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Electrode pooling can boost the yield of
extracellular recordings with switchable silicon
probes
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State-of-the-art silicon probes for electrical recording from neurons have thousands of

recording sites. However, due to volume limitations there are typically many fewer wires

carrying signals off the probe, which restricts the number of channels that can be recorded

simultaneously. To overcome this fundamental constraint, we propose a method called

electrode pooling that uses a single wire to serve many recording sites through a set of

controllable switches. Here we present the framework behind this method and an experi-

mental strategy to support it. We then demonstrate its feasibility by implementing electrode

pooling on the Neuropixels 1.0 electrode array and characterizing its effect on signal and

noise. Finally we use simulations to explore the conditions under which electrode pooling

saves wires without compromising the content of the recordings. We make recommenda-

tions on the design of future devices to take advantage of this strategy.
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Understanding brain function requires monitoring the
complex pattern of activity distributed across many neu-
ronal circuits. To this end, the BRAIN Initiative has called

for the development of technologies for recording “dynamic
neuronal activity from complete neural networks, over long
periods, in all areas of the brain”, ideally “monitoring all neurons
in a circuit”1. Recent advances in the design and manufacturing
of silicon-based neural probes have answered this challenge with
new devices that have thousands of recording sites2–6. Still, the
best methods sample neural circuits very sparsely7, for example
recording fewer than 104 cells in a mouse brain that has 108.

In many of these electrode array devices only a small fraction
of the recording sites can be used at once. The reason is that
neural signals must be brought out of the brain via wires, which
take up much more volume than the recording sites themselves.
For example, in one state-of-the-art silicon shank, each wire
displaces thirty times more volume than a recording site once the
shank is fully inserted in the brain2. The current silicon arrays
invariably displace more neurons than they record, and thus the
goal of “monitoring all neurons” seems unattainable by simply
scaling the present approach (but see ref. 8). Clearly we need a
way to increase the number of neurons recorded while avoiding a
concomitant increase in the number of wires that enter the brain.

A common approach by which a single wire can convey
multiple analog signals is time-division multiplexing9. A rapid
switch cycles through the N input signals and connects each input
to the output line for a brief interval (Fig. 1a). At the other end of
the line, a synchronized switch demultiplexes the N signals again.
In this way, a single wire carries signals from all its associated
electrodes interleaved in time. The cycling rate of the switch is
constrained by the sampling theorem10: It should be at least twice
the highest frequency component present in the signal. The raw
voltage signals from extracellular electrodes include thermal noise
that extends far into the Megahertz regime. Therefore an essential
element of any such multiplexing scheme is an analog low-pass
filter associated with each electrode. This anti-alias filter removes
the high-frequency noise above a certain cut-off frequency. In
practice, the cut-off is chosen to match the bandwidth of neuronal
action potentials, typically 10 kHz. Then the multiplexer switch
can safely cycle at a few times that cut-off frequency.

Given the ubiquity of time-division multiplexing in commu-
nication electronics, what prevents its use for neural recording
devices? One obstacle is the physical size of the anti-alias filter
associated with each electrode. When implemented in CMOS
technology, such a low-pass filter occupies an area much larger
than the recording site itself11, which would force the electrodes
apart and prevent any high-density recording. What if one simply
omitted the low-pass filter? In that case aliasing of high-frequency
thermal fluctuations will increase the noise power in the
recording by a factor equal to the number of electrodes N being
multiplexed. One such device with a multiplexing factor of
N= 128 has indeed proven unsuitable for recording action
potentials, as the noise drowns out any signal12. A recent design
with a more modest N= 8 still produces noise power 4–15 times
higher than in comparable systems without multiplexing13.

Other issues further limit the use of time-division multiplexing:
The requirement for amplification, filtering, and rapid switching
right next to the recording site means that electric power gets
dissipated on location, heating up exactly the neurons one wants
to monitor. Furthermore, the active electronics in the local
amplifier are sensitive to light, which can produce artifacts during
bright light flashes for optogenetic stimulation2,14.

An alternative approach involves static electrode selection
(Fig. 1b). Again, there is an electronic switch that connects the
wire to one of many electrodes. However, the switch setting
remains unchanged during the electrical recording. In this way,
the low-pass filtering and amplification can occur at the other end
of the wire, outside the brain, where space is less constrained. The
switch itself requires only minimal circuitry that fits comfortably
under each recording site, even at a pitch of 20 μm or less.
Because there is no local amplification or dynamic switching, the
issues of heat dissipation or photosensitivity do not arise. This
method has been incorporated recently into flat electrode arrays15

as well as silicon prongs2,6,16. It allows the user to choose one of
many electrodes intelligently, for example, because it carries a
strong signal from a neuron of interest. This strategy can increase
the yield of neural recordings, but it does not increase the number
of neurons per wire.

On this background, we introduce a third method of mapping
electrodes to wires: select multiple electrodes with suitable signals
and connect them to the same wire (Fig. 1c). Instead of rapidly
cycling the intervening switches, as in multiplexing, simply leave
all those switches closed. This creates a “pool” of electrodes whose
signals are averaged and transmitted on the same wire. At first,
that approach seems counterproductive, as it mixes together
recordings that one would like to analyze separately. How can one
ever reconstruct which neural signal came from which electrode?
Existing multi-electrode systems avoid this signal mixing at all
cost, often quoting the low cross-talk between channels as a figure
of merit. Instead, we will show that the pooled signal can be
unmixed if one controls the switch settings carefully during the
recording session. Under suitable conditions, this method can
record many neurons per wire without appreciable loss of
information.

We emphasize that the ideal electrode array device to imple-
ment this recording method does not yet exist. It would be
entirely within reach of current fabrication capabilities, but every
new silicon probe design requires a substantial investment and
consideration of various trade-offs. With this article, we hope to
make the community of electrode users aware of the opportu-
nities in this domain and start a discussion about future array
designs that use intelligent electrode switching, adapted to various
applications in basic and translational neuroscience.

Theory
Motivation for electrode pooling: spike trains are sparse in
time. A typical neuron may fire ~10 spikes/s on average17. Each
action potential lasts for ~1 ms. Therefore this neuron’s signal
occupies <1% of the time axis in an extracellular recording (e.g.,
Fig. 3b). Sometimes additional neurons lie close enough to the

b ca

Fig. 1 Strategies for using a single wire to serve many recording sites in switchable silicon probes. a Time-division multiplexing. Rapidly cycling the
selector switch allows a single wire to carry signals from many recording sites interleaved in time. Triangles represent anti-aliasing filters. b Static
switching. A single wire connects to one of many possible recording sites through a selector switch. c Electrode pooling. Many recording sites are
connected to a single wire through multiple controllable switches.
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same electrode to produce large spikes. That still leaves most of
the time axis unused for signal transmission. Electrode pooling
gives the experimenter the freedom to add more neurons to that
signal by choosing other electrodes that carry large spikes.
Eventually a limit will be reached when the spikes of different
neurons collide and overlap in time so they can no longer be
distinguished. These overlaps may be more common under
conditions where neurons are synchronized to each other or to
external events.

The effects of pooling on spikes and noise. What signal actually
results when one connects two electrodes to the same wire? Fig-
ure 2a shows an idealized circuit for a hypothetical electrode array
that allows electrode pooling. Here the common wire is connected
via programmable switches to two recording sites. At each site i,
the extracellular signal of nearby neurons reaches the shared wire
through a total electrode impedance Zi. This impedance has
contributions from the metal/saline interface and the external
electrolyte bath18,19, typically amounting to 100 kΩ–1MΩ. By
comparison, the CMOS switches have low impedance, typically
~100Ω18, which we will ignore.

In general, one must also consider the shunt impedance ZS in
parallel to the amplifier input. This can result from current leaks
along the long wires as well as the internal input impedance of the
amplifier. For well-designed systems, this shunt impedance should
be much larger than the electrode impedances; for the Neuropixels
device, we will show that the ratio is at least 100. Thus one can
safely ignore it for the purpose of the present approximations. In
that case, the circuit acts as a simple voltage divider between the
impedances Zi. If a total of M electrodes are connected to the
shared wire, the output voltage U is the average of the signals at
the recording sites Vi, weighted inversely by the electrode
impedances,

U ¼ ∑
M

i¼1
ciVi ð1Þ

where

ci ¼
1=Zi

∑
M

j¼1
1=Zj

ð2Þ

is defined as the pooling coefficient for electrode i. If all electrodes

Fig. 2 Pooling of signal and noise. a An idealized circuit for two electrodes connected to a common wire along with downstream components of the signal
chain, such as the amplifier, multiplexer, and digitizer. Z0, Z1: total impedance for electrodes 0 and 1, with contributions from the metal/bath interface and
the external bath. ZS: shunt impedance at the amplifier input. Noise sources include biological noise from distant neurons (Nbio); thermal noise from the
electrode impedance (Nthe), and common electronic noise from the amplifier and downstream components (Namp). b Numerical values of the relevant
parameters, derived from experiments or the literature (sections Experiments and Simulations). c, d The optimal electrode pool under different
assumptions about the spike amplitude distribution (top insets). The contour plots show the optimal pool size and the enhancement of the neuron/wire
ratio as a function of the parameters α— the ratio of largest to smallest sortable spike signals—and β —the ratio of private to common noise. c Most
favorable condition: Each electrode carries a single large spike of amplitude Smax, and spikes are sortable down to amplitude Smin. In this case the neurons/
wire ratio is equal to the pool size. d Generic condition: Each electrode carries a uniform distribution of spike amplitudes between 0 and Smax. Red dots:
Conditions of α and β encountered experimentally, based on the values in panel b.
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have the same size and surface coating, they will have the same
impedance, and in that limit one expects the simple relationship

U ¼ 1
M

∑
M

i¼1
Vi ð3Þ

Thus an action potential that appears on only one of the M
electrodes will be attenuated in the pooled signal by a factor 1

M.
In order to understand the trade-offs of this method, we must

similarly account for the pooling of noise (Fig. 2a). There are
three relevant sources of noise: (1) thermal (“Johnson”) noise
from the impedance of the electrode; (2) biological noise (“hash”)
from many distant neurons whose signals are too small to be
resolved; (3) electronic noise resulting from the downstream
acquisition system, including amplifier, multiplexer, and analog-
to-digital converter. The thermal noise is private to each
electrode, in the sense that it is statistically independent of the
noise at another electrode. The biological noise is similar across
neighboring electrodes that observe the same distant
populations20. For widely separated electrodes the hash will be
independent and thus private to each electrode, although details
depend on the neuronal geometries and the degree of
synchronization of distant neurons21. In that case the private
noise is

Npri;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

the;i þ N2
bio;i

q
ð4Þ

because thermal noise and biological noise are additive and
statistically independent.

Finally the noise introduced by the amplifier and data
acquisition is common to all the electrodes that share the same
wire,

Ncom ¼ Namp ð5Þ
In the course of pooling, the private noise gets attenuated by

the pooling coefficient ci (Eq. (2)) and summed with contribu-
tions from other electrodes. Then the pooled private noise gets
added to the common noise from data acquisition, which again is
statistically independent of the other noise sources. With these
assumptions the total noise at the output has RMS amplitude

N tot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

com þ ∑
M

i¼1
c2i N

2
pri;i

s
ð6Þ

If all electrodes have similar noise properties and impedances
this simplifies to

N tot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

com þ N2
pri=M

q
ð7Þ

Theoretical benefits of pooling. Now we are in a position to
estimate the benefits from electrode pooling. Suppose that the
electrode array records neurons with a range of spike amplitudes:
from the largest, with spike amplitude Smax, to the smallest that
can still be sorted reliably from the noise, with amplitude Smin. To
create the most favorable conditions for pooling one would select
electrodes that each carry a single neuron, with spike amplitude
� Smax (Fig. 2c). As one adds more of these electrodes to the pool,
there comes a point when the pooled signal is so attenuated that
the spikes are no longer sortable from the noise. Pooling is
beneficial as long as the signal-to-noise ratio of spikes in the
pooled signal is larger than that of the smallest sortable spikes in a
single-site recording, namely

Smax=Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

com þ N2
pri=M

q >
Sminffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2
com þ N2

pri

q ð8Þ

This leads to a limit on the pool size M,

M<Mmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2

2

� �2

þ ð1þ β2Þα2
s

� β2

2
ð9Þ

where

α ¼ Smax=Smin; β ¼ Npri=Ncom ð10Þ
If one pools more than Mmax electrodes all the neurons drop

below the threshold for sorting. So the optimal pool size Mmax is
also the largest achievable number of neurons per wire. This
number depends on two parameters: the ratio of private to
common noise, and the ratio of largest to smallest useful spike
amplitudes (Eq. (10)). These parameters vary across applications,
because they depend on the target brain area, the recording
hardware, and the spike-sorting software. In general, users can
estimate the parameters α and β from their own experience with
conventional recordings, and find Mmax from the graph in Fig. 2c.

Next we consider a more generic situation, in which each
electrode carries a range of spikes from different neurons
(Fig. 2d). For simplicity, we assume a uniform distribution of
spike amplitudes between 0 and Smax. As more electrodes are
added to the pool, all the spikes are attenuated, so the smallest
action potentials drop below the sortable threshold Smin. Beyond a
certain optimal pool size, more spikes are lost in the noise than
are added at the top of the distribution, and the total number of
neurons decreases. By the same arguments used above one finds
that the improvement in the number of sortable neurons, nM,
relative to conventional split recording, n1, is

nM
n1

¼
M α�M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þβ2=M
1þβ2

q� �
α� 1

ð11Þ

The optimal pool size Mmax is the M which maximizes that
factor. The results are plotted in Fig. 2d.

The benefits of pooling are quite substantial if the user can
select electrodes that carry large spikes. For example under
conditions of α and β that we have encountered in practice,
Fig. 2c predicts that one can pool 8 electrodes and still resolve all
the signals, thus increasing the neuron/wire ratio by a factor of 8.
On the other extreme—with a uniform distribution of spike
amplitudes—the optimal pool of 4 electrodes increases the
neuron/wire ratio by a more modest but still respectable factor
of 2.3 compared to conventional recording. The following section
explains how one can maximize that yield.

Acquisition and analysis of pooled recordings. With these
insights about the constraints posed by signal and noise one can
propose an overall workflow for experiments using electrode
pooling (Fig. 3a). A key requirement is that the experimenter can
control the switches that map electrodes to wires. This map
should be adjusted to the unpredictable contingencies of any
particular neural recording experiment. In fact, the experimenter
will benefit from using different switch settings during the same
session.

A recording session begins with a short period of acquisition in
“split mode” with only one electrode per wire. The purpose is to
acquire samples of the spike waveforms from all neurons that
might be recorded by the entire array. If the device has E
electrodes and W wires, this sampling stage will require E/W
segments of recording to cover all electrodes. For each segment,
the switches are reset to select a different batch of electrodes. Each
batch should cover a local group of electrodes, ensuring that the
entire “footprint” of each neuron can be captured.
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During this sampling stage, the experimenter performs a quick
analysis to extract the relevant data that will inform the pooling
process. In particular, this yields a catalog of single neurons that
can be extracted by spike-sorting. For each of those neurons, one
has the spike waveform observed on each electrode. Finally, for
every electrode one measures the total noise. The amplifier noise
Namp and thermal noise Nthe can be assessed ahead of time,
because they are a property of the recording system, and from
them, one obtains the biological noise Nbio. Now the experi-
menter has all the information needed to form useful electrode
pools. Some principles one should consider in this process are:

1. Pool electrodes that carry large signals. Electrodes with
smaller signals can contribute to smaller pools.

2. Pool electrodes with distinct spike waveforms.
3. Pool distant electrodes that don’t share the same hash noise.
4. Don’t pool electrodes that carry dense signals with high

firing rates.

After allocating the available wires to effective electrode pools
one begins the main recording session in pooled mode. Ideally
this phase captures all neurons with spike signals that are within
reach of the electrode array.

In analyzing these recordings the goal is to detect spikes in the
pooled signals and assign each spike correctly to its electrode of
origin. This can be achieved by using the split-mode recordings
from the early sampling stage of the experiment. From the spike
waveforms obtained in split-mode, one can predict how the
corresponding spike appears in the pooled signals. Here it helps
to know all the electrode impedances Zi so the weighted mix can
be computed accurately (Eq. (1)). This prediction serves as a
search template for spike-sorting the pooled recording.

By its very nature electrode pooling produces a dense neural
signal with more instances of temporal overlap between spikes
than the typical split-mode recording. This places special
demands on the methods for spike detection and sorting. The
conventional cluster-based algorithm (peak detection–temporal
alignment–PCA–clustering) does not handle overlapping spikes
well22. It assumes that the voltage signal is sparsely populated
with rare events drawn from a small number of discrete
waveforms. Two spikes that overlap in time produce an unusual
waveform that cannot be categorized. Recently some methods
have been developed that do not force these assumptions23,24.
They explicitly model the recorded signal as an additive
superposition of spikes and noise. The algorithm finds an

efficient model that explains the signal by estimating both the
spike waveform of each neuron and its associated set of spike
times. These methods are well suited to the analysis of pooled
recordings.

Because the spike templates are obtained from split-mode
recordings at the beginning of the experiment, they are less
affected by noise than if one had to identify them de novo from
the pooled recordings. Nonetheless, it probably pays to monitor
the development of spike shapes during the pooled recording. If
they drift too much, for example, because the electrode array
moves in the brain25, then a recalibration by another split-mode
session may be in order (Fig. 3a). Alternatively, electrode drift
may be corrected in real time if signals from neighboring
electrodes are available6, a criterion that may flow into the
selection of switches for pooling. Chronically implanted electrode
arrays can record for months on end6, and the library of spike
shapes can be updated continuously and scanned for new pooling
opportunities.

It should be clear that the proposed workflow relies heavily on
automation by dedicated software. Of course, automation is
already the rule with the large electrode arrays that include
thousands of recording sites, and electrode pooling will require
little more effort than conventional recording. Taking the newly
announced Neuropixels 2.0 as a reference (5120 electrodes and
384 wires): Sampling for 5 min from each of the 13 groups of
electrodes will take a bit over an hour. Spike-sorting of those
signals will proceed in parallel with the sampling and require no
additional time. Then the algorithm decides on the electrode
pools, and the main recording session starts. Note that these same
steps also apply in conventional recording: The user still has to
choose 384 electrodes among the 5120 options, and will want to
scan the whole array to see where the best signals are. The
algorithms we advocate to steer electrode pooling will simply
become part of the software suite that runs data acquisition.

Experiments
Pooling characteristics of the Neuropixels 1.0 array. To test the
biophysical assumptions underlying electrode pooling, we used
the Neuropixels probe version 1.02,16. This electrode array has a
single silicon shank with 960 recording sites that can be con-
nected to 384 wires via controllable switches (Fig. 3b). The
electrodes are divided into three banks (called Bank 0, Bank 1,
and Bank 2 from the tip to the base of the shank). In the present

Fig. 3 Workflow proposed for electrode pooling. a Time line of an experiment, alternating short split, and long pooled recording sessions. b Electrode
pooling using the Neuropixels probe. Recording sites (black squares, numbered from 1 to 4) in the same relative location of each bank can be pooled to a
single wire by closing the switches (yellow). This generates the pooled signal (black), which is a weighted average of the signals detected in each bank (red
and blue traces). From the pooled signal one recovers distinct spike shapes by spike-sorting. A comparison to the spike shapes observed in split-mode
recordings allows the correct allocation of each spike to the electrodes of origin.
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study, only Banks 0 and 1 were used. Banks 0 and 1 each contain
383 recording sites (one channel is used for a reference signal).
Each site has a dedicated switch by which it may connect to an
adjacent wire. Sites at the same relative location in a bank share
the same wire. These two electrodes are separated by 3.84 mm
along the shank. Under the conventional operation of
Neuropixels2, each wire connects to only one site at a time.
However, with modifications of the firmware on the device and
the user interface we engineered independent control of all the
switches. This enabled a limited version of electrode pooling
across Banks 0 and 1.

We set out to measure those electronic properties of the
device that affect the efficacy of pooling, specifically the split
of the noise signal into common amplifier noise Namp (Eq. (7))
and private thermal noise Nthe (Eq. (4)), as well as the pooling
coefficients ci (Eq. (2)). These parameters are not important
for conventional recording, and thus are not quoted in the
Neuropixels user manual, but they can be derived from
measurements performed in a saline bath (see Methods).

On a pristine unused probe, the pooling coefficients c0 and c1
for almost all sites were close to 0.5 (Fig. 4a), as expected from the
idealized circuit (Fig. 2a) if the electrode impedances are all equal
(Eq. (2)). Correspondingly the thermal noise was almost identical
on all electrodes, with an RMS value of 1.45 ± 0.10 μV (Fig. 4b).
The amplifier noise Namp exceeded the thermal noise substan-
tially, amounting to 5.7 μV RMS on average, and more than
12 μV for a few of the wires (Fig. 4c). Because this noise source is
shared across electrodes on the same wire, it lowers β in Eq. (9)
and can significantly affect electrode pooling.

Neural recording. Based on this electronic characterization of the
Neuropixels probe we proceeded to test electrode pooling in vivo.
Recall that each bank of electrodes extends over 3.84 mm of the
shank, and one needs to implant more than one bank into the
brain to accomplish any electrode pooling. Clearly, the oppor-
tunities for pooling on this device are limited; nonetheless, it
serves as a useful testing ground for the method.

In the pilot experiment analyzed here, the probe was inserted
into the brain of a head-fixed, awake mouse to a depth of ~6 mm.
This involved all of Bank 0 and roughly half of Bank 1, and
covered numerous brain areas from the medial preoptic area at
the bottom to the retrosplenial cortex at the top. Following the
work flow proposed in Fig. 3, we then recorded for ~10 min each
from Bank 0 and Bank 1 in split mode, followed by ~10 min of
recording from both banks simultaneously in pooled mode.

Unmixing a pooled recording. As proposed above, one can
unmix the pooled recording by matching its action potentials to
the spike waveforms sampled separately on each of the two banks
(Fig. 3b). Each of the three recordings (split Bank 0, split Bank 1,
and pooled Banks 0+ 1) was spike-sorted to isolate single units.
Then we paired each split-mode unit with the pooled-mode unit
that had the most similar waveform, based on the cosine simi-
larity of their waveform vectors (Eq. (16), Fig. 5b). In most cases,
the match was unambiguous even when multiple units were
present in the two banks with similar electrode footprints
(Fig. 5a). The matching algorithm proceeded iteratively until the
similarity score for the best match dropped below 0.9 (Fig. 5b).

dAmplifier noisea b c Biological noisePooling coefficients 
clean probe

Thermal noise 
clean probe

e used probe

F
Biological noise pooledf

Fig. 4 Pooling of signal and noise with the Neuropixels 1.0 device. a Pooling coefficients on a pristine probe measured in saline, histogram across all sites
in banks 0 (red) and 1 (green). b Thermal noise (RMS) during split recording in standard saline, histogram across all sites in banks 0 and 1. c Amplifier
noise (RMS), histogram across all 383 wires. d Biological noise (RMS) during brain recordings, histogram across all sites in banks 0 and 1. e Pooling
coefficients on a used probe, measured in saline (horizontal) vs in brain (vertical). 47 pairs of sites in banks 0 and 1 with suitable action potentials. f
Biological noise in a pooled recording measured in brain (vertical) vs the prediction derived from assuming uncorrelated noise at the two sites. `1 x':
identity. `

ffiffiffi
2

p
x': expectation for perfectly correlated noise.
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We corroborated the resulting matches by comparing other sta-
tistics of the identified units, such as the mean firing rate and
inter-spike-interval distribution (Fig. 5a).

When spike-sorting the pooled-mode recording there is of
course a strong expectation for what the spike waveforms will be,
namely a scaled version of spikes from the two split-mode
recordings. This suggests that one might jump-start the sorting of
the pooled signal by building in the prior knowledge from sorting
the split-mode recordings. Any such regularization could be
beneficial, not only to accelerate the process but to compensate
for the lower SNR in the pooled signal. We explored this
possibility by running the template-matching function of Kilo-
Sort2 on the pooled-mode recording with templates from split-
mode recordings (“hot sorting”). Then we compared this method
to two other procedures (Fig. 5c): (1) sorting each recording
separately, using KiloSort1 with manual curation (“manual”), and
(2) sorting each recording separately using KiloSort2 with no
manual intervention (“cold sorting”).

Figure 5c illustrates what fraction of the units identified in both
split mode recordings combined were recovered from the pooled
recording, and how that fraction depends on the spike amplitude.
First, this shows that hot sorting significantly outperforms cold
sorting, and in fact rivals the performance of manually curated
spike sorting. This is important, because manual sorting by a
human operator will be unrealistic for the high-count electrode
arrays in which electrode pooling may be applied. Second, one
sees that the fraction of spikes recovered from the combined split
recordings exceeds 0.5 even at moderate spike amplitudes of

100 μV. For spikes of that amplitude and above the pooled
recording will contain more neurons than the average split
recording. Clearly, electrode pooling is not restricted to the largest
spikes in the distribution, but can be considered for moderate
spike amplitudes as well.

Recall that the Neuropixels 1.0 probe is not optimized for
electrode pooling, in that it has a fixed switching matrix, and only
2 banks of electrodes fit in the mouse brain. Thus our pilot
experiments were limited to brute-force pooling the two banks
site-for-site without regard to the design principles for electrode
pools. Nonetheless, the “hot sorting” method recovered more
neurons from the pooled recording (184) than on average over
the two split recordings (166). We conservatively focused this
assessment only on units identified in the split recordings,
ignoring any unmatched units that appeared in the pooled
recording. This validates the basic premise of electrode pooling
even under the highly constrained conditions. Overall, the above
sequence of operations demonstrates that a pooled-mode
recording can be productively unmixed into the constituent
signals, and the resulting units assigned to their locations along
the multi-electrode shank.

Pooling of signal and noise in vivo. Closer analysis of the spike
waveforms from split and pooled recordings allowed an assess-
ment of the pooling coefficients in vivo. When spikes are present
on the corresponding electrodes in both banks (as in Fig. 5a) one
can measure the pooling coefficients c0 and c1 of Eq. (2).

a

b c

Fig. 5 Recordings from mouse brain. a Matching spike shapes from split- and pooled-mode recordings. Top: Waveforms of two sample units (middle,
black) detected in pooled mode on the same set of wires. The left unit was matched to a unit recorded in split mode from Bank 0 (red) and the right unit to
one from Bank 1 (blue). Numbers indicate the scaling of the signal of the pooled-mode unit relative to its split-mode signal. Bottom: the mean firing rates
and the interspike-interval distributions are similar for the matched pairs. b Left: matrix of the cosine similarity between units recorded in pooled- and split-
mode, arranged by depth. Black dot indicates greater than the threshold at 0.9. Right: distribution of the cosine similarity. Dashed line indicates the
threshold at 0.9. Inset zooms into the 0.7–1 range of the distribution. c Fraction of units from the two split recordings that are matched to a unit in the
pooled recording as a function of spike amplitude. Three different sorting conditions are shown: sorting all recordings by KiloSort1 followed by manual
curation (Manual), sorting all recordings by KiloSort2 (Cold sort), and sorting the pooled recording by KiloSort2 with templates initialized from the split
recordings (Hot sort). Dashed line indicates 50%, or the `break-even' point where the pooled-mode yields as many simultaneous recordings as the
average split-mode.
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Unexpectedly, instead of clustering near 0.5, these pooling coef-
ficients varied over a wide range (Fig. 4e), at least by a factor of 3.
The two banks had systematically different pooling coefficients,
suggesting that the impedance was lower for electrodes near the
tip of the array.

Following this in vivo recording we cleaned the electrode array
by the recommended protocol (tergazyme/water) and then
measured the pooling coefficients in saline. Again the pooling
coefficients varied considerably across electrodes, although
somewhat less than observed in vivo (Fig. 4e). Also the bath
resistance of the electrodes was larger on average than on an
unused probe (30 kΩ as opposed to 13 kΩ). This change may
result from the interactions within brain tissue. For example,
some material may bind to the electrode surface and thus raise its
bath resistance. This would lower the pooling coefficient of the
affected electrode and raise that of its partners. Because the
thermal noise is never limiting (Fig. 4b–d), such a change would
easily go unnoticed in conventional single-site recording. The
precise reason for the use-dependent impedance remains to be
understood.

To measure the contributions of biological noise in vivo we
removed from the recorded traces all the detected spikes and
analyzed the remaining waveforms. After subtracting (in quad-
rature) the known thermal and electrical noise at each site (Fig. 4b,
c) one obtains the biological noise Nbio. This noise source
substantially exceeded both the thermal and amplifier noise (Fig. 4f).
It also showed different amplitude on the two banks, presumably
owing to differences between brain areas 3.84mm apart.

Given this large distance between electrodes in the two banks,
one expects the biological noise to be statistically independent
between the two sites, because neurons near one electrode will be
out of reach of the other. To verify this in the present recordings
we measured the biological noise in the pooled condition and
compared the result to the prediction from the two split
recordings, assuming that the noise was private to each site.
Indeed the noise in the pooled signal was largely consistent with
the assumption of independent noise (Fig. 4f). It seems likely that
the 1-cm shank length on these and similar array devices suffices
for finding electrodes that carry independent biological
noise.

Simulations
How many electrodes could experimenters pool and still sort every
neuron with high accuracy? Earlier we had derived a theoretical
limit to electrode pooling based solely on the signal and noise
amplitudes (Fig. 2). To explore what additional limitations might
arise based on the density of spikes in time and the needs of spike
sorting we performed a limited simulation of the process (Fig. 6a).
We simulated units with an extracellular footprint extending over 4
neighboring electrodes, and then pooled various such tetrodes into a
single 4-channel recording. These pooled signals were then spike-
sorted and the resulting spike trains compared to the known
ground-truth spike times, applying a popular metric of accuracy26.
This revealed how many neurons can be reliably recovered
depending on the degree of electrode pooling (Fig. 6b). Then we
evaluated the effects of various parameters of the simulation, such
as the amplitude of the largest spikes, the biological noise, and the
average firing rate.

For simplicity we focused on the favorable scenario of Fig. 2c:
It presumes that the experimenter can choose for pooling a set of
tetrodes that each carry a single unit plus noise. The curves of
recovered units vs pool size have an inverted-U shape (Fig. 6b).
For small electrode pools, one can reliably recover all the units.
Eventually, however, some of the units drop out, and for a large
pool size, all the recovered units fall below the desired quality

threshold. We will call the pool that produces the largest number
of recovered units the “optimal pool”.

For the “standard” condition of simulations, we chose a rea-
sonably large spike amplitude of 380 μV peak-to-peak (the 90th
percentile in a database of recordings by the Allen Institute27), a
firing rate of 10 Hz, and all the noise values as determined
experimentally from the Neuropixels 1.0 device (Fig. 4). Under
these conditions, one can pool up to 5 electrodes per wire and still
recover all 5 of the units reliably (Fig. 6b). This optimal pool size
is sensitive to the amplitude of the spikes: If the spike amplitude is
reduced by a factor of 2, the optimal pool drops from 5 to 3
electrodes. Similarly, if the biological noise increases to 15 μV, the
optimal pool is reduced to 4 electrodes. This indicates that the
recovery of the units from the pooled signal is strongly deter-
mined by the available signal-to-noise ratio at each electrode. By
contrast, increasing the firing rate two-fold to 20 Hz did not
change the optimal pool from 5. Thus the temporal overlap of
spikes is not yet a serious constraint. Looking to the future, if the
amplifier noise on each wire could be reduced by a factor of 2 the
optimal pool would expand significantly from 5 to 7 electrodes or
more (Fig. 6b).

How do these practical results relate to the theoretical bounds
of Fig. 2? Recall that this bound depends on the noise properties,
but also on the ratio of largest to smallest sortable spikes. In our
“standard” simulation with a pool size of 1 (split mode) we found
that the smallest sortable spikes had an amplitude of 75 μV. This
also corresponds to the low end of sorted spikes reported by the
Allen Institute (10th percentile27). With these bounds on large
and small spikes, and the measured values of private and com-
mon noise, one obtains α= 5.1 and β= 1.6 in Eq. (9), which
predicts an optimal pool of Mmax = 8 (Fig. 2c), compared to the
actually observed value of 5. The simple theory based purely on
signal and noise amplitude give a useful estimate, but additional
practical constraints that arise from temporal processing and
spike-sorting lower the yield somewhat from there.

In summary, under favorable conditions where the experi-
menter can select electrodes, the pooling method may increase
the number of units recorded per wire by a factor of 5. Even for
significantly smaller spikes or higher biological noise one can
expect a factor of 3. And with future technical improvements a
factor of 7 or more is plausible.

Discussion
Summary of results. This work presents the concept of electrode
pooling as a way to multiply the yield of large electrode arrays.
We show how the signals from many recording sites can be
combined onto a small number of wires, and then recovered by a
combination of experimental strategy and spike-sorting software.
The reduced requirement for wires coursing through the brain
will lead to slender array devices that cause less damage to the
neurons they are meant to observe. We developed the theory
behind electrode pooling, analyzed the trade-offs of the approach,
derived a mathematical limit to pooling, and developed a recipe
for experiment and analysis that implements the procedure
(Figs. 2, 3). We also verified the basic assumptions about signal
mixing and unmixing using a real existing device: the Neuropixels
1.0 probe (Figs. 4, 5). We showed that signals from different
neurons can be reliably disambiguated and assigned back to the
electrodes of origin. For the optimal design of electrode pools and
to analyze the resulting data, it is advantageous to gather
precise information about the impedance and noise properties
of the device. In simulations, we showed that with a
proper selection of electrodes based on the signals they carry, the
method could improve the yield of neurons per wire by a factor of
3–7 (Fig. 6).
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Electrode pooling is categorically different from most data
compression schemes that have been proposed for neural recording
systems28–30. In many of those applications, the goal is to reduce
the bit rate for data transmission out of the brain, for example using
a wireless link. By contrast, electrode pooling seeks to minimize the
number of electrode wires one needs to stick into the brain to
sample the neural signals, thus minimizing biological damage to the
system under study. By itself, that doesn’t reduce the bit rate,
although it produces denser time series. For the optimal wireless
recording system, both objectives—lower wire volume at the input
and lower data volume at the output —should be combined, and
their implementations are fully independent.

Future developments
Hardware. The ability to service multiple recording sites with a
single wire opens the door for much larger electrode arrays that
nevertheless maintain a slim form factor and don’t require any
onboard signal processing. On the commercially available Neu-
ropixels 1.0 device2 the ratio of electrodes to wires is only 2.5, and
thus there is little practical benefit to be gained from electrode
pooling. In most circumstances, the user can probably use static
selection to pick 40% of the electrodes and still monitor every
possible neuron. By contrast, the recently announced Neuropixels
2.0 array6 has an electrode:wire ratio of 13.3. Another device,
currently in engineering test, will have 4416 sites on a single

45 mm shank, with electrode:wire ratio of 11.5. For the Neuro-
pixels technology, the number of sites can grow with shank count
and shank length while channel count is limited by base area and
trace crowding on the shank. These new probes already offer
substantial opportunities to pool electrodes. Indeed, Steinmetz
et al.6 report an example of pooling two-electrode banks,
although their approach to unmixing the signals differs from that
advocated here.

The design of effective electrode pools requires some flexibility
in how recording sites are connected to wires. In the current
Neuropixels technology, each electrode has only one associated
wire, which constrains the choice of electrode pools. The CMOS
switch itself is small, but the local memory to store the switch
state occupies some silicon space31. Nonetheless one can
implement 3 switches per electrode even on a very tight pitch32.
When arranged in a hierarchical network15 these switches could
effect a rich diversity of pooling schemes adapted to the specifics
of any given experiment (Fig. 7). For example, one could route
any one electrode among a group of four to any one of three wires
with two 1:4 switches (Fig. 7c). This requires just 1 bit of storage
per electrode, as in the current Neuropixels probe2.

Another hardware design feature that could greatly increase the
capacity for electrode pooling: An optional analog inverter at each
electrode (Fig. 7d). This is a simple CMOS circuit that changes
the sign of the waveform33 depending on a local switch setting. If

Fig. 6 Simulations of electrode pooling. a Workflow: Groups of four recording sites ("tetrodes") each carry a spike train from one simulated unit,
superposed with electrode noise and biological noise. Between M= 1 and 12 of these tetrodes are then pooled into a single 4-wire recording followed by
the addition of common noise. The pooled signal is sorted and the resulting single-unit spike trains are matched with the ground truth spike trains from the
M tetrodes. Units with an accuracy metric> 0.8 are counted as recovered successfully. b Number of units recovered as a function of the pool size,M, under
various conditions of the simulation. Effects of varying different parameters. The "standard" condition serves as a reference: Spike amplitude V= 380 μV,
spike rate r= 10 Hz, electrode noise Nele= 1.6 μV, common noise Ncom= 5.7 μV, biological noise Nbio= 9 μV. "lower ampl": V= 205 μV. "higher rate":
r= 20 Hz. "higher bio": Nbio= 15 μV. "lower com": Ncom= 2.85 μV. Each parameter combination was simulated three times with noise and spike times
resampled, error bars are mean ± SD.
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half of the electrodes in a pool use the inverter, that helps to
differentiate the spike shapes of different neurons. Because
extracellular signals from cell bodies generally start with a
negative voltage swing, this effectively doubles the space of
waveforms that occur in the pooled signal. In turn, this would aid
the spike-sorting analysis, ultimately allowing even more
electrodes to share the same wire.

Of course each of these proposals comes with some cost, such
as greater power use or added space required for digital logic.
The overall design of a probe must take all these trade-offs into
account. The several-fold gain in recording efficiency promised
by electrode pooling should act as a driver in favor of fully
programmable switches, but deciding on the optimal design will
benefit from the close interaction between users and
manufacturers.

Software. Electrode pooling will also benefit from further devel-
opments in spike-sorting algorithms. For example, a promising
strategy is to acquire all the spike shapes present on the electrode
array using split-mode recordings, compute the expected pooled-
mode waveforms, and use those as templates in sorting the pooled
signals. We have implemented this so-called “hot sorting”
method in KiloSort2 and have shown that it can greatly increase
the number of split-mode cells recovered in the pooled recordings
(Fig. 5c). This idea may also be extended to cluster-based sorting
algorithms, by guiding the initialization of the clustering step.
Indeed, knowing ahead of time which waveforms to look for in
the recording would help any spike-sorter. We expect this
method will also improve the resolution of temporally over-
lapping spike waveforms.

As one envisions experiments with 10,000 or more recording
sites, it becomes imperative to automate the optimal design of
electrode pools, so that the user wastes no time before launching
into pooled recording (Fig. 3). The pooling strategy can be adapted
flexibly to the statistics of the available neural signals, even varying
along the silicon shank if it passes through different brain areas.
The user always has the option of recording select sites in

conventional mode; for example, this might serve to sample local
field potentials at a sparse set of locations. Designing an effective
algorithm that recommends and implements the electrode
switching based on user goals will be an interesting challenge.

High-impact applications. Finally, we believe that the flexible
pooling strategy will be particularly attractive in chronic studies,
where an electrode array remains implanted for months or years.
In these situations, maintaining an updated library of signal
waveforms is an intrinsic part of any recording strategy. Round-
the-clock recording serves to populate and refine the library,
enabling the design of precise spike templates, and effective
separation of pooled signals. The library keeps updating in
response to any slow changes in recording geometry that may
take place.

A second important application for pooling arises in the
context of sub-dural implants in humans. Here the sub-dural
space forces a low-profile chip with minimal volume for
electronic circuitry, whereas one can envision several slender
penetrating electrode shafts with thousands of recording sites. We
estimate that some devices that are now plausible (no published
examples yet) will have an electrode-to-channel ratio near 25.
Clearly one will want to record from more than 1/25 of the
available sites, and electrode pooling achieves it without increased
demand on electronic circuitry.

In summary, while the devices to maximize pooling benefits are
not yet available, they soon may be. Consideration of pooling
options would benefit the designers and users of these devices.
The advantage of pooling grows naturally as the same tissue is
recorded across sessions or time. The calculations and demon-
strations reported here are intended to inspire professional
simulations and the design of future devices for a variety of
applications, including human implants.

Methods
All analysis was performed with Matlab R2016b (Mathworks) and Python 3. All
the quoted uncertainties are standard deviations.

Fig. 7 Hardware schemes for flexible connection between electrodes and wires. a In the current Neuropixels array each electrode can be connected to
just one wire with a controllable switch. b Two switches per electrode would allow a choice of 2 wires, enabling many more pooling configurations. c
Because neighboring electrodes often carry redundant signals, one may want to choose just one from every group of 4. This switch circuit matches that
choice with one of 3 (or no) wires. d An optional inverter for each electrode, controlled by a local switch.
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Control of Neuropixels switching circuitry. The Neuropixels 1.0 probe has 960
recording sites that can be connected to 384 wires via controllable switches. The
conventional mode of operation (split mode) was to connect one electrode to one
wire at a time. Electrode pooling was implemented by modifying the Neuropixels
API and the GUI software SpikeGLX to allow connecting up to three electrodes to
each readout wire.

Neuropixels device measurements. To characterize signal and noise pooling on
the Neuropixels 1.0 array, we immersed the probe in a saline bath containing two
annular electrodes to produce an electric field gradient (Fig. 8a). The electrolyte
was phosphate-buffered saline (Sigma-Aldrich P4417; 1× PBS contains 0.01 M
phosphate buffer, 0.0027M potassium chloride and 0.137M sodium chloride, pH
7.4, at 25 ∘C). We recorded from all 383 wires (recall that one wire is a reference
electrode), first closing the switches in Bank 0 then in Bank 1, then in both banks
(Fig. 3b).

One set of measurements simply recorded the noise with no external field
applied. Then we varied the concentrations of PBS (by factors 10−3, 10−2, 10−1, 1,
and 10), which modulated the conductance of the bath electrolyte in the same

proportions. For each of the 15 recording conditions (5 concentrations × 3 switch
settings) we measured the root-mean-square noise on each of the 383 wires. Then
we set to explain these 5 × 3 × 383 noise values based on the input circuitry of the
Neuropixels device. After some trial-and-error we settled on the equivalent circuit
in Fig. 8b. It embodies the following assumptions:

● Each electrode is a resistor Ri in series with a capacitor Ci. The resistor is
entirely the bath resistance, so it scales inversely with the saline
concentration.

● The shunt impedance ZS across the amplifier input is a resistor RS in
parallel with a capacitor CS.

● The thermal noise from this R-C network and the voltage noise Namp from
the amplifier and acquisition system sum in quadrature.

With these assumptions, one can compute the total noise spectrum under each
condition. In brief, each resistor in Fig. 8b is modeled as a white-spectrum Johnson
noise source in series with a noiseless resistor (Thevenin circuit). The various
Johnson noise spectra are propagated through the impedance network to the
output voltage U. That power spectrum is integrated over the AP band

Fig. 8 Methods for in vitro measurements of Neuropixels function. a The probe is immersed in saline, with two annular electrodes producing an electric
gradient along the shank. b Equivalent circuit model to understand signal and noise pooling for one wire of the array. cMeasurements of noise only without
an external field. RMS noise as a function of the saline concentration under three conditions of the switches: split recording from Bank 0, split recording
from Bank 1, and pooled recording from both. Examples of two different wires, one with high, the other with low amplifier noise Namp. d The noise at the
highest saline concentration, recording from electrode 1 vs electrode 0. Each dot is for one of the 383 wires. This limiting noise is identical across the two
electrodes on the same wire. e Histograms of the best-fit circuit parameters derived for each of the 383 wires on a pristine Neuropixels probe. RS is too
large to be measured properly.
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(300–10,000 Hz) to obtain the total thermal noise. After adding the amplifier noise
Namp in quadrature one obtains the RMS noise at the output U. This quantity is
plotted in the fits of Fig. 8c.

The result is rather insensitive to the electrode capacitance Ci because that
impedance is much lower than the shunt impedance ZS. By contrast, the bath
resistance (R0, R1) has a large effect because one can raise it arbitrarily by lowering
the saline concentration. To set the capacitor values, we, therefore, used the
information from the Neuropixels spec sheet that the total electrode impedance at
1 kHz is 150 kΩ,

Ci ¼
1

2π � 1000 Hz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
150kΩð Þ2 � Ri

2
q ð12Þ

We also found empirically that the shunt impedance is primarily capacitive: RS
is too large to be measured properly and we set it to infinity. Thus the circuit model
has only 4 scalar parameters: R0, R1, CS, Namp. Their values were optimized
numerically to fit all 15 measurements. This process was repeated for each of the
383 wires. The fits are uniformly good; see Fig. 8c for examples.

As expected the thermal noise increases at low electrolyte concentration because
the bath impedance increases (Fig. 8c). However, the noise eventually saturates far
below the level expected for the lowest saline concentration. This reveals the
presence of another impedance in the circuit that acts as a shunt across the
amplifier input (Fig. 2a). We found that ZS ≈ 20MΩ. Because the shunt impedance
far exceeds the electrode impedances2 (~150 kΩ), it has only a minor effect on
signal pooling, which justifies the approximations made in Eq. (3).

The measured noise voltage also saturates at high saline concentration (Fig. 8c),
and remains far above the level of Johnson noise expected from the bath
impedance. That minimum noise level is virtually identical for the two electrodes
that connect to the same wire, whether or not they are pooled, but it varies
considerably across wires (Fig. 8d). We conclude that this is the amplifier noise
Namp introduced by each wire’s acquisition system (Fig. 2a).

Figure 8e shows the best-fit values of the 4 circuit parameters, histogrammed
across all the wires on an unused probe. Note they fall in a fairly narrow
distribution. The bath impedance of the electrodes (in normal saline) is ~13 kΩ, the
shunt capacitance is ~10 pF, and the common noise Namp has a root-mean-square
amplitude of ~6 μV integrated over the AP band (300–10,000 Hz).

These measurements were performed on both fresh and used Neuropixels
devices, with similar results. On a device previously used in brain recordings the
bath impedance of the electrodes was somewhat higher: 30 kΩ instead of 13 kΩ.

To measure the pooling coefficients we applied an oscillating electric field
(1000 Hz) along the electrode array with a pair of annular electrodes (Fig. 8a).
From the recorded waveform we estimated the signal amplitude by the Fourier
coefficient at the stimulus frequency. Two different field gradients (called A and B)
yielded two sets of measurements, each in the two split modes (U0,A, U1,A, U0,B,
U1,B) and the pooled mode (UP,A, UP,B). For each of the 383 wires, we estimated the
pooling coefficients of its two electrodes by solving

U0;A U1;A

U0;B U1;B

" #
k0
k1

� �
¼ UP;A

UP;B

" #
ð13Þ

These mixing coefficients k0 and k1 express the recorded amplitude UP in terms
of the recorded amplitudes U0 and U1,

UP ¼ k0U0 þ k1U1 ð14Þ

whereas the pooling coefficients c0 and c1 (Eq. (2)) are defined relative to the input
voltages V0 and V1, namely

UP ¼ c0V0 þ c1V1 ð15Þ
The Ui differ from the Vi only by the ratio of electrode impedance to shunt

impedance. Given the measured value of ZS ≈ 20MΩ that ratio is <1%, a negligible
discrepancy. So the measured k0 and k1 are excellent approximations to the pooling
coefficients c0 and c1, which in turn reflect the ratio of the two electrode
impedances (Eq. (2)).

In vivo recording. We used a Neuropixels 1.0 probe2 to record neural signals from
a head-fixed mouse (C57BL/6J, male, 9 months old). The probe entered the brain at
400 μm from the midline and 3.7 mm posterior from bregma at ~45∘ and was
advanced for ~6 mm, which corresponded to all of Bank 0 and roughly half of Bank
1. This covered many brain areas, from the retrosplenial cortex at the top to the
medial preoptic nucleus at the bottom. A detailed description of the mouse surgery,
probe implantation, and post hoc histology and imaging of probe track can be
found in a previous report34. All procedures were in accordance with institutional
guidelines and approved by the Caltech IACUC, protocol 1656.

Once the probe was implanted, data were recorded in the following order: (1)
split-mode in Bank 0 (i.e. all 384 wires connected to recording sites in Bank 0); (2)
split-mode in Bank 1; (3) pooled-mode across Banks 0 and 1. Each recording lasted
for ~10 min.

Following brain recordings, the array was cleaned according to recommended
protocol by immersion in tergazyme solution and rinsing with water.

Spike-sorting. For “manual” spike-sorting of the in vivo recordings, we used
KiloSort1 (downloaded from https://github.com/cortex-lab/KiloSort on Apr 10,
2018). We ran the automatic template-matching step; the detailed settings are
available in the code accompanying this manuscript. This was followed by manual
curation, merging units, and identifying those of high quality. These manual
judgments were based on requiring a plausible spike waveform with a footprint
over neighboring electrodes, a stable spike amplitude, and a clean refractory period.
This was done separately for each of the three recordings (split-mode Bank 0, split-
mode Bank 1, pooled-mode).

We implemented the “hot sorting” feature in KiloSort2 (downloaded from
https://github.com/MouseLand/Kilosort2 on Mar 19, 2020). No manual curation
was used in this mode, because (1) we wanted to generate a reproducible outcome,
and (2) manual inspection is out of the question for the high-volume recordings
where electrode pooling will be applied. We first sorted the two split-mode
recordings and used their templates to initialize the fields W and U of rez2 before
running the main template-matching function on the pooled recording (see the
accompanying code for more details). Finally, the splits, merges, and amplitude
cutoffs in Kilosort2 ensured that the final output contained as many well-isolated
units as possible. We then selected cells designated as high quality (KSLabel of
Good) by KiloSort2, indicating putative, well-isolated single neurons35.

To elaborate on the internal operations of Kilosort2: Spike-sorted units were
first checked for potential merges with all other units that had similar multi-
channel waveforms (waveform correlation >0.5). If the cross-correlograms had a
large dip (<0.5 of the stationary value of the cross-correlogram) in the range [-1 ms,
+1 ms], then the units were merged. At the end of this process, units with at least
300 spikes were checked for refractory periods in their auto-correlograms, which is
a measure of contamination with spikes from other neurons. The contamination
index was defined as the fraction of refractory period violations relative to the
stationary value of the auto-correlogram. The default threshold in Kilosort2 of 10
percent maximum contamination was used to determine good, well-isolated units.

Following spike sorting, we applied the matching algorithm based on cosine
similarity (Fig. 5b) to determine how many cells identified in split recordings could
be recovered from the pooled recording. This was compared with the results from
“cold sorting”, in which the pooled recording was sorted on its own, as well as to
the conventional sorting that includes manual curation (Fig. 5c).

Unmixing pooled signals. After sorting the split and pooled recordings, we
computed the average waveform of every cell. Specifically, for each cell we averaged
over the first n spikes, where n was the lesser of 7500 or all the spikes the cell fired
during the recording.

We then sought to identify every cell in the pooled recordings with a cell in the
split recordings. This was done by the following procedure: Let S denote a cell
sorted from the split-mode recording (S 2 S) and Si its waveform at channel i.
Although i can range from 1 to 384 (the total number of wires available in the
Neuropixels probe), we only focus on the 20 channels above and 20 channels below
the channel with the largest amplitude (i0), i.e. J ¼ ½i0 � 20; i0 þ 20�. We wish to
find the cell P from the pooled-mode recordings (P 2 P) that is closest to S. To do
so, we compute the cosine similarity score for each pair (S, P):

ΣðS; PÞ ¼ S � P
jjSjjjjPjj ð16Þ

where S and P are column vectors obtained by concatenating every Sj and Pj (j∈ J),
respectively, and ∣∣⋅∣∣ is the ℓ2 norm. Σ is a jSj-by-jPj matrix. We identify the
largest element of Σ, which corresponds to the most similar pair of S and P. We
then update Σ by removing the row and column of this largest element. This
process gets iterated until every P 2 P is given a best match. By manual inspection
we found that pairs with similarity scores >0.9 were good matches.

Estimating pooling coefficients in vivo. Once each P 2 P was assigned a match
S 2 S, the pooling coefficient (k) was computed by solving the optimization pro-
blem below for each i with a least squares method (mldivide in Matlab).

eq : findc argminki jjPi � kiSijj ð17Þ
Sometimes a single recording site detected action potentials from multiple cells.

As a result, its pooling coefficient could be estimated from the signal of each of
these cells. Typically these estimates deviated from each other by <0.1. In these
cases, we assigned the average of these values as the pooling coefficient of the
recording site.

When two recording sites that share a wire in pooled mode each carry a
significant signal, it enables the estimation of both of their pooling coefficients.
Examples of such sites are shown in Figs. 5d–e (up to 50 pairs in Banks 0 and 1).

Simulation
Generating simulated data. We simulated extracellular voltage signals on 12 groups
of 4 local electrodes (“tetrodes”). Each time series was sampled at 30,000 samples/s
and extended over 600 s. After combining signal and noise as described below, the
time series were filtered with a passband of 300–5000 Hz.

Each tetrode carried spikes from a single unit. The spike waveform of the unit
was chosen from an actual mouse brain Neuropixel recording, with a different
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waveform on each tetrode. Within a tetrode, one electrode chosen at random
carried this spike at the nominal peak-to-peak amplitude, V (Fig. 6b). On the other
three electrodes, the spike was scaled down by random factors drawn from a
uniform distribution over [0,1]. The spike train was simulated as a Poisson process
with a forced 2-ms refractory period, having an average firing rate r (Fig. 6b).

Three sources of noise—biological noise Nbio, thermal electrode noise Nthe, and
common amplifier noise Ncom—were generated as gaussian processes. The quoted
noise values (Fig. 6b) refer to root-mean-square amplitude over the 300–5000 Hz
passband. Thermal noise was sampled independently for each electrode, but the
biological noise was identical for electrodes within a tetrode, given that they likely
observe the same background activity.

Electrode pooling across M tetrodes was implemented by combining the voltage
signals of the corresponding electrode on each tetrode, resulting in signals on four
wires. In the process each electrode signal was weighted by 1/M, then the amplifier
noise was added to the resulting average. Amplifier noise was sampled separately
for each wire.

Tetrodes were added to the pool in a sequence determined by the spike shape of
their units. We started with the two most dissimilar units as determined by the
cosine similarity of their spike waveforms. Then we progressively added the unit
that had the lowest similarity with those already in the pool.

Sorting simulated data. The simulated 4-wire time series were sorted using Kilo-
Sort2; detailed configuration settings are available in the code accompanying this
paper. We found it necessary to turn off the “median voltage subtraction” during
preprocessing, because that feature somehow introduced artifacts in the 4 voltage
traces. This did not occur when processing electrode array data with many
channels, for which the algorithm is intended. We note that an effective means of
subtracting the common signal across wires may help suppress the biological noise
and lead to better sorting results.

When large numbers of tetrodes were pooled the signal-to-noise ratio dropped
to the point where KiloSort2 could not form templates in the preprocessing step.
Under those conditions, we report zero units recovered (Fig. 6b).

Scoring simulated data. Following previous reports26,36, the spike times of the
sorted units and the ground truth units were matched and compared using the
confusion matrix algorithm from ref. 36. We set the acceptable time error between
sorted spikes and ground-truth spikes at 0.1 ms. Then we counted the number of
spike pairs with matching spike times, nmatch, the number of unmatched spikes in
the ground-truth unit, nmiss, and the number of unmatched false-positive spikes in
the sorted unit, nfp.

To assess the quality of the match between ground-truth and sorted units we
adopted the Accuracy definition in ref. 26:

Accuracy ¼ nmatch

nmatch þ nmiss þ nfp
ð18Þ

Figure 9 shows the accuracy distribution obtained for various degrees of
pooling. Sorted units with accuracy >0.8 were counted as “recovered” from the
pooled signal. For each parameter set we ran the simulation three times,
randomizing the noise and the spike times. Results from the three runs are reported
by mean ± SD (Fig. 6b).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data relevant to the reported results are available in a public repository: https://
github.com/markusmeister/Electrode-Pooling-Data-and-Code. An archived version is
available from CaltechDATA: https://doi.org/10.22002/D1.2032.

Code availability
All code used to obtain the reported results are available in a public repository: https://
github.com/markusmeister/Electrode-Pooling-Data-and-Code. An archived version is
available from CaltechDATA: https://doi.org/10.22002/D1.2032.
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