Skip to main content
. 2021 Aug 26;2021:6591035. doi: 10.1155/2021/6591035

Table 5.

LOSOCV accuracy in comparison with MV-CNN on five databases.

ML model Type of ML model Domain adaptation method Database Num. of gestures for classification LOSOCV accuracy (achieved with 200 ms window)

MV-CNN [31] Multiview CNN MS-AdaBN NinaProDB1 52 84.3%
HVPN-2-view Multiview CNN MS-AdaBN NinaProDB1 52 84.5%
HVPN Multiview CNN MS-AdaBN NinaProDB1 52 84.9%

MV-CNN [31] Multiview CNN MS-AdaBN NinaProDB2 50 80.1%
HVPN-2-view Multiview CNN MS-AdaBN NinaProDB2 50 81.8%
HVPN Multiview CNN MS-AdaBN NinaProDB2 50 82.0%

MV-CNN [31] Multiview CNN MS-AdaBN NinaProDB3 50 55.5%
HVPN-2-view Multiview CNN MS-AdaBN NinaProDB3 50 65.4%
HVPN Multiview CNN MS-AdaBN NinaProDB3 50 65.6%

MV-CNN [31] Multiview CNN MS-AdaBN NinaProDB4 53 52.6%
HVPN-2-view Multiview CNN MS-AdaBN NinaProDB4 53 69.9%
HVPN Multiview CNN MS-AdaBN NinaProDB4 53 70.2%

MV-CNN [31] Multiview CNN MS-AdaBN NinaProDB5 41 87.2%
HVPN-2-view Multiview CNN MS-AdaBN NinaProDB5 41 88.8%
HVPN Multiview CNN MS-AdaBN NinaProDB5 41 88.9%

N.A. denotes not applicable, and bold entries indicate our proposed method. HVPN-2-view refers to the proposed HVPN framework with the “two-view” configuration (i.e., using v1 and v2 as its input).