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Antigen identification is an important step in the vaccine development process. Computational
approaches including deep learning systems can play an important role in the identification of vaccine
targets using genomic and proteomic information. Here, we present a new computational system to
discover and analyse novel vaccine targets leading to the design of a multi-epitope subunit vaccine
candidate. The system incorporates reverse vaccinology and immuno-informatics tools to screen
genomic and proteomic datasets of several pathogens such as Trypanosoma cruzi, Plasmodium
falciparum, and Vibrio cholerae to identify potential vaccine candidates (PVC). Further, as a case study,
we performed a detailed analysis of the genomic and proteomic dataset of T. cruzi (CL Brenner and

Y strain) to shortlist eight proteins as possible vaccine antigen candidates using properties such as
secretory/surface-exposed nature, low transmembrane helix (<2), essentiality, virulence, antigenic,
and non-homology with host/gut flora proteins. Subsequently, highly antigenic and immunogenic
MHC class I, MHC class Il and B cell epitopes were extracted from top-ranking vaccine targets. The
designed vaccine construct containing 24 epitopes, 3 adjuvants, and 4 linkers was analysed for

its physicochemical properties using different tools, including docking analysis. Inmunological
simulation studies suggested significant levels of T-helper, T-cytotoxic cells, and IgG1 will be elicited
upon administration of such a putative multi-epitope vaccine construct. The vaccine construct is
predicted to be soluble, stable, non-allergenic, non-toxic, and to offer cross-protection against related
Trypanosoma species and strains. Further, studies are required to validate safety and immunogenicity
of the vaccine.

New data-driven approaches, such as reverse vaccinology'?, systems vaccinology?, and machine learning®, have
started to capitalize on the vast amount of omics data available for vaccine design. Several computational studies
have analysed genomes or proteomes of individual pathogenic strains or species to predict vaccine candidates®°.
In one of these studies, researchers have used the protein-protein interaction dataset and a network biology
approach to prioritize vaccine targets for Borrelia burgdorferi''. Moreover, Goodswen et al.'* used a machine
learning approach to distinguish between true and false vaccine candidates for eukaryotes including Caenorhab-
ditis elegans, Toxoplasma gondii and Plasmodium sp.'%.

There are several tools, resources, and databases available in the immuno-informatics domain that have con-
tributed to the development of vaccines in the recent past*-1°. In 2019, Dalsass et al. compared six open-source
standalone Reverse Vaccinology (RV) programs designed for bacterial pathogens: NERVE, VaxiJen, Vaxign,
Bowman-Heinson, Jenner-predict, and VacSol and tested them on eleven different bacterial proteomes'®. Several
advantages, as well as limitations, have been reported in the existing pipelines or tools. For instance, most of the
programs and algorithms have been built around bacterial and prokaryotic systems with only a little work with
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eukaryotic pathogens, including Trypanosoma cruzi. Furthermore, the issue of false-positive predictions remains
a challenge. (See “Supplementary Website”

Despite significant advancements in vaccinology, computational proteomics, machine learning, and reverse
vaccinology, finding vaccine candidates, producing them in the laboratory, and confirming their efficacy in
animal models remains a complicated undertaking. Thus, there is an urgent need for building pipelines or com-
putational frameworks, to integrate diverse algorithms and databases using a single input and provide meaningful
results for researchers working on vaccine development.

In this work, we are introducing an integrated framework that combines immuno-informatics approaches,
bioinformatics tools, and supervised machine learning-based tools for vaccine discovery. Here, we rank or clas-
sify pathogen proteins based on their propensity to be good vaccine candidates and to design safe and effective
multiple epitope vaccine candidates using a set of tools such as PsortB, WoLF PSORT, BLAST, HMM Top, Prot-
Param, FungalRV, NetCTL, VaxiJen 2.0, or IEDB tools. As a proof of concept, we applied our system to different
pathogens including Mycobacterium tuberculosis, Plasmodium vivax, Candida albicans, and Influenza A virus
and identified several key vaccine candidates.

Since we have a long-term interest in the development of vaccines against neglected tropical diseases, we
performed a detailed analysis of genomic and proteomic datasets of T. cruzi, the causative agent of Chagas disease
(CD). CD affects an estimated 6.5 million people (healthdata.org), particularly those living in extreme poverty
in Latin-America and certain areas of the USA, such as South Texas. An estimated 10,000-20,000 patients
succumb to CD annually'” and previous studies have reported several issues in the development of a vaccine
against CD'8, Since monovalent vaccines had only partial success, the idea of combining vaccine candidates was
proposed'®?. Recently, Sanchez Alberti et al. designed Traspain, a chimeric antigen including the N-terminal
domain of Cruzipain (Cz), the central region of the Amastigote surface protein 2 and a subdominant region of
an inactive trans-sialidase®' as a potential vaccine candidate.

Clinical studies, like the BENEFIT trial, have shown limited benefits of therapeutic drugs (i.e., benznidazole)
in halting the progression of CD-associated cardiovascular disease?*?. Even with available antiparasitic drugs,
patients with chronic Chagasic cardiomyopathy (CCC) experience cardiac inflammation and fibrosis leading
to heart failure, conduction abnormalities, or sudden death. Several studies have demonstrated that CCC from
chronic T. cruzi infection in the heart can be controlled by therapeutic vaccines in animal models, but so far,
no vaccine has entered human clinical trials**?. Using computational techniques, we not only identified vac-
cine targets against T. cruzi but also designed a putative multi-epitope vaccine along with an in-silico model of
immune stimulation that predicts responses associated with protective immunity.

Methodology

The Vax-ELAN pipeline (https://vac.kamalrawal.in/vaxelan/) was developed using computational tools to screen
the pathogen proteomes. Vax-ELAN evaluates and shortlists proteins that show the relevant characteristics
(features) to qualify them as potential vaccine candidates (Supplementary Fig. 1, Fig. 1).

Features and thresholds. The features used in Vax-ELAN include subcellular localization, secretory/
non-secretory protein®, stability?®, cleavage sites?’, adhesion property®®, CTL epitope prediction, MHC class-I
binding®!, transmembrane helix prediction®?, essentiality*, virulence**, molecular weight*®, non-homology with
host proteins, etc.

In Supplementary Table 1, we summarize various research studies to provide the rationale for the selection
of particular features and thresholds. For example, Pizza et al. reported that the main cause of failed cloning and
expression of 250 out of 600 vaccine candidates from Neisseria meningitidis B was due to the presence of more
than one transmembrane spanning region (TM)®. Thus, we decided to have no more than two predicted TMs
as an a priori requirement. Further, to avoid autoimmunity, the vaccine targets should not be similar to human
proteins, therefore BLASTp was utilized to filter those proteins having >30% identity with human proteins
[E-value <0.005].

Because the immune system readily recognizes surface-exposed proteins on the pathogen, predicting the
subcellular localization of the proteins serves as one of the major criteria for designing a vaccine candidate.
Therefore, we used tools such as PSORTb2.0, WoLF PSORT, TargetP and CELLO*** to identify the localization
of proteins as extracellular, outer membrane, cytoplasmic, periplasmic, and inner membrane.

Tools. To compute these features, we used different bioinformatics and immunoinformatics tools/data-
bases such as TargetP?¢, SignalP?’, ProtParam?, PSORTb*, WoLF PSORT*, TMPred*’, NetMHC*, NetChop?,
BLAST*, Virulence Factor Database [VFdb]** and microbial virulence database [MvirDB]** (Table 1).

Strategies. Vax-ELAN has the provision to scan protein sequences (or proteomes) using multiple strategies
(See Supplementary Fig. 1). For instance, in strategy 1, we used subcellular localization prediction programs to
identify outer membrane and periplasmic proteins. Since, there are no specific algorithms available for protozoa
or parasites, we used tools such as PSORTB (Strategy 1A) as well as WoLF PSORTB (Strategy 1B) for the predic-
tion of subcellular localization (See Supplementary Fig. 1).

Subsequently, we employed various filters to prioritize proteins based on features that are associated with
antigenicity, including adhesion, allergenicity, and non-homology with the host proteome. The filtering strategy
has been reported to find vaccine targets in Shigella sonnei*?, Brucella sp.>* and Helicobacter pylori**.

Pearce et al.>® had reported the induction of protective immunity against Schistosoma mansoni by vaccination
with schistosome paramyosin (Sm97), a nonsurface parasite antigen in a mouse model>. Therefore, we designed
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Figure 1. Methodology for developing a multi-epitope subunit vaccine construct (Draw.io—https://www.diagr

ams.net/-14.6.10).

strategy 2 (without sub-cellular localisation filter) in Vax-ELAN, so that there is minimal risk of filtering impor-

tant (non-surface) antigens.

In another alternative approach based upon inclusion (strategy 4), we use all possible tools (without elimina-
tion/filtering) to perform a comprehensive evaluation of a given protein sequence.

In this approach, we also convert the outputs from different tools (N) into binaries (1/0) using threshold values
(Supplementary Tables 2, 3). Second, a row-wise sum corresponding to all the properties [i.e., S;] was computed.
This is followed by the computation of probability value (P;=S;/N). Higher P, indicates the propensity of a given
protein molecule to possess desirable properties in order to be a good vaccine candidate (Supplementary Table 4).

For instance, trans-sialidases (TS) were found to be among the top-ranking hits (with a comparatively higher
P; value of 0.75). TS have been reported to be important vaccine candidates in numerous preclinical immunologi-
cal studies in TC-CLB (Supplementary Table 5). Likewise, important vaccine targets were reported as top-scoring
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S. no. Features Tool Cut-off References
. . TmPred Monterrubio-Lépez et al. (2015)°
1 ﬁgﬁtceel:s with less number of trans-membrane TMHMM <1 Naz et al. (2019)*
HMMtop Solanki et al. (2018)*
2 Non-homology with human BLAST with human proteome i—;g})ze:lOe =5, identity > 30%, query coverage Pearson et al. (2013)%
3 Stability (instability index value) ProtParam <40 Solanki et al. (2018)*
4 Non-allergen Blastp with AllerBase e-value:10e — 5, identity >30% Pearson et al. (2013)*
5 Adhesion prediction FungalRv >-12 Monterrubio-Lépez et al. (2015)°
_- . — i 1 0, -
6 Essential genes prediction DEG Database i ;8};:6'106 5, identity >30%, query coverage Solanki et al. (2018)*
7 Virulence factor Blastp with VFDB e-value:10e - 5, identity >30% Solanki et al. (2018)*
8 Molecular weight ProtParam <110 kDa Naz et al. (2019)*
9 Secretory/non-secretory protein Signalp (dvalue) 0.5 Liebenberg et al. (2012)*
. RTYEE - o
10 Non-bacterial pathogen/BLAST with gut flora Blastp with GutfloraDB i;g};;e.me 5, identity >30%, query coverage Naz et al. (2019)*
11 Sub-cellular localization Targetp >0.8 Goodswen et al. (2014)*
12 MHC Class-1 binding (number of high binders) | NetMHC >4.9 Schroeder and Aebischer (2011)*
13 MHC Class-1 binding (number of weak binders) | NetMHC >5.05 Schroeder and Aebischer (2011)*
14 Number of cleavage sites NetChop =110 Dhanda et al. (2017)*
15 Number of peptides NetMHC <500 Schroeder and Aebischer (2011)*
16 Number of amino acids NetChop <500 Dhanda et al. (2017)*
Cytotoxic T lymphocytes (CTL epitope predic- . 45
17 tion) (number of MHC ligands) NetCTL <75 Solanki et al. (2018)
18 Antigenicity Vaxijen >0.4 Monterrubio-Lépez et al. (2015)°
19 Subcellular localization Psortb >9.5 Muruato et al. (2017)%°
20 MHC Class-1 binding prediction IEDB (HLA02*01) >50 nM Schroeder and Aebischer (2011)*
Cell wall Naz et al. (2019)*
21 Subcellular localization Psortb Extracellular Muruato et al. (2017)°
Solanki et al. (2018)*
22 Subcellular localization Psortb Outer membrane, extracellular and periplasmic | Naz et al. (2019)*
23 Subcellular localization Wolf Psort Extracellular or plasma membrane Watanabe et al. (2021)°!

Table 1. Tools used for extraction of features along with their cut-off values.

hits from other pathogens as well. For example, ferric enterobactin receptor protein (S;=9; P; 0.75) [present in
N. gonorrhoeae] was shortlisted as a vaccine target®® (Supplementary File 1).

In the next section, we describe the approach for building a machine learning-based tool using components
of the Vax-ELAN framework.

Optimisation of thresholds. Though threshold values (listed in Table 1) are supported by literature evi-
dence there is no guarantee of optimality when they are used in machine learning systems. Therefore, we decided
to optimise these cut-offs using a quantitative approach. For this reason, we collected protein sequences (anti-
genic) with experimental evidence from different organisms and labelled them as examples of a positive data-
set (see, VaxiDL supplementary). Similarly, another dataset consisting of non-immunogenic proteins (negative
dataset) was also compiled. Next, we compared the distributions of each property in the positive and negative
datasets. Subsequently, we harnessed Receiver Operating Curves (ROC) to find thresholds at which positive
and negative examples could be discriminated against (See Supplementary Fig. 2). With the help of optimized
thresholds generated for each property (Supplementary Table 6), we converted the numerical/categorical values
of each property into a binary score (0 or 1).

Machine learning approach. A dataset containing positive and negative protein sequences (PVCs) was
compiled using text data mining and manual curation. A total of 11 biological and 1436 physicochemical fea-
tures were computed for the dataset using several bioinformatics tools. Further, this dataset was subdivided
into training, testing, and validation datasets, followed by scaling and normalization of data. Next, a DL model
with Fully Connected Layers (FCLs) was constructed, hyper-tuned and trained. The Vaxi-DL model was bench-
marked against known PVC prediction tools such as VaxiJen and Vaxign-ML. The preliminary results have
shown that the Vaxi-DL model surpassed other PVC-prediction servers in terms of accuracy and efficiency
(See, https://vac.kamalrawal.in/vaxidl/). Areas under the receiver operating characteristics curves (AUC) were
primarily used to assess the algorithm. On an independent dataset, the algorithm achieved an AUC of 0.90 (95%
CI 0.91-0.93) for detecting potential vaccine candidates (Manuscript in Preparation).

Screening of proteomes of pathogens to shortlist vaccine candidates. Using Vax-ELAN (strat-
egy 4), we screened proteomes of 21 pathogens [seven bacterial, four fungal, five protozoan, and five viral pro-
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Figure 2. Frequency distribution of P; values based on the results from positive and negative datasets of
bacteria, protozoa, fungi, and viruses. The Y-axis represents sequence count. The X-axis represents the *P; score
values for each sequence. Blue depicts non-antigen and red antigen sequences. *P; stands for probability value
where P;=S;/N (where, S; refers to the row-wise sum values and N refers to the total number of the tools).

teomes] to shortlist and rank proteins as potential vaccine targets (Supplementary Table 7). We found that the
highest scoring results were enriched in vaccine targets (with experimental evidence reported in the literature)
(Supplementary File 1). To illustrate, GPI anchored protein was predicted as one of the top vaccine targets (P;
score 0.75) while screening the Aspergillus fumigatus proteome®’. VAX-Elan also predicted Glycerol-3-phos-
phate acyltransferase (GPAT3) (having P; score 0.71) in M. pneumoniae®®. In addition, Histone 2B* was short-
listed as one of the vaccine targets (P;=0.67) in Plasmodium vivax, and CyRPA® (P;=0.67) was shortlisted as one
of the candidates in Plasmodium falciparum. Cysteine protease® (P;=0.67), 24-c-methyltransferase®® (P;=0.58)
and iron superoxide dismutase®® (P;=0.58) in Leishmania donovani were found as potential vaccine targets.

Evaluation of experimentally known antigenic and non-antigenic proteins. Protective antigens
are proteins that can evoke an adaptive immune response against infectious and non-infectious diseases®’. To
begin with, we collected four datasets of protective antigens belonging to bacteria, protozoa, fungi, and viruses.
Each set is composed of antigenic and non-antigenic sequences collected from previously reported resources
such as Protegen®. For example, we collected 1237 bacterial antigen sequences as a positive dataset (Supplemen-
tary File 2). To create a negative/control dataset, we randomly selected those proteins (from the same species)
which had less than 10% sequence similarity with sequences belonging to the positive dataset. We also removed
redundancies in each dataset by filtering protein sequences that had sequence similarities of more than 30%.
Thus, the filtered positive dataset had 670 unique bacterial antigens whereas 677 sequences were obtained for
the negative dataset®. Similarly, we created independent datasets for protozoan, fungal, and viral pathogens
(Supplementary Table 8). Subsequently, we applied the Vax-ELAN tool on sequences of positive and negative
datasets (Supplementary Fig. 3a-d, Fig. 2). We found that known antigens had comparatively higher P; values
when compared to non-antigens (Mann-Whitney U test, p-value <0.005).

Application of Vax-ELAN on T. cruzi. Retrieval of genome and proteome sequences for vaccine design-
ing. We applied Vax-ELAN on two different strains of T. cruzi, CL Brenner and Y. The whole-genome se-
quences of T. cruzi (strains CL Brenner and Y) were obtained from NCBI (Accession ID: NZ_AAHK00000000
and Accession ID: NMZ000000000) along with protein sequences in FASTA format. The results of TC-CLB
are shown in the subsequent sections of the manuscript whereas the results of Y strain are shown in the Sup-
plementary File 5.

Vax-ELAN pipeline for prediction of vaccine candidates.  T. cruzi protein sequences were screened based on sev-
eral parameters such as cellular localization?, transmembrane helices?, instability index value?, allergenicity®’,
antigenicity®, the probability of having adhesion-like characteristics®, and non-homology with human proteins.
Additionally, the T. cruzi proteins were also screened against the Database of Essential Genes [DEG]%, using the
BLAST tool [bit score of 100, cut-off (E-value) of 1E—5, and BLOSUM 62 matrix]. Further, virulent proteins
were extracted using the Virulence Factor Database [VFdb]* and microbial virulence database [MvirDB]*.
Ideally, the vaccine targets should not be similar to the human proteins, therefore BLASTp was utilized to filter
those T. cruzi proteins having > 35% identity with human proteins [E-value <0.005] (See Supplementary Table 9,
Supplementary Fig. 4).

Alternate strategies adopted for protein filtering. ~ Apart from the methods mentioned in the previous section, we
also used alternate strategies to identify potential vaccine targets from T. cruzi CL Brenner (TC-CLB). For exam-
ple, in one of the experiments on proteome screening, we filtered TC-CLB proteins using a set of bioinformatics
tools. First, we used the PSORTDb tool, to check subcellular localization, followed by the BLASTp tool to evaluate
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Trypanosoma cruzi (different strains) | Trypanosoma species with its strain

Trypanosoma cruzi Berenice Trypanosoma brucei brucei (927/4 GUTat10.1)
Trypanosoma cruzi BrazilcloneA4 Trypanosoma brucei equiperdum(IVM-t1)

Trypanosoma cruzi Dm28c Dm28c Trypanosoma brucei gambiense (MHOM/CI/86/DAL972)
Trypanosoma cruzi G Trypanosoma congolense (strain IL3000)

Trypanosoma cruzi Sylvio_Xl 0_1

Trypanosoma cruzi Marinkellei B7

Trypanosoma cruzi YcloneCé

Trypanosoma cruzi CL

Trypanosoma cruzi CL Brenner

Trypanosoma cruzi CruziDm28c

Trypanosoma cruzi Dm28c

Trypanosoma cruzi TCC

Trypanosoma cruzi Y

Table 2. Different strains and species of Trypanosoma used for the identification of key vaccine candidates.

non-homology with human proteins. Subsequently, we used ProtParam to compute the stability of proteins,
succeeded by a BLASTp search against the allergen database to filter non-allergen proteins. Furthermore, we
used the VaxiJen2.0 server® to check the antigenicity of the filtered set of proteins and then used FungalRV*’ to
predict adhesion molecule-like properties. This strategy generated a set of potential vaccine candidates. As an
alternative strategy (1B), we used the WoLF PSORT tool for screening in the first step instead of PSORTb. Addi-
tionally, we repeated this analysis after the randomizing order of the application of filters (See Supplementary
File-A).

Conversion of proteins’ feature/property values into binary values. A row-wise sum corresponding to all the
properties [i.e., total score] was computed for TC-CLB. Thereafter, all the proteins of TC-CLB were ranked
according to the total score (S; or P;). Finally, the top 100 unique proteins were selected for further analysis [See,
Supplementary File-A (Strategy-4)].

Strategy—ORF-based screening of TC-CLB.  To perform comprehensive screening for all possible vaccine can-
didates, we downloaded the T. cruzi CL Brenner and TC-Y genomes from NCBI to find out all possible ORFs.
We used Prodigal®® to predict 121,349 in the genome. Next, the predicted ORFs were subjected to evaluation
with tools such as WoLF PSORT/PSORTB, BLAST, ProtParam, Vaxijen, and Fungal RV to filter proteins.

Comparison of different strategies to find top ranking proteins. We collected the top-ranking hits from different
strategies and used python-based programs to find common and unique proteins (See, Supplementary File-B).
Shortlisted proteins reported from multiple strategies were used in subsequent steps such as epitope prediction
and vaccine construction.

Interspecies and inter-strain comparison of trypanosoma. We retrieved proteomes from thirteen strains of
T. cruzi (See Table 2) and four related species of Trypanosoma (See Supplementary File 3). Subsequently, we
applied the Vax-ELAN server to obtain top-ranking hits using strategy 4.

Design of multi-antigenic and multi-epitope vaccines against TC-CLB. Identification of
epitopes. Numerous studies have suggested that epitope-based antigens can induce protective immunity
against different infectious agents®~’!. Various methods have been described in the literature to determine the
B and T-cell epitopes which include; functional assays wherein the antigen is sometimes mutated and antibody-
antigen interaction is evaluated, 3D structure analysis of antigen-antibody complexes or screening the peptide
library of antibody binding, utilization of MHC multimers, and lymphoproliferation by ELISPOT assays’. Apart
from these time-consuming and expensive experimental techniques, scores of computational methods have also
been developed in the past few years. In the subsequent section, we shall describe different approaches for the
prediction of B-cell, MHC-I, and MHC-II epitopes in potential vaccine candidates.

Selection of linear B-cell epitopes.  Linear B-cell epitopes are effective antigenic peptide sequences for stimulat-
ing B-cell immune responses. There are different methods for B-cell epitope predictions which can be classi-
fied into sequence-based and machine learning-based methods. We used multiple tools for predictions which
include BCEPRED”?, ABCPred’, and BepiPred” servers (See, Supplementary File-C). We selected the top-scor-
ing epitopes simultaneously predicted by different servers for the final vaccine peptide. Besides, we also used
VaxiJen 2.0 along with the IEDB server conservancy analysis to rank and shortlist epitopes. To illustrate, only
those epitopes which had shown 100% conservation were selected (Fig. 3).
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Figure 3. Workflow for the selection of B-cell epitope sequences (Draw.io—https://www.diagrams.net/-14.6.
10).

T-cell epitope prediction. The objective of T-cell epitope prediction is to identify short peptide sequence within
an antigen that can act as a stimulant of CD4* or CD8* T-cells. There are several methods available to pre-
dict MHC binding peptides which can be divided into data-driven approaches or structure-based methods.
Structure-based methods are not used commonly because of their poor accuracy and requirement of intensive
computational infrastructure. Data-driven methods are based on peptides [i.e., anchor residues, PSSM] known
to bind with MHC molecules which are stored in databases such as IEDB, EPIMHC’%, and AntiJen””. Further,
there are machine learning-based methods that have been trained on data sets consisting of peptides that either
bind or do not bind to MHC molecules. The presence of hundreds of allelic variants of human leukocyte antigens
[HLAs] encoding MHCs presents another set of challenges for epitope prediction’®. We used different methods
such as NetCTL”, Propred®, EpiJen’® and NetMHC?®! tools. Different tools for predictions were used during the
study but for brevity, we shall describe results from one of the best-known tools (i.e., NetCTL) in subsequent
sections.

Selection of cytotoxic T lymphocytes [CTL] epitopes. NetCTL1.2 server has demonstrated comparatively high-
level accuracy for CTL epitope predictions therefore a docker image of this tool was created for its execution on
local systems (See, Supplementary File-D). It predicts the MHC-class I binding peptide sequences, with protea-
some C-terminal cleavage and transporter associated with TAP efficiency (Transporter associated with Antigen
Processing). Using this server, the CTL epitopes were predicted based on default parameters and cut-offs [MHC
supertype Al, the threshold as 0.75, and weight on C-terminal cleavage as 0.15, and weight on TAP transport
efficiency as 0.05]. Further, these epitopes were subjected to antigenic propensity analysis using the VaxiJen 2.0
and immunogenicity analysis (by IEDB class-1 Immunogenicity servers). The epitopes showing poor scores, or
overlaps were discarded (Fig. 4).

Selection of helper T cells [HTL] epitopes. Prediction of HTL epitopes was performed using the IEDB-MHC-II
binding tool (http://tools.iedb.org/mhcii/). This tool utilizes different methods to predict the epitopes, includ-
ing a consensus method combining NN-align, SMM-align, and other combinatorial approaches. Epitopes
obtained through the MHC-II Binding server were subjected to allergenicity prediction using the AlgPred® and
AllerTop® servers. Next, using the VaxiJen 2.0 server, non-allergenic epitopes were tested for their antigenic pro-
pensity. To predict the toxicity status of epitopes, the antigenic epitopes were subjected to the ToxinPred server®.
Finally, by employing the IFNepitope server'®, IFN gamma induction analysis was performed on the non-toxic
epitopes. Epitopes that possess the potential to induce the release of IFN gamma were selected as potential
epitope candidates for vaccine construction (Fig. 5) (See, Supplementary File-E).

The assemblage of multi-epitope vaccine candidate sequence. Three potential vaccine candidates were con-
structed from top-ranking B-Cell, CTL, and HTL epitopes predicted using various bioinformatics tools. Immu-
nogenicity of the constructs was enhanced by adding adjuvants such as B-defensin [Accession ID: AGV15514.1],
L7/L12 50s ribosomal protein [Accession ID: WP_088359560.1, Flavobacteria JJC], and HABA protein [Acces-
sion ID: AGV15514.1; Mycobacterium. tuberculosis]. The adjuvant was attached to the first top CTL epitope
[Protein ID: XP_804513.1] using an EAAAK linker. The other top CTL epitopes, belonging to the eight proteins
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Figure 5. Workflow for selecting Helper-T-lymphocyte epitope sequences (Draw.io—https://www.diagrams.
net/-14.6.10).

filtered using the RV pipeline, were joined with each other through the GGGS linker. Next, the AAY linker was
used to connect the CTL epitope to the HTL epitope sequence as well as all the HTL epitopes with each other.
The KK linker was used to bridge the HTL epitope to the BCL epitopes as well as the BCL epitopes with each
other. Finally, an EAAAK linker was added at the end to improve the stability of the constructs.

Evaluation of antigenicity and allergenicity of vaccine construct. 'The antigenic propensity prediction for the vac-
cine construct was performed through VaxiJen 2.0 and ANTIGENpro (http://scratch.proteomics.ics.uci.edu/)
servers. The VaxiJen tool is based on the principle of auto cross-covariance [ACC] transformation of protein
sequences into vectors using the physicochemical properties of amino acids.

The AlgPred and AllerTOP (http://www.ddg-pharmfac.net/AllerTOP) servers were used to predict the
allergenicity of vaccine constructs. AlgPred is a web-based tool for predictions of allergens that combines
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bioinformatics and machine learning approaches such as IgE epitope scanning, MEME/ MAST motif-based
search, amino acid composition, or dipeptide composition-based SVM methods, hybrid method, and BLAST
on ARPs. The authors have reported an accuracy of 93.5% for their tool. On the other hand, AllerTOP v2.0 is
based on auto and cross-variance transformation, amino acid E-descriptors, and machine learning methods
such as k-nearest neighbours [KNN], algorithm. AllerTOP v2.0 was reported with 85.3% accuracy at fivefold
cross-validation.

Analysis of solubility and physicochemical properties.  To evaluate the solubility of the designed vaccine sequence,
Protein-Sol® [https://protein-sol.manchester.ac.uk/] server was used. Furthermore, it was assessed for several
physicochemical parameters by using the ProtParam server. The properties evaluated include molecular weight,
theoretical isoelectric point [pI], half-life, instability index [II], aliphatic index, and hydropathicity or GRAVY
value.

Prediction of the secondary structure of the construct. PSIPRED®® and CFSSP*” tools were employed for second-
ary structure analysis. The consensus of both tools was taken into consideration. PSIPRED 3.2 is a freely acces-
sible online server that utilizes a position-specific iterated BLAST for the identification and selection of specific
sequences that show significant similarity with the designed vaccine construct. Further, it is reported to show a
Q3 score of 81.6% and is available at http://bioinf.cs.ucl.ac.uk/psipred/.

CFSSP (Chou and Fasman Secondary Structure Prediction Server) is an online protein secondary structure
prediction server. This server predicts regions of the secondary structure of the protein sequence such as alpha-
helix, beta-sheet, and turns from the amino acid sequence in a linear sequential graphical view. CFSSP imple-
ments the Chou-Fasman algorithm, which is based on an analysis of the relative frequencies of each amino acid
in alpha helices, beta sheets, and turns based on the known protein structures solved by X-ray crystallography.

Tertiary structure assessment of the vaccine construct. For homology modelling, the final multi-epitope vaccine
construct was subjected to the Iterative Threading ASSEmbly Refinement (I-TASSER)® server (https://zhanglab.
ccmb.med.umich.edu/I-TASSER/). It is used for generating automated protein structures and performing pre-
dictions. It is reported to design a 3D atomic model by utilizing the multiple threading alignments and iterative
structural assembly simulations of the submitted amino acid sequence.

Refinement of the tertiary structure. Using the I-TASSER server, a three-dimensional model of the chimeric
protein was obtained. Next, we refined the 3D model using two-step refinement process consisting of 3Drefine®
(http://sysbio.rnet.missouri.edu/3Drefine/) and GalaxyRefine”® (http://galaxy.seoklab.org/cgi-bin/submit.cgi?
type=REFINE) online protein structure refinement servers. The 3Drefine refinement protocol utilizes iterative
optimization of hydrogen bonding network combined with atomic-level energy minimization on the optimized
model using a composite physics and knowledge-based force field for efficient protein structure refinement.
Whereas GalaxyRefine rebuilds side chains and performs side-chain repacking and subsequent overall structure
relaxation by molecular dynamics simulation.

Validation of the model stability. ~Validation is essential for the evaluation of stability and to find inherent errors
that might be present in the predicted 3D protein models. For validation of the 3D model, the ProSA-web server
(https://prosa.services.came.sbg.ac.at/prosa.php) was used to calculate the overall quality score in context with
all the known protein structures. For generating the Ramachandran plot, MolProbity and RAMPAGE servers
were used. MolProbity (http://molprobity.biochem.duke.edu/) is an all-atom structure validation online server
that offers Ramachandran analysis. Ramachandran plots are used to visualize the energetically allowed and dis-
allowed dihedral angles, psi [y], and phi [¢], of amino acids. RAMPAGE (http://mordred.bioc.cam.ac.uk/~rap-
per/rampage.php) is another freely accessible server that integrates the PROCHECK®! principle for validation
of the protein model by applying a Ramachandran plot and segregating the Glycine and Proline residues plot.

Prediction of discontinuous B-cell epitopes for the vaccine construct. Antibodies must interact with antigen
epitopes to remove the infectious agent. Therefore, the prediction of conformational epitopes such as discontinu-
ous B-cell epitopes is important. It has been found that discontinuous B-cell epitopes comprise residues remotely
located in the primary structure that are brought into proximity due to the folding of the protein and 90% of
B-cell epitopes are discontinuous®. There are several tools for discontinuous B-cell epitopes prediction such as
BEPro®, Ellipro®*, and Epitopia®. Ellipro is based on the notion that residues that protrude from the protein
surface are more accessible for antibody binding and that these protruding residues can be identified by treating
the protein as an ellipsoid. Therefore, we employed ElliPro (http://tools.iedb.org/ellipro/) for discontinuous B
cell epitope predictions.

Molecular docking of the vaccine construct with TLR-4 and several HLA alleles. Molecular docking is an impor-
tant tool for studying interactions amongst biological molecules. We employed molecular docking tools to
find out the effect of vaccine construct with TLR-4 and HLA alleles. Since the majority of adjuvants originate
from microbial components known as PAMPs [pathogen-associated molecular patterns], the immune system
responds to these PAMPs by using Toll-like receptors [TLRs]*.

For docking assessment, the 3D structures of different MHC molecules and human TLR-4 [PDB ID: 4G8A]
were retrieved from RCSB PDB. It is observed that specific varieties of Human Leukocyte Antigen [HLA] alleles
are predominant in the South and Central American region. Therefore, we focused on these specific classes of
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HLA in interaction studies. Molecular interactions between various HLA molecules namely HLA-A, HLA-B7
[3VCL], HLA-DRB1*01:01 [2fse], HLA-DRB1%03:01 [1a6a], HLA-DRB5*01:01 [1h15] and the designed vac-
cine construct was performed. Various online tools for protein-protein docking were employed to calculate the
binding affinity of designing a vaccine construct with different HLA alleles and TLR-4 immune receptors. The
tools include ClusPro 2.0%7, HDOCK?®, and PatchDock®. PatchDock generated numerous possible solutions
that were further subjected to the refinement of the complexes using FireDock'®.

Codon optimization of the chimeric protein. Java Codon Adaptation Tool or JCat server'®! [http://www.jcat.

de] was employed for codon optimization of the predicted vaccine construct. It involves the reverse transcrip-
tion of the chimeric protein sequence to the nearest obtainable DNA sequence, which should contain specific
genes responsible for encoding the target vaccine construct. This reverse-transcribed DNA sequence [RT-DNA]
obtained is incorporated into the multiple cloning site of the pET-28a [+] vector using the SnapGene tool'** fol-
lowing our previous strategy. This was done to adapt the DNA sequence in the model organism [E. coli strain
K12] so that this RT-DNA undergoes cellular adaptations within the model organism and the codons of RT-
DNA are utilized by the model organism to produce the desired vaccine construct. This is a crucial step in vac-
cine construction, due to the effect of the degeneracy of codons, which can vary from one organism to another,
including the cellular mechanisms that exist. To circumvent issues of glycosylation in the bacterial system, we
also performed codon optimization using the yeast model (Supplementary File Y_F in Supplementary File 5).

Characterization of the immune profile of the vaccine construct. The simulation of the actual response of an
immune system to our final vaccine construct was obtained using the C-ImmSim immune simulator [http://
150.146.2.1/C-IMMSIM/index.php]. The tool was run with default parameters with three-time steps [1, 42, and
84] and without Lipopolysaccharide [LPS]. It works on Position-Specific Scoring Framework [PSSM] to simulate
and predict immune interactions along with immunogenic epitopes.

Evaluation of genetic diversity. In order to develop a broad-spectrum T. cruzi vaccine, the prioritized proteins
were scrutinized for their genetic diversity among fully annotated proteomes of 13 T. cruzi strains and different
species (Supplementary Table 10). Protein sequences from these strains which are positive for that particular
protein, were downloaded from NCBI RefSeq'® and aligned to predict conserved regions using CLC Main
Workbench 21.0.2 (QIAGEN). Evolutionary distances (p-distances) among variant sites were also calculated for
prioritized proteins using Mega 6.0'%. The predicted epitopes were also checked for their sequence divergence
among different strains and species of Trypanosoma. Each predicted epitope was further checked for antigenic-
ity using VaxiJen (threshold value=0.4)>*. In addition, we also mapped epitopes to genomic sequences. For this
purpose, we first reverse translated the epitope sequences and thereafter used pairwise alignment tools for map-
ping. We also checked the conservancy of epitopes through IEDB conservancy analysis tool'®.

Results

Defining a potential vaccine candidate (PVC). A Potential Vaccine Candidate (PVC) could be defined
as the protein or corresponding DNA/RNA sequence that possesses properties of an “ideal vaccine” such as non-
homology with the host (i.e., human) proteins to avoid the generation of a potential autoimmune response'®,
the lack of transmembrane regions to facilitate expression, antigenicity, adhesion-like properties, immunogenic-
ity, a molecular weight of <110 kDa, non-homology with the gut flora proteome, surface-exposure/secretion,
and the presence of anchoring and/or secretion signals. Based on sequence similarity, proteins relevant to micro-
bial pathogenesis would also be highly ranked. For our model, we label these desirable properties P; [i=1, 2,
3....n] (Supplementary Table 9).

Selection, ranking, and filtering of PVCs. To understand the distribution of properties in the T. cruzi
CL-Brenner (TC-CLB) proteome, we used python-based scripts to characterize the whole proteome using vari-
ous bioinformatics tools. During the analysis, we found that 91.46% of all proteins [i.e., 19,602] have a molecular
weight <110 kDa, 13.20% of proteins are secretory and 7.12% are extracellular. Also, 84.80% of the proteome
is dissimilar to human proteins. Likewise, we observed similar trends in proteomes of four related species and
thirteen different strains of Trypanosoma (Table 2). In addition, we computed distributions of properties in other
pathogens for comparative purposes (Supplementary Tables 11a-11c).

Identification of subcellular location of the proteins. Using the PSORTD tool (Strategy 1A), we
screened 19,602 proteins of the reference proteome of TC-CLB [Accession ID: NZ_AAHK00000000] and found
that 1846 proteins were predicted to be localized in the periplasm, extracellular matrix, and outer membrane
of the cell. Next, we used the PSORTD score (threshold set to 9.5) as an additional filter to shortlist 653 pro-
teins. Alternatively, WoLF-PSORT (Strategy 1B) predicted 7274 proteins, localized in the plasma membrane
and extracellular matrix. Despite using two different approaches (1A and 1B), we observed that most of the
proteins (i.e., mucin TcMUCII, Mucin Associated Surface Protein (MASP), trans-sialidase, hypothetical protein,
dispersed gene family (DGF-1) and subtilisin-like peptidase) were present in the top-ranking filtered list of both
the approaches.

Identification of TC-CLB proteins that are non-homologous to human proteins. To prevent
undesired cross-reactivity of vaccines with the human host, the proposed vaccine candidate must be different
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Top proteins (unique) after filtration VaxiJen score
XP_813527.1 (DGF-1) 0.61
XP_809835.1 (substilin-like serine peptidase) | 0.65
XP_806816.1 (DNAJ Chaperone protein) 0.51
XP_809166.1 (MASP) 1.41
XP_816522.1 (Mucin TcMUCII) 1.16
XP_818708.1(Trans-sialidase) 0.80
XP_815016.1 (Surface Protein) 0.85
XP_821916.1 (hypothetical protein) 0.76

Table 3. Ranking of unique proteins with the highest antigenic score. Here the hypothetical protein has
displayed similarity with regulator sigma E protease during the Blast search.

from human proteins. Therefore, we used BLASTp to identify the 572 such non-homologous proteins out of the
653 proteins identified through PSORTb.

Instability analysis. Protein stability is of crucial importance for the efficient presentation of antigenic pep-
tides on MHC, which plays a decisive role in triggering strong immune reactions. Using ProtParam, the protein
instability index was determined and proteins having an Instability Index (II) less than 40 were selected. This led
to shortlisting of 138 proteins (out of 572) that were predicted to be stable.

Non-allergenicity analysis. To find out non-allergenic proteins in our list, we performed a BLASTp
search against the Allergen Online database and found 137 proteins to be non-allergenic.

Evaluation of antigenicity. To determine the antigenicity of the shortlisted proteins for vaccine construc-
tion, VaxiJen 2.0 was employed. Proteins having antigenicity greater than 0.5 were selected for subsequent analy-
sis. We identified 122 antigenic proteins out of 137 proteins using this tool.

Adhesion prediction. Next, we performed adhesion prediction using FungalRV with a threshold value
of greater or equal to —1.2. Several studies have shown that adhesins are vital in initiating pathogen-based
infections'?”. Therefore, it seemed practical to target these proteins for vaccine development. A total of 100 pro-
teins (out of 122) were predicted to possess desired properties similar to adhesin proteins. We used these top 100
proteins for subsequent analysis as a filtered list. It was also found that several hits belonging to the same gene/
protein family such as trans-sialidases, and mucin-associated surface protein were present in the top 100 list.
In VAX-Elan, we have also included an option to filter (or include) multi-copy genes/proteins for subsequent
analysis'®®.

Shortlisted potential vaccine candidates (PVCs). The top 100 shortlisted proteins were analysed fur-
ther to evaluate the presence of additional criteria (TM a-helices, signal peptides, essentiality, and virulence) to
narrow down the best eight proteins as PVCs. These include Dispersed gene family [XP_813527.1], subtilisin-
like serine peptidase [XP_809835.1], DNA]J Chaperone protein [XP_806816.1], Mucin-associated Surface Pro-
tein [MASP] [XP_809166.1], Mucin TcMUCII [XP_816522.1], Trans-sialidase [XP_818708.1], 90 kDa surface
protein [XP_815016.1] and a hypothetical protein [XP_821916.1], each belonging to different protein families
(Table 3). We also used alternative strategies (see “Methods”) which also reported these PVCs in their top-
ranking lists. Next, we independently checked these proteins as PVCs from scientific literature using text mining
and manual curation approaches (Supplementary Table 12).

Epitope predictions. Linear B-cell epitopes identification. We identified a total of 1173 linear B cell
epitopes in 8 PVCs using different prediction servers (ABCPred, BCEPRED & Bepipred). The maximum num-
ber of epitopes [510 epitopes] were found in Dispersed Gene Family protein [XP_813527.1] whereas the mini-
mum number of epitopes [34 epitopes] were identified for Hypothetical Protein [XP_821916.1]. We ranked the
epitopes based upon antigenicity value generated by the VaxiJen 2.0 tool (threshold: 0.5; target organism used as
‘Parasite’). Further, we found that approximately 295 epitopes were predicted by multiple servers. In Table 4, we
show the highest-ranked epitope found in each protein, shortlisted for further analysis.

T-cell epitopes [CTL] prediction. First, we identified 16,385 CTL epitopes in the eight shortlisted proteins.
Second, we found 221 epitopes (out of 16,385) that were predicted by four different prediction tools namely
NETMHC, EpiJen, Propredl, and NetCTL. Third, we selected eight high-scoring epitopes for subsequent work
(Table 5).

Helper T lymphocytes [HTL] prediction. With the IEDB MHC-II prediction tool, HTL cell epitopes were pre-
dicted with the highest binding corresponding to the alleles from the human 7-allele reference set i.e., HLA-DRB
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S.no. | Protein ID Top BCL epitopes VaxiJen score
1 XP_813527.1 | GSCGCRC 3.51
2 XP_809835.1 | PLLLFVFF 3.06
3 XP_806816.1 | VHINLKQ 1.49
4 XP_809166.1 | TSPLFPLLLVVAC 1.23
5 XP_816522.1 | MTCRLLCALLVLALCCCPSVCVT | 0.77
6 XP_818708.1 | SLWSVRL 1.61
7 XP_815016.1 | DVPPSSLP 0.89
8 XP_821916.1 | EKPQCLLLSSGILVDVLMR 1.15

Table 4. Predicted linear B-cell epitopes in the selected proteins for designing vaccine constructs.

S.no. | Protein ID Top CTL epitopes | VaxiJen score
1 XP_813527.1 (DGF-1) DAALLGGDY 2.09
2 XP_809835.1 (subtilisin-like serine peptidase) | GVDFDSCFF 1.84
3 XP_806816.1 (DNAJ Chaperone protein) KTGRNGDMY 1.81
4 XP_809166.1 (MASP) STDDHATGS 1.75
5 XP_816522.1 (Mucin TcMUCII) GTDGVTGTT 1.48
6 XP_818708.1 (Trans-sialidase) SSDADPTVV 1.03
7 XP_815016.1 (Surface Protein) LLVLAALTY 0.94
8 XP_821916.1 (hypothetical protein) YTCGTSCAV 0.75

Table 5. Predicted linear cytotoxic T-lymphocyte epitopes in the selected proteins for designing vaccine
constructs.

S.no. | Protein ID Top HTL epitopes VaxiJen score
1 XP_813527.1 (DGF-1) GSFVMDGTVALGGAG | 1.75

2 XP_809835.1 (subtilisin-like serine peptidase) | KAPRGRIIRLQYLRF 1.68

3 XP_806816.1 (DNAJ Chaperone protein) TGVSKNGRQLRVSGK 1.79

4 XP_809166.1 (MASP) ASGVLGENGSHMPDG | 1.45

5 XP_816522.1 (Mucin TcMUCII) STSGSAEPTKKVQEQ 1.23

6 XP_818708.1 (Trans-sialidase) MLVGKYSRNAAAGAR | 1.1

7 XP_815016.1 (Surface Protein) LKSWWQRNVETKAVT | 1.32

8 XP_821916.1 (hypothetical protein) SGILVDVLMRTSAHR 1.01

Table 6. Predicted helper T-lymphocyte epitopes in the selected proteins for designing vaccine constructs.

alleles. Based on the percentile rank as well as IC50 value [< 50 nM], 41 epitopes were selected for further analy-
sis. Out of those, a total of 8 HTL epitopes were chosen for the vaccine construct (Table 6).

The assemblage of multi-epitope subunit vaccine construct. The vaccine (V1) was constructed from high-scoring
CTLs, B-cell epitopes, and HTL epitopes. To enhance its immunogenicity, a Beta-defensin adjuvant [Accession
ID: AGV15514.1] was obtained from NCBI and incorporated into V1 (Fig. 6).

Evaluation of antigenicity and allergenicity of the vaccine constructs. The predicted vaccine constructs were
labelled as non-allergenic as predicted by AlgPred and AllerTop tools. The antigenicity value of the vaccine con-
structs was observed highest for V1 (1.06) as evaluated by Vaxijen 2.0 (Table 7).

Analysis of solubility and physicochemical properties. Using ProtParam, the theoretical molecular weight of the
vaccine construct V1 was found to be 42.3 kDa constructed with Beta-defensin as an adjuvant (406 amino acids)
whereas the theoretical isoelectric point [pI] of the protein was found to be 9.70 which suggest that the vaccine
construct is highly charged. The instability index [II] was estimated to be 30.95, indicating that the vaccine
construct is stable (II <40 indicates stability). V1 was predicted to be thermostable (Aliphatic index—78.37). V1
was also found to be hydrophilic (the predicted hydropathicity or GRAVY came out to be —0.062). The presence
of negative value scores suggests hydrophilic epitopes that are likely to be present in the outer surface and have
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Figure 6. Multi-epitope vaccine constructs for Chagas disease. The vaccine construct consists of 24 epitope
sequences, belonging to CTL, HTL and BCL epitopes of 8 T. cruzi proteins. Beta-defensin (Light purple) was
used as the adjuvant and is linked to the top CTL epitope (light pink) using an EAAAK (maroon) linker. The
other CTL epitopes were linked to each other using GGGS (violet) linkers. The last CTL epitope and the first
HTL epitope (blue), as well as the other HTL epitopes were connected through an AAY (sky blue) linker. The
last HTL epitope and the first BCL epitope (yellow) as well as the other BCL epitopes were connected through
a KK (purple) linker. An EAAAK (maroon) linker was added at the end of the sequence for increasing stability
(Draw.io—https://www.diagrams.net/-14.6.10).

Vaccine | Sequence Antigenic propensity

GIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKKEAAAKDAALLGG-
DYGGGSGVDFDSCFFGGGSKTGRNGDMYGGGSSTDDHATGSGGGSGTDGVTGTTGG
GSSSDADPTVVGGGSLLVLAALTYGGGSYTCGTSCAVAAYGSFVMDGTVALGGAGAA
V1 YKAPRGRIIRLQYLRFAAY TGVSKNGRQLRVSGKAAYASGVLGENGSHMPDGAAYSTSGSAEPT- 1.06
KKVQEQAAYMLVGKYSRNAAAGARAAYLKSWWQRNVETKAVTAAYSGILVDVLMRTSAHRK-
KGSCGCRCKKPLLLFVFFKKVHINLKQKKTSPLFPLLLVVAKKMTCRLLCALLVLALCCCPSVCVT-
KKSLWSVRLKKDVPPSSLPKK EKPQCLLLSSGILVDVLMREAAAK

MSDINKLAETLVNLKIVEVNDLAKILKEKYGLDPSANLAIPSLPKAEILDKSKEKTSFDLILKGAG-
SAKLTVVKRIKDLIGLGLKESKDLVDNVPKHLKKGLSKEEAESLKKQLEEVGAEVELKEAAAK-
DAALLGGDYGGGSGVDFDSCFFGGGSKTGRNGDMYGGGSSTDDHATGSGGGSGTDGVTGT
TGGGSSSDADPTVVGGGSLLVLAALTYGGGSYTCGTSCAVAAYGSFVMDGTVALGGAGAA 083
YKAPRGRIIRLQYLRFAAY TGVSKNGRQLRVSGKAAYASGVLGENGSHMPDGAAYSTSGSAEPTK- | ™
KVQEQAAYMLVGKYSRNAAAGARAAYLKSWWQRNVETKAVTAAYSGILVDVLMRTSAHRKKG-
SCGCRCKKPLLLFVFFKKVHINLKQKKTSPLFPLLLV VAKKMTCRLLCALLVLALCCCPSVCVTKK-
SLWSVRLKKDVPPSSLPKKEKPQCLLLSSGILVDVLMREAAAK

MAENPNIDDLPAPLLAALGAADLALATVNDLIANLRERAEETRAETRTRVEERRARLTK-
FQEDLPEQFIELRDKFTTEELRKAAEGYLEAATNRYNELVERGEAALQRLRSQTAFE-
DASARAEGYVDQAVELTQEALGTVASQTRAVGERAAKLVGIELEAAAKDAALLGG-
DYGGGSGVDFDSCFFGGGSKTGRNGDMYGGGSSTDDHATGSGGGSGTDGVTGTTGG
V3 GSSSDADPTVVGGGSLLVLAALTYGGGSYTCGTSCAVAAYGSFVMDGTVALGGAGAA 0.99
YKAPRGRIIRLQYLRFAAYTGVSKNGRQLRVSGKAAYASGVLGENGSHMPDGAAYSTSGSAEPTK-
KVQEQAAYMLVGKYSRNAAAGARAAYLKSWWQRNVETKAVTAAYSGILVDVLMRTSAHRKKG-
SCGCRCKKPLLLFVFFKKVHINLKQKKTSPLFPLLLV VAKKMTCRLLCALLVLALCCCPSVCVTKK-
SLWSVRLKKDVPPSSLPKKEKPQCLLLSSGILVDVLMREAAAK

V2

Table 7. The top three vaccine constructs V1, V2, and V3 made using Beta-defensin, L7/L12 Ribosomal
protein, and Gaba protein adjuvants along with the top BCL, HTL, and CTL epitope sequences.

more chance to elicit the high immunogenicity in the host cell. Furthermore, the solubility value of the vaccine
construct is 0.651 as predicted by the Protein-Sol tool which has a threshold value of 0.45 indicating that the
vaccine construct has a higher solubility than the average soluble E. coli protein from the experimental dataset
utilized by this tool (Table 8). The half-life was estimated to be 30 h in mammalian reticulocytes in vitro, and
>20 h in yeast in vivo, and > 10 h in E. coli in vivo.
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Physicochemical properties Vaccine 1 Vaccine 2 Vaccine 3
Antigenic propensity 1.062 0.83 0.992
Solubility 0.651 0.601 0.472
Molecular weight 423 kDa 50.70 kDa 54.7 kDa
Allergenicity Non-allergenic | Non-allergenic | Non allergenic
Hydropathicity -0.062 -0.056 -0.14

Amino acids 406 485 520
Theoretical isoelectric point (pI) 9.7 9.45 9.05

Aliphatic index 78.37 89.94 83.23
Instability index (II) 30.95 27.71 32.94

Table 8. Comparison of physicochemical and solubility properties of different vaccine constructs.

Secondary structure analysis.  Using the CFSSP tool and PSIPRED, we found that V1 consists of 55.2% helix,
14.0% turns and 40.9% of sheets (Fig. 7a-d). The presence of random coils in the vaccine construct suggests the
existence of natively unfolded protein regions that can be identified by antibodies that are produced in response
to infection'®.

Tertiary structure assessment of the vaccine construct. 'The tertiary structure models of the chimeric construct
were predicted by the I-TASSER server by employing several threading templates [1kj6, 5nf2A, 1kj6A, 5kel,
40m9A, 5kelA, 4kh3A]. Out of 5 predicted results, model 1 was found to be the best one based upon the scores.
In this study, the highest C-score model, derived from the homology modelling was selected for subsequent
refinement protocol (Fig. 8a). The TM-score is defined to assess the topological similarity of the two protein
structures. The TM-Score for our vaccine construct was found to be 0.56+0.15 and the RMSD value was
9.6+4.6 A. It has been reported that a model with a TM score greater than 0.5, shows accurate topology, whereas
a model with a TM score less than 0.17 indicates nonspecific similarity.

Refinement of the tertiary structure. The putative chimeric vaccine model was refined by the 3Drefine server
(http://sysbio.rnet.missouri.edu/3Drefine/) and subsequently by GalaxyRefine (http://galaxy.seoklab.org/cgi-
bin/submit.cgi?type=REFINE). The 3D-refine server-generated five models, out of which top-ranking model
having favourable parameters such as lowest 3Drefine score (29,567.2), GDT-HA (0.96), RMSD (0.37 A), lowest
RWPlus score (-63,611.70), and MolProbity (3.55). We also shortlisted Model 1 (from GalaxyRefine server)
using a clash score (20.8), a score of poor rotamers (0.3), and the Ramachandran plot with a statistical score
(89.4%) for downstream validation studies (Fig. 8b,c).

Validation of model stability. Ramachandran plot analysis of the protein model by ProCHECK-web predicted
that 82.4% of amino acids were present in favoured regions. Moreover, 13.7% of the residues were present in
the allowed regions, and only 1.5% of proteins were present in the disallowed or outlier boundary (Fig. 8d)
indicating the quality of the model. The ProSA-web server authenticated the overall quality and errors that may
potentially arise in the refined model. The refined model (obtained in this study) was considered to be appropri-
ate with a Z-score of —2.9 (Fig. 8e).

Prediction of discontinuous B-cell epitopes.  Ellipro estimated the five discontinuous B-cell epitopes and revealed
the presence of 221 total residues among them (with score variation from 0.61 to 0.75) (Table 9, Fig. 9).

Molecular docking of the chimeric protein with TLR-4. 'The CastP''? server was employed for determining pro-
tein binding and hydrophobic contact sites on the protein surface. One of the potential binding pockets (A) was
identified for the interaction with a TLR-4 receptor. It was found that the molecular surface area of the pocket A
was 6008.1 A2 with a molecular surface volume of 39,003.9 A3, the mouth molecular area was about 1088.07 A2,
and the molecular surface sum was calculated to be 1888.9 A. CPORT predicted G1, A19, 121, C33 as active
amino acid residues in the adjuvant sequences; A52, L54, L55, G56, G57, D58, T59, G60, D68, S69, C70, F72,
M84, G87, T137, G138, G140, S141, Y142, T143, C144, G145, T146, C148, P174, G176, 1178, 1179, R180, L181,
Y183,1184,R185, F186, A187, Y189, N215, A255, G300, C301, P306, L307, L308, L309, F310, V311, F312, F313,
K314, K315, V316, H317,1318,N319, L320, K321, S326, 1328, F329, P330, L333, C345, L348, V349, L350, A351,
L352, C353, C354, C355, P356, S357, D373, L388, L389, L390, S391, $392, G393, 1394, L395, V396, V398, L399
from the chimeric protein joined with linker sequences'!’.

For the highest-ranking docked complex, the ClusPro tool revealed the lowest total intermolecular energy
(-=973.2 kcal/mol), indicating a good interaction between V1 and TLR-4. The HDOCK server predicted the
binding energy for the protein—protein complex as —314.02 kcal/mol (Fig. 10). The refinement of PatchDock
docking results, as obtained by the Firedock result also showed the lowest global energy values (Table 10).

Codon optimization of the chimeric protein. JCAT results revealed that the optimized codon sequence has a
length of 1308 nucleotides and its CAI (Codon Adaptation Index) was predicted to be 0.98, with an average of

Scientific Reports |

(2021) 11:17626 | https://doi.org/10.1038/s41598-021-96863-x nature portfolio


http://sysbio.rnet.missouri.edu/3Drefine/
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE

www.nature.com/scientificreports/

Secondary Structure:

e CCCCCCCCEEEEEECCEEEEEECCCCCEEECCCCCCCELCCCCCCEHHHNM

e 2 % ® ¥y : W GHINTLOKYYCRVRGGRCAVLSCLPXKEEQ!I GKCSTRGRKCCRRKKEAAAK
Query 1 GIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKKEAAAKDAALLGGDYGGGSGVDFDSC 78 " P " - -
Helix 1 e 7
Sheet 1 EE(EE[HEEEEE[([EE[EEE EEEE 70
Turas 1 n 1T " LR T T T 7 « HHHHHCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
Struc 1 1‘(E{EEE‘&E{LE\‘|EEEE{(EMH~>4-0«M TTCCCHBMHHEHHRIRNG C TCCCTCTCCCREEE 70 4 DAALLGGDYGCOSGVOFDSCFFOGOSKTGRNGDMYCGGSSTODHATGSGG
Query 71 FFGOGSK 161 TVVGGGSLLVLAALTYGGG 142
Helix 71 it 140 e ECCCCCCCCCCCCCCCCCCCCCCCCCCHMRERRERRERCCCCCCCCCCOMHM
Sheet 71 € et eceeeeee 140  GBGTOGVTGTTGGCE530ADR TVVGGESLLVLAALTYGOGSY TCOTSCAY
Turns 71 Tr TT TT T T T T T mw 11 148 we > = - =
Struc 71 ECCTCTCCCTCY T Teccy EEEECCTCCCTCCCT TTCEEHHHEEECCTT 140
P e B N e = N
> . o 5 * . oo = P —— A
MM EEEEEECEEEECCECCCCEECCocEErEEEENANRHNECCCOCEREE
Query 141 SYTCGTSC VMOGT! 1RLQvL 20 W AAYGSFVMDGTVALGGAGAAYKAPRGRI | RLAYLRFAAYTGVSKNGRALR
Helix 141 HHEHHHHHHE L HHHHH 210 »e w ™ e =
Sheet 141 EEEE EEEEEEEEEEEE EEEEEEEEEEEEE 20 -
Turns 141 T " T 1 1 29 ERS———
Struc 141 CEEEE HHE it CCCTCCTCOHRHHHHIHCTC 210 4 EECCCHHHMCCCCCCCCCCCCCCECCCCCCCCCCCHHHHHHHHHHHHHNHEN
VS GKAAYASGVLGENGSHMPOGAAYSTSGSAERTKKYAEGAAY ML Y GKY S
Query 211 WL KSWRQRNVETKAVTAAYS 280
Helix 211 Pl
Sheet 211 EEEEEEEEE EEEEEEE EEEEE 280 s HHHHHHHMHHEHMHEHMHHHCHHEHMHHHHHHHHHEMMEMINCECCECECECCEE
Turns 211 rr T 1T ¥ 28¢ “ RNAAAGARAAYLKSWWORNVETKAVTAAYSGI LVDVLMRTSAHRKKGSCG
Struc 211 L8 { T EEN T 113 MEEE 280 = - - =
e
Query 281 GILVOVLMRTSAHRKKGSCGCRCKKPLLLFVFFKKVHINLKQKKTSPLFPLLLVWAKKMTCRLLCALLVL 350 e P B e R e Nt NN R s B e N M WH A NS ON IR
Helix 281 350 W CRCKKPLLLFVFPFKKVHI NLKOKKTSPLFPLLLYVVAKKMTCRLLECALLVL
Sheet 281 EEEEEEEEE 350 " - " e
Turns 281 TT T mr T 35e n o
Struc 281 ise P
e HMKHCCCCCOECCECECCEECEOEootoceotoctocEEcoce HHNHANN
a o > E 5 " ALCCCPEVCVTKKSLWEVRLKKDVPPEELPKKEKPOCLLLESGI LVDVLM
Query 351 ALCCCPSVCVIKKSLWSVRLKKDVPPSSLPKKEKPQULLLSSGILVOVLMREAAAK 406 - - - - -
Helix 351 4 406
- —
Sheet 351 EEEEEEEEEEECEEEEEE ECEEEEEEEEEEEE aes —
Turns 351 1 LAt T X T a6 s HHHHHE
Struc 351 EEEEEEEEEEHMHEEEEENHMTHCC TTCHHMHHIT EEEEEEEEEEEHENHMHHHIC 406 “REAAAK
- s “
i i e
Total Residues: H: 224 €: 166 T: 57 s f_ﬂ:/‘ it
Percent: H: 55.2 E: 48.9 T: 4.0
10 a0 k- a8
1 @I I NTLAKYYCRVRGERCAVLISCLPKEEGI GKCSTRERKCCRRRKEEEEE
st BEEEYccDYGGE3EGVDFDSCFFEGESKTERNGDMY G666 S STDDHATG S 66 10
0 GEETODGVTGTTEGEGES s sDaDPTVVEGeEBL VZvI.--AA»'LTYGGGSYTCGT s EEM =
5 WY G S FVMDGTVALGGAGAAYKAPRGRI I RLGY LEAEEENETScv skNeRatL
201 HWsScVLGENGSHMPDGAAYSTSGSAER T NKNGESEENNENERYE
251 lllllllllllll.l II- VETKANT AR L] TSAHRKKGSCG o
WM CRCKKPLLLFVF WEEE « k7 5 P [ R EEEE -
s CPGVCVTKK_SLWSVE_ KKDVEPSSLPKKEKP@CLLL S s clillEieWom o
o REREE x 406
10 20 30 40 80
strand W btz call || oeecraerea
[} oisordersd, pratsin binding y W t 11 Transmamibrans Hell
' Extracsliular | R=-entrant Helix Cytopizamic 2igna Paplida
(c)
Normalized B-factor Helix = Strand = Coil
=
o
)
o
©
BTl
[aa]
=1 /
85 N s e SN
Ll R S e N g N N Ao N
IEE =
5 50 100 150 200 250 300 350 400
2

(d)

Residue Number

Figure 7. Secondary structure prediction of the final vaccine sequence using (a) CFSSP, (b) and (c) PSIPRED.
(d) Graph of normalized B-factor predicted by I-TASSER.
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Figure 8. Modeling, refinement and validation of tertiary structures. (a) Multi-epitope vaccine chimeric
protein 3D model generated using homology modelling (Chimera 1.15—https://www.cgl.ucsf.edu/chimera/
download.html). (b) Refined model using 3Drefine (Chimera 1.15—https://www.cgl.ucsf.edu/chimera/downl
oad.html). (c) GalaxyRefine generated refined 3D structure (Chimera 1.15—https://www.cgl.ucsf.edu/chimera/
download.html). (d) Ramachandran plot of vaccine construct V1. (e) Prosa-Web giving a Z- score of -2.9.
S.no. | Residues Number of residues | Score
1 A:N269, A: V270, A: E271, A: T272, A: K273 5 0.75
A:R14, A:G15, A:G16, A:R17, A:V20, A:S22, A:C23, A:L24, A:P25, A:K26, A:E27, A:E28, A:Q29, A:I130, A:G31, A:K32, A:C33, A:S34,
AT35, AiR36, A:G37, A:R38, A:K39, A:C40, A:C41, A:R42, A:R43, A:K45, A:F46, A:A47, A:A48, A:A49, A:K50, A:D51, A:A52, A:A53,
2 A:L54, A:L55, A:G56, A:G57, A:D58, A:Y59, A:G60, A:G61, A:G62, A:S63, A:G64, A:V65, A:D66, A:F67, A:D68, A:S69, A:N81, A:G82, 78 0.70
A:D83, A:M84, A:G86, A:G87, A:G88, A:589, A:D92, A:D93, A:L135, A:G138, A:G139, A:G140, A:S141, A:Y142, A:T143, A:C144, A:G145,
A:T146, A:S147, A:C148, A:A149, A:A151, A:A152, A:Y153
A:8226, A:T227, A:S228, A:G229, A:S230, A:A231, A:E232, A:P233, A:T234, A:K235, A:K236, A:V237, A:E239, A:Q240, A:R302, A:C354,
3 A:P356, A:C359, A:V360, A:T361, A:K362, A:K363, A:5364, A:L365, A:W366, A:S367, A:V368, A:R369, A:L370, A:K371, A:D373, A:V374, | 44 0.65
A:P375, A:P376, A:S377, A:S378, A:L379, A:P380, A:K381, A:E383, A:K384, A:P385, A:Q386, A:C387
A:I3, A:N4, A:T5, A:L6, A:Q7, A:iK8, A:Y10, A:G166, A:A167, A:G168, A:A169, A:A170, A:Y171, A:K172, A:A173, A:P174, A:R175,
A:G176, A:R177, A:1178, A:1179, A:R180, A:L181, A:Q182, A:Y183, A:L184, A:R185, A:F186, A:A187, A:A188, A:Y189, A:T190, A:V192,
4 A:S193, AK194, A:A260, A:Y261, A:L262, A:K263, A:S264, A;W265, A;\W266, A:Q267, A:R268, A:R294, A:V311, A:F312, A:F313, AK314, | 74 0.65
AK315, A:V316, A:H317, A:1318, A:N319, A:L320, A:K321, A:Q322, A:K324, A:T325, A:S326, A:P327, A:L328, A:F329, A:P330, A:L347,
A:L348, A:L389, A:L390, A:S391, A:5392, A:G393, A:1394, A:D397, A:V398
5 A:V211, A:L212, A:G213, A:E214, AiN215, A:G216, A:S217, A:P220, A:R289, AT290, A:S291, A:A292, A:H293, A:K295, AK296, A:G297, | 061
A:5298, A:C299, A:L331, A:L332 -

Table 9. Discontinuous B-cell epitopes predicted by the ElliPro. Two hundred and twenty-one residues were
found to be located in five discontinuous B-cell epitopes of the refined vaccine model.
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Figure 9. Discontinuous B-cell epitopes predicted by ElliPro. (A-E): 3D representation of conformational or
discontinuous epitopes of the most antigenic chimeric protein from T. cruzi CL Brenner. Epitopes are shown as
yellow surfaces, and the bulk of the protein is represented in grey sticks (JSmol 13.3.9—https://sourceforge.net/
projects/jsmol/).

(a) (b)

Figure 10. Molecular docking of subunit vaccine with the immune receptor—TLR4. (a) Docked image of the
chimeric protein generated by HDOCK server having a binding energy score of -314.02. The rainbow-colored
complex represents the TLR4 receptor molecule, while the golden-yellow colour denotes vaccine construct V1.
(b) ClusPro generated model 5, which represents the protein-ligand complex (cyan-green). The lowest binding
energy of -973.2 kcal was achieved for this model (Chimera 1.15—https://www.cgl.ucsf.edu/chimera/download.

html).

PDB ID of the HLA

Vaccine construct | alleles Solution no. | Global energy | Hydrogen bond energy | ACE Score | Area
3vcll 28 8.99 0.0 -136.02 | 14,722 | 2001.1
la6a 82 8.82 -1.63 —284.02 | 14,114 | 2888.6

VACCINE 1 1h15 48 4.17 -2.06 -264.30 | 15,388 | 3810.5
2fse 9 -29.11 -2.32 -192.83 | 16,506 | 2909.7
TLR4 83 -19.85 -3.35 -152.69 | 15,728 | 2531.6

Table 10. Molecular docking results using the PatchDock server. The model was refined further using
Firedock server.
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Figure 11. Codon optimization of the vaccine construct V1. Here, CAI of the optimized codon and average GC
content were 0.98 and 51.8% respectively.

51.88% GC for the adapted sequence. These values indicate stable expression of the designed vaccine construct
in the selected microbial host. For optimal gene expression, SnapGene software was employed, the designed
chimeric protein sequence was integrated into the E. coli pET-28a [+] vector by incorporating restriction sites
which were followed by cloning into the vector using published methods (Figs. 11 and 12).

Characterization of the immune profile of the vaccine construct. 'With C-ImmSim, the immune response of
the final vaccine construct was analysed. Results of the simulated immune responses indicated an increased
surge in the induction of secondary and tertiary immune responses. At the first dose, a high surge of IgM and
IgG1 antibodies was predicted. However, these titters increased exponentially with the second and third dose.
Furthermore, an increase in active B-cell, CTL, and HTL cell populations was predicted for all doses (Fig. 13).

Evaluation of genetic diversity. Protein sequences of the prioritized proteins were extracted from 13 T. cruzi
annotated proteomes which were aligned to predict conserved regions (Supplementary Table 13). Five proteins
namely DNA]J chaperon protein, subtilisin-like serine peptidase, DGF-1, MASP, and trans-sialidase displayed
strong homology (above 80%) across 13 different strains of T. cruzi.

In the context of the DNAJ protein, the estimated evolutionary distance (p-distance) was found to be 0.005
(across 13 strains) and 0.746 (across species). Whereas for TS, p-distance was found to be 0.234 (across strains)
and 0.795 (across species). Next, we extracted all the copies of TS from TC-CLB proteome and computed evo-
lutionary divergence (0.616) as well (Supplementary Tables 14a—14c).

Estimates of evolutionary divergence between sequences and the number of amino acid differences per site
among sequences are shown along with the standard error in Supplementary Tables 14a-14c. We found that
most of the epitopes (belonging to the top eight proteins) were mapped/aligned to the conserved regions. For
example, a 15-mer HTL epitope, "TGVSKNGRQLRVSGK" (from DNAJ protein), was found to be completely
conserved (100%) across 13 different strains and four species (see Fig. 14 and Supplementary Table 15). Next, a
predicted CTL epitope (‘SSDADPTVV’) from trans-sialidase protein sequences was also found to be conserved
(Fig. 14). Likewise, we performed epitope conservancy analysis using the IEDB tool and observed that all the
predicted epitopes were conserved across different strains of T. cruzi (Supplementary Table 16, Supplementary
File 4). In addition, we also mapped epitopes (after reverse translation) on genomic sequences of Trypanosoma
strains and species to check the conservation at the genomic level (See “Supplementary Website”). Further, we
extracted 5750 copies of TS from different proteomes of T cruzi. Thereafter, we searched for the presence of
epitopes in variants of TS using the Smith Water-Mann algorithm as well as using the IEDB conservancy tool.
We found that the epitopes were present in the proteins with varying levels of conservation (See Supplementary
Files Y_G and H in Supplementary File 5).
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Figure 12. Insilico cloning of optimized codons encoding vaccine protein into pET28a (+) vector to ensure
expression in microbial systems. The DNA sequence was inserted into the multiple cloning-site of the cloning
vector. Here, the red portion denotes the gene sequence of our designed vaccine construct while the black
portion denotes the backbone of the vector. All colored arrows denote the location and direction of the
expression of gene. The blue portion shows vaccine codon sequence while green denotes kanamycin resistance
gene, violet represents vector genes and yellow denotes origin of replication (SnapGene 5.2.5.1—https://www.
snapgene.com/).

Discussion

The study reported here comprises a comprehensive approach to utilize informatics and computer algorithms
towards the prediction of vaccine targets in pathogens. Our work combines immuno-informatics approaches
and reverse vaccinology methods to design an in-silico multi-epitope subunit vaccine that can offer protection
against CD. The datasets and frameworks are also used to develop a new machine learning and deep learning
system for the prediction of vaccine candidates in general. We have created a resource base for the scientific com-
munity working in the area of CD vaccine design [https://tinyurl.com/CDWork800]. We used several strategies
to shortlist potential vaccine candidates. The goal was to obtain non-allergenic, antigenic, non-toxic, conserved
B-cell, CD8+ and CD4+ epitopes that were assembled into three separate vaccine constructs, V1, V2, and V3.
Our major findings include several unique vaccine antigens that are antigenic, immunogenic, and safe (showing
no homology with human proteins and the proteome of the gut flora). Further, the designed vaccine constructs
are also found to be, theoretically, soluble, thermostable, amenable for expression in model systems, and likely
to interact with other proteins. Structurally, the designed constructs show a likelihood of favourable interactions
with the TLR-4 on professional antigen-presenting cells. Our vaccine construct consists of epitopes derived
from multiple protein molecules (PVCs) which have exhibited the potential to be PVCs in various independent
experimental studies. The designed vaccine construct is likely to offer cross-protection since the selected proteins
and predicted epitopes used in generating the cocktail vaccine exhibited considerable conservation across the
related Trypanosoma species/strains.

In the past decade, different research groups have used several strategies ranging from stages of
pathogenesis''>; immunogenic assays'?, subtractive proteomics’, and as well as properties/filters (Supplementary
Table 9) to determine candidates for their respective pathogens. Different authors have used different orders of
these properties [P}, P,.... P,] as a combined filter to reach the final list of PVCs. Our study explains the impact
of the order of applications of these properties on the outcome. Since no proteome-wide studies have been
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Figure 13. Molecular simulations of the chimeric protein. (a) Successive antigen injections leading to
immunoglobulins production (Colored peaks indicate black vertical lines, along with other sub-classes of
immune cells). (b) Post-insertion development in B-cell population per state as per observation after inserting
three injections. (c) Development of T-helper cells (d) T-cytotoxic cell population per state after injections. The
resting phase denotes those cells that are not presented with the antigens and energy state denotes cells that are
tolerant to antigens due to repeated exposure, thereby indicating a lack of immune responsiveness.

conducted to find the distribution of properties, we decided to apply multiple strategies to rank or filter TC-CLB
proteins by randomizing the order, changing the number of filters, etc. For instance, in one of the strategies, we
randomized the order of applications for properties [P,] on TC-CLB. In another strategy, we removed the P,
[extracellular/secretory] filter which allowed an additional set of proteins [i.e., intracellular] to appear as PVCs.
The objective was to screen proteomes diversely to select all best-ranking protein molecules (i.e., PVCs) with
desired properties. One of the unique highlights is that we have examined the distribution of different properties
across the pathogens’ proteome as well as on positive and control datasets. Further, we also applied Vax-ELAN
on recently sequenced Y strain. We observed that top ranking candidates (in both CLB and Y strains) includes
TS, Mucin, and Mucin associated surface proteins.

Researchers have initiated several efforts to develop vaccines against CD but issues related to a variety of T.
cruzi strains, the genetic variability of the host, complex genomic structure?, significant phenotypic variation,
and variable behaviour of pathogen (in vitro and in vivo) in context of pathophysiology, virulence, tropism, and
immunological responses, have created several obstacles'’®. Further, T. cruzi is known to be a complex organism
with multiple developmental forms with transient expression of different antigens. The problem is compounded
by a wide variety of strains, antigenic shifts during different life stages, making proper immunization against the
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Figure 14. Aligned regions showing conserved epitopes among various strains of T. cruzi. Individual targeted
proteins (DNAJ chaperon and trans-sialidase proteins) among the 12 strains are aligned using CLC Main
workbench and the regions with conserved epitopes (sequences) have been shown in the red boxes. (a) DNAJ
BCL epitope; (b) DNAJ CTL epitope; (c¢) DNAJ HTL epitope; (d) trans-sialidase BCL epitope; (e) trans-sialidase
CTL epitope; and (f) trans-sialidase HTL epitope.

parasite an improbable task. The ability of T. cruzi to modulate and evade host immune responses and influence
host-parasite interactions allows the parasite to survive through novel mechanisms''*.

Several vaccine candidates have been reported for CD vaccine development programs across the world. These
include Tc24 [and its modified Tc24-C4 derivative], TSA-1, ASP-2, TS, TSSA CD8 epitope, Tc52, TcG1, TcG2,
TcG4, TcVac2, TcVacd, and MASP?. Tt is interesting to note that several of these candidates appeared in the final
protein list used for our final vaccine construct. In one of the research studies, Michel-Todo et al. extracted T.
cruzi epitopes from several antigens using publicly available databases''”. They prioritized a set of epitopes based
on sequence conservation criteria, projected population coverage of Latin America population, and biological
features using in-silico methods and selected CD8+ T cell, CD4+ T, and B-cell epitopes with <70% identical to
human or human microbiome protein sequences. As a benchmark, we also compared epitopes''® with epitopes
identified in our study using the VaxiJen tool (Supplementary File-F).

The in-silico approach to design a multi-epitope vaccine construct for Chagas disease presents challenges as
a protein-based vaccine given the complexities of producing such candidates as experimental soluble proteins'®
suitable for scale-up production and purification. However, we have recently embarked upon an mRNA vac-
cination approach for Chagas disease that might obviate the need for expression and purification steps''®. We
are now working to incorporate the findings here into our mRNA vaccination program.

Conclusion

Therapeutic interventions for the prevention and elimination of Chagas disease require novel treatment and
immunization methods that can protect people at risk and infected populations while providing them with a
good quality of life. This study is aimed at developing putative multi-epitope vaccines against CD, a protozoan
infection caused by T. cruzi. The disease is endemic in Latin America and has impacted other parts of the world.
In this study, computational approaches and a reverse vaccinology pipeline were used to screen the complete
genomic and proteomic sequences for predicting potential vaccine candidates and designing in-silico chimeric
vaccine constructs against the T. cruzi CL Brenner. Multiple antigenic B-cell, CD8+, and CD4+ epitopes were
assembled into three non-allergenic, antigenic, and non-toxic constructs that can act as a prophylactic potential
multi-epitope vaccine construct. Appropriate linkers and adjuvant sequences were also used to enhance the
stability, effectiveness, as well as immune response of the engineered vaccine constructs. The designed vaccine
construct has suitable structural, physicochemical, and immunological properties which can strongly stimulate
both humoral and cellular immune responses in humans. However, experimental validation for efficacy and safety
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is needed along with pre-clinical studies before human immunization. Planning for such studies in appropriate
mouse models of T. cruzi and CCC is in progress.

Data availability

All raw data were obtained from open sources and have been cited and deposited in Datasets S1 and also avail-
able on our website. Supplementary Data: https://tinyurl.com/2b2s927h. Software Pipeline: Vax-ELAN: https://
vac.kamalrawal.in/vaxelan/, Vax-ELAN Version 2: https://vac.kamalrawal.in/vaxelan/v2, Vaxi-DL: https://vac.
kamalrawal.in/vaxidl/.
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