricted lncRNA positioned on the
subnuclear structure that is highly expressed in IBD and par-
ticipates in several immune responses. TNF-α and dextran
sulphate sodium (DSS) destroy the integrity of the intestinal
epithelial barrier thereby leading to IBD development.
Recent evidence shows that NEAT1 is involved in the
inflammatory response by regulating the intestinal epithelial
barrier and exosome-mediated polarization of macrophages
in IBD [31]. M1 macrophages produce proinflammatory
cytokines and aggravate the inflammatory process, while
M2 macrophages are closely related to anti-inflammatory
response and immune homeostasis. Downregulation or
knockout of NEAT1 promotes macrophage M1 transforma-
tion to M2 and suppresses the inflammatory reactions [31].
IL-8 is produced by phagocytes and mesenchymal cells
exposed to inflammatory stimuli. It activates neutrophils
and participates in infection, inflammation, and ischemia.
NEAT1 significantly affects the IL-8 levels by eliminating
the inhibitory effect of splicing factor proline/glutamine-rich
(SFPQ) protein on IL-8 expression [32]. Additionally,
NEAT1 knockout or inhibition blocks the release of inflam-
matory factors TNF-α, IL-1β, and IL-6 [33] resulting in the
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Figure 1: Functions of exosomal lncRNAs on intestinal mucosal immune system. Exosomal lncRNAs promote Th17 cell differentiation and
IFN-γ secretion of Th1 cells, regulate the polarization of Treg cells and macrophages, reprogram DCs into a tolerant phenotype, affect the
cytokine secretion and inflammatory signaling pathways, and participate in immune response and immune evasion of cancer cells.
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preservation of intestinal epithelial barrier integrity. Silenc-
ing NEAT1 inhibits advanced inflammatory factors vital
for the activation, differentiation, and maturation of
immune cells (IL-6, chemokine (C-X-C motif) ligand 5
(CXCL5), CXCL10, CXCL11, chemokine (C-C motif) ligand
2 (CCL2), and CCL8) which are induced via TLR2 signaling
[34]. Meanwhile, activating TLR2 significantly induces
NEAT1-V1 expression in THP-1 cells [34]. In summary,
NEAT1 is a biomarker of IBD which induces inflammatory
factors and evidence exists that inhibition of this lncRNA
restores the intestinal epithelial barrier.

3.1.4. GAS5. RNA-growth arrest-specific transcript 5 (GAS5)
is an lncRNA located on chromosome 1q25.1 with many
functions in inflammatory and autoimmune diseases such
as rheumatoid arthritis (RA) and systemic lupus erythema-
tosus (SLE) [35]. Its expression is significantly reduced in
immune cells [36]. GAS5 inhibits gene expression by recruit-
ing polycomb repressive complex 2 (PRC2) to the promoter
of target genes [37]. Matrix metalloproteinases (MMPs) are
proteolytic enzymes that participate in the damage and
reconstruction of inflammation-related tissues by lysing
components of the extracellular matrix (ECM), maintaining
cell apoptosis, and promoting cytokine release [38].
Activated monocytes and macrophages are the major con-
tributing cells of MMP2 and MMP9 in inflammatory
diseases [39, 40], and these MMPs are highly expressed in
colonic mucosa, serum, urine, and stool samples of patients
with IBD [41–43]. GAS5 mediates intestinal mucosal dam-
age since its overexpression and knockdown decrease and
increase the levels of these MMPs, respectively [44]. GAS5
overexpression decreases the expression of TNF-α, IL-1β,
IL-6, and IL-8. GAS5 is downregulated, and MMPs are
upregulated in intestinal mucosal inflammatory tissues of
patients with IBD [45]. Moreover, GAS5 adjusts lipopoly-
saccharide- (LPS-) induced inflammatory destruction by
upregulating Kruppel-like factor 2 (KLF2) expression and
inhibiting the nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) pathway [46]. It is evident
that GAS5 upregulation has a protective effect on the
intestinal mucosal immune barrier during the induction
of inflammation.

3.1.5. Other Exosomal lncRNAs Associated with IBD. The
TLR signaling pathway leads to NF-κB activation and
increases the expression of proinflammatory factors which
are involved in IBD pathogenesis [47]. The lncRNA
hypoxia-inducible factor 1 antisense RNA-2 (HIF1A-AS2)
protects the immune barrier and maintains intestinal
immune homeostasis in UC patients by suppressing NF-κB
signaling pathway activation and inhibiting the upregulation
of inflammatory factors [48]. The lncRNA CDKN2B-AS1
(antisense noncoding RNA in the INK4 locus (ANRIL)) reg-
ulates tight junction protein, and its level is negatively corre-
lated with levels of inflammatory cytokines TNF-α, IL-6, and
sIL-2R [49, 50]. CDKN2B-AS1 relieves inflammation of UC
by sponging miR-195 and miR-16, providing an alternative
for diagnosis and treatment of UC [50]. Colon rectal neopla-
sia differentially expressed (CRNDE) promotes DSS-induced

apoptosis of colon epithelial cells by inhibiting miR-495 and
increasing suppressor of cytokine signaling 1 (SOCS1), sug-
gesting that CRNDE is a target for IBD treatment [51].

3.2. Exosomal lncRNAs Regulate Proliferation, Invasion, and
Metastasis of Colorectal Cancer. Colorectal cancer (CRC) is
the third most commonly diagnosed cancer with high mor-
tality rates worldwide [52, 53]. The molecular mechanism of
CRC remains unclear; however, exosomal lncRNAs are
involved in the tumorigenesis and tumor metastasis as regu-
lators of immune modulation [54]. Multiple inflammatory
signaling pathways are present in tumor cells including the
Janus kinase/signal transducers and activators of transcrip-
tion (JAK/STAT), NF-κB, and TLRs, which stimulate tumor
cells proliferation, invasion, metastasis, and angiogenesis
and suppress apoptosis when abnormally activated [55].
The Wnt/β-catenin signaling pathway may be involved in
the inflammatory response by inhibiting or activating the
NF-κB signaling pathway [56, 57]. M2-type tumor-
associated macrophages (TAMs) are the most numerous
cells participating in tumorigenesis and play a prominent
role in the progression of carcinogenesis to metastasis [58].

3.2.1. HOTAIR. HOX transcript antisense intergenic RNA
(HOTAIR) is a 2.3 kb noncoding region of chromosome
12q13.13, and the first known lncRNA with trans-transcrip-
tional regulation. Its expression is much higher in CRC
patients than that in healthy controls and is associated with
high mortality [59]. HOTAIR knockdown and miR-203a-3p
overexpression lead to inhibited CRC cell proliferation and
reduced chemoresistance by suppressing the Wnt/β-catenin
signaling pathway [60]. It also contributes to 5-fluorouracil
resistance by inhibiting miR-218 and activating NF-κB sig-
naling pathway in CRC [61]. HOTAIR mainly acts as a scaf-
fold to recruit and bind PRC2 and lysine-specific histone
demethylase 1 complex (LSD1) to form a histone modifica-
tion complex at the Hox gene site resulting in epigenetic
silencing in the site, which promotes the development of
malignant tumors [62]. The kernel components of the
PRC2 complex are enhancers of zeste homolog 2 (EZH2),
embryonic ectoderm development (EED), and suppressor
of zeste 12 (SUZ12) [63]. The histone methyltransferase
(EZH2) is the most critical subunit since it has an indispens-
able role in diverse cell types including immune cells [63].
Binding of EZH2 to the IL-4 promoter regulates Th1 and
Th2 differentiation by inhibiting the transcription of granu-
locyte factors such as STAT6 and GATA3. EZH2 facilitates
Treg cell differentiation and inhibits the differentiation of
Th1, Th2, and Th17 cells [64]. EZH2 inhibition upregulates
the expression of effector cytokines in CD4+T cells. There-
fore, HOTAIR downregulation or inhibitors of HOTAIR-
EZH2 may facilitate the immune response to reduce prolif-
eration and invasion of CRC.

3.2.2. CRNDE. Colon rectal neoplasia differentially expressed
(CRNDE) is a 1 kb lncRNA located on chromosome
16q12.2. It is the protooncogene of CRC promoting the pro-
liferation, migration, metastasis, and chemotherapy resis-
tance of CRC [65, 66]. Tumor formation in colon triggers
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immune responses leading to IL-17-producing T cells, i.e.,
Th17 cells [67], which are closely linked with Treg cells,
intestinal epithelial cells (IECs), APCs, and the intestinal
flora to jointly maintain intestinal mucosal stability. RORγt
promotes inflammation and differentiation of naive CD4+

T cells into Th17 cells by binding to IL-17 promoter and
inducing IL-17 secretion [68, 69]. E3 ubiquitin ligase Itch
binds to the PPXY motif of RORγt and induces ubiquitina-
tion and degradation of RORγt [70]. The serum exosomal
CRNDE-h level is positively correlated with the proportion
of Th17 cells in the tumor-infiltrating T cells in CRC
patients. CRNDE-h delivered by CRC exosomes is transmit-
ted to CD4+ T cells and promotes Th17 cell differentiation
by inhibiting the Itch-mediated ubiquitination and degrada-
tion of RORγt [71], which expands our understanding of
Th17 cell differentiation in CRC.

3.2.3. MALAT1. Metastase-associated lung adenocarcinoma
transcript 1 (MALAT1) is an 8.7 kb lncRNA located on
11q13.1. It suppresses NF-κB activity by binding with the
p50/p65 heterodimer in the nucleus, thereby affecting the
innate immune response [72]. Macrophage polarization is
an important molecular event in the innate immune
responses. Inhibiting MALAT1 expression curbs the polari-
zation of M2-type macrophages and facilitates M1-type
macrophage polarization [73]. MALAT1 inhibits the prolif-
eration of mouse macrophage cell line (RAW264.7), while
hsa-miR-346 promoted its proliferation [74] and induces
DCs to become tolerant after LPS stimulation. Ectopic
MALAT1 promotes the expression of DC-specific ICAM-3
grabbing nonintegrin (DC-SIGN) by acting as a sponge
miR-155, which is important for the maintenance of DC
tolerance [75]. Moreover, MALAT1 interacts with CCL5

to mediate the progression of CRC by tumor-associated
DCs [76]. Resveratrol suppresses the invasion and migra-
tion of CRC by downregulating MALAT1 expression,
resulting in decreased nuclear localization of β-catenin
and reduced expression of downstream target genes c-Myc
and MMP-7 [77].

3.2.4. RPPH1. Ribonuclease P RNA component H1 (RPPH1)
is located on chromosome 14q11.2 and mainly packaged in
exosomes. It is upregulated in CRC specimens and is corre-
lated with advanced tumor-node-metastasis (TNM) and
poor prognosis [78]. It interacts with tubulin β3 class III
(TUBB3) and is transmitted by exosomes to macrophages
to mediate macrophage M2 polarization, thereby promoting
CRC cell metastasis and proliferation. RPPH1 levels in
plasma exosomes of CRC patients significantly decline after
tumor removal [78], suggesting that RPPH1 downregulation
inhibits the occurrence and development of CRC. These
findings illustrate that RPPH1 promotes CRC cell metastasis
by functioning within cells and changing the tumor
microenvironment.

3.2.5. MEG3. Maternally expressed gene 3 (MEG3) is a
1.6 kb lncRNA in the DLK1-Dio3 gene cluster on human
chromosome 14q32.3. It has antitumor properties in differ-
ent cancer cells: breast, liver, glioma, colorectal, cervical, gas-
tric, lung, ovarian, and osteosarcoma [79]. MEG3 expression
is significantly reduced in CRC cells compared with normal
cells [80]. Its overexpression inhibits the invasion and
migration of CRC cells and significantly reduces MMP-2
and MMP-9 expression while increasing tissue inhibitor of
metalloproteinase-2 (TIMP-2) expression [80, 81]. In
addition, MEG3 overexpression inhibits LPS-induced
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macrophage apoptosis and secretion of inflammatory fac-
tors by inhibiting the activation of the NF-κB signaling
pathway [82]. Taken together, this suggests that the immu-
noregulatory effect of MEG3 is linked with the occurrence
and development of CRC and possibly other intestinal
diseases.

3.3. Exosomal lncRNAs Regulate the Intestinal Mucosal
Immune Barrier of CeD. Celiac disease (CeD) is a chronic
autoimmune disease that may result from intolerance to glu-
ten ingestion and is prone to occur in people with suscepti-
ble genes [83]. It generally manifests as histological lesions of
the jejunum, including intestinal villi atrophy and crypt
hyperplasia. Clinical manifestations may include diarrhea,
abdominal pain, abdominal distension, nausea, vomiting,
weight loss, and fatigue [84]. Nucleotide-binding oligomeri-
zation domain 1 (NOD1) is an innate immune receptor
belonging to the NOD-like receptor (NLR) family and PRRs.
It activates multiple proinflammatory pathways by identify-
ing exogenous and endogenous ligands. Gluten peptides are
ligands for some innate receptors to activate innate immune
reactions including CeD initiation [85, 86]. Mutations in
lncRNA HCG14 change NOD1 expression in intestinal epi-
thelial cells leading to CeD [87]. Nevertheless, the precise

molecular mechanism underlying the risk variation of
HCG14 in the pathogenesis of CeD remains to be clarified.

3.4. Other Regulatory Roles of Exosomal lncRNAs in the
Intestinal Mucosal Immune Barrier. The lncRNA-sekelsky
mothers against dpp 3 (lnc-Smad3) recruits histone deacety-
lase 1 (HDAC1) to Smad3 promoter which prevents H3K4
methyltransferase Ash1l (absent, small, or homeotic 1-like)
from binding to the same region, resulting in inhibition of
transforming growth factor-β- (TGF-β-) induced differenti-
ation of Treg cells [88]. TGF-β signal transduction induces
phosphorylation, activation, and nuclear translocation of
Smad2 and Smad3. The activated Smad complex combines
with forkhead box P3 (Foxp3) sites and promotes their
expression leading to Treg cell polarization [89, 90]. Ash1l
maintains the immune regulatory functions of Treg cells
by enhancing the expression of TGF-β-induced Smad3 and
Foxp3 and promoting the polarization of induced Treg
(iTreg) cells. Ash1l-deficient mice are more susceptible to
TNBS-induced colitis. This suggests that lnc-Smad3 is
involved in intestinal inflammation and that the ASH1L/S-
MAD3/FOXP3 pathway is involved in human autoimmune
pathogenesis by inhibiting the immune regulation of Treg
cells [88] (Figure 2 and Table 1).

Table 1: The potential mechanism of exosomal lncRNAs in the intestinal mucosal immune barrier.

Exosomal
lncRNAs

Potential mechanism References

H19
Antagonizes the negative regulatory factors of intestinal epithelial hyperplasia as an inflammatory lncRNA

induced by IL22
[23]

Participates in inflammatory diseases through VDR signaling [26]

IFNG-AS1 Increases IFN-γ secretion of CD4+T cells [27] [28] [29]

NEAT1

Participates in inflammatory response by regulating intestinal epithelial barrier and exocrine-mediated
macrophage polarization

[31]

Promotes IL-8 expression by relocating SFPQ [32]

Participates in TLR2-mediated expression of inflammatory cytokines [34]

GAS5
Mediates intestinal mucosal by regulating the MMP expression [44]

Adjusts the LPS-induced inflammatory destruction by regulating KLF 2 expression and inhibiting the NF-
κB pathway

[46]

HIF1-AS2 Inhibits NF-κB signaling pathway activation to protect the immune barrier [48]

CDKN2B-AS1
Regulates inflammation of UC by sponging miR-195-5p and miR-16-5p and is negatively correlated with

levels of inflammatory cytokines
[49] [50]

HOTAIR
Inhibits miR-218 and activates the NF-κB signaling pathway, resulting in the chemical resistance of CRC [61]

Acts as a scaffold to form PRC2 complex resulting in CRC development [62]

CRNDE Prevents Itch-mediated ubiquitination and degradation of RORγt to promote Th17 cell differentiation [71]

MALAT1
Inhibits M2-type macrophage polarization and promotes M1-type macrophage polarization [73]

Acts as miR-155 sponge to reprogram DCs into a tolerant phenotype [75]

RPPH1 Stimulates CRC cell metastasis by promoting exosome-mediated macrophage M2 polarization [78]

MEG3
Inhibits CRC cell invasion and migration via regulating MMP-2, MMP-9, and TIMP-2 [80, 81]

Inhibits LPS-induced macrophage apoptosis and secretion of inflammatory factors [82]

HCG14 Alters NOD1 expression in intestinal cells [87]

lnc-Smad3 Inhibits Treg cell polarization resulting in T cell-mediated colitis [88]
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4. Conclusion and Future Outlook

The intestinal mucosal immune barrier participates in
humoral immunity and cellular immunity and regulates
the intestinal environment. Recent studies have shown that
lncRNAs regulate immune cell differentiation and control
the inflammatory response by interacting with protein com-
plexes or transcription factors. Exosomal lncRNAs may partic-
ipate in the regulation of the intestinal mucosal immune barrier
and affect the progression of intestinal diseases. For instance,
high IFNG-AS1 expression is related to the susceptibility gene
of IBD, promotes IFN-γ secretion by CD4+ T cells, and partic-
ipates in the development of intestinal mucosal inflammation
by regulating the immune function of CD4+ T cells.

Some exosomal lncRNAs such as CCAT1 and CCAT2
are highly associated with CRC, but their functions in regu-
lating the intestinal mucosal immune barrier remain
unclear. Therefore, further research on these lncRNAs is
necessary. There are several exosomal lncRNAs related to
an immune response with no relevant studies linking them
with the intestinal mucosal immune barrier. It is suggested
that future studies should consider including them in the
diagnosis and treatment of intestinal diseases.

Studies on the role of exosomal lncRNAs in the intestinal
mucosal barrier are in the preliminary stages, and specific
mechanisms of their roles in the intestinal mucosal immune
system require further study. Exosomal lncRNAs show high
organ specificity in blood, urine, saliva, and tumor tissue,
have the advantages of being noninvasive, are repeatably
detectable, and may be monitored in real-time. Exosomal
lncRNAs are expected to provide new ideas and counter-
measures for the prevention, diagnosis, and treatment of
intestinal diseases through controlling immune mechanisms.
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