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Abstract

There is increased interest in the use of prediction models to guide clinical decision-making in 

orthopedics. Prediction models are typically evaluated in terms of their accuracy: discrimination 

(area-under-the-curve [AUC] or concordance index) and calibration (a plot of predicted vs. 

observed risk). But it can be hard to know how high an AUC has to be in order to be “high 

enough” to warrant use of a prediction model, or how much miscalibration would be disqualifying. 

Decision curve analysis was developed as a method to determine whether use of a prediction 

model in the clinic to inform decision-making would do more good than harm. Here we give 

a brief introduction to decision curve analysis, explaining the critical concepts of net benefit 

and threshold probability. We briefly review some prediction models reported in the orthopedic 

literature, demonstrating how use of decision curves has allowed conclusions as to the clinical 

value of a prediction model. Conversely, papers without decision curves were unable to address 

questions of clinical value. We recommend increased use of decision curve analysis to evaluate 

prediction models in the orthopedics literature.
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Prediction models to guide clinical decision-making in orthopedics

There is increasing interest in using statistical prediction models to aid diagnosis or 

prognosis. This is at least in part because statistical prediction has been shown to be more 

accurate than clinician judgment, use of risk-groups or decision rules. In a typical study, 

clinicians were asked to predict whether a prostate cancer patient would have a positive bone 

scan. For any randomly selected pair of patients, one with and one without a positive bone 
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scan, the probability that the clinician would make a correct guess (the concordance index) 

was only 63%, compared to 81% for a prediction model1.

Prediction models are also of value because they allow individualization of care based 

on patient preference. Consider the example of surgery for pathologic spinal fractures in 

patients with metastatic cancer. Traditionally, the decision for surgery has relied on clinical 

judgment in assessing patients’ histology, extent of metastatic burden, prior treatment 

modalities, and life expectancy before recommending surgery2. Some surgeons have adopted 

a decision rule, which is to treat patients with a Spinal Instability Neoplastic Score (SINS) 

of 13 or above3. The problem with clinician judgement or a decision rule is that they are 

hard to adapt to patient preference. An older, less active patient who is averse to procedures 

may have a higher threshold for surgery than a younger, more active patient, who wants 

to maximize mobility during their battle with cancer. What would be the appropriate SINS 

cut-off for each of these patients? A prediction model gives a quantitative estimate of 

absolute risk, allowing for a discussion that incorporates such preferences.

How do we know if a prediction model is a good one? Problems with 

traditional measures

Just as we use randomized controlled trials to evaluate treatments, we need studies to 

evaluate prediction models. As described in the TRIPOD statement4, the design of such 

studies is relatively straightforward: the results of the prediction model are obtained (blind to 

patient outcome) and compared to patient outcome (in a cohort where outcome is unaffected 

by the prediction model). Here we will focus on how the results of such studies are analyzed, 

the metrics for evaluating prediction models. The most common metric is the area-under­

the-curve (AUC), obtained from the receiver operating characteristic plot of sensitivity 

against 1 – specificity. The AUC is a concordance index, or c-statistic, which, as described 

above, provides the probability that a randomly-selected patient who experienced an event 

received a higher risk score than a randomly-selected patient who did not. As such, it is 

measured on a scale from 0.5 (a “coin flip”) to 1 (perfect discrimination).

Many statisticians point out that discrimination is not enough for a model5. A model with 

high discrimination tells a patient how well their personal risk can be distinguished from 

another patient but does not tell them whether the actual risk they are given by a model 

is accurate. Indeed, if the risk predictions from a model were divided by 100 – so that 

even very high-risk patients were told they had little chance of disease — the concordance 

index would not change. We therefore also consider calibration, which describes how well a 

predicted risk aligns with observed risk: a model is well-calibrated if, for every 100 patients 

given a risk of x%, close to x actually have the event.

Calibration is generally reported in the form of a calibration plot, such as that shown in 

Figure 1 and Figure 2. The data are first split up into groups, typically 10, in terms of 

predicted risk. The observed risk in each group is then calculated along with a 95% C.I. For 

instance, it can be seen in Figure 1 that patients in the highest 10% of risk – the group on 

the far right – have a predicted risk a little above 60% (63% to be precise), but in fact very 

slightly less than 60% actually had the outcome.

Vickers and Holland Page 2

Spine J. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discrimination and calibration provide valuable information for researchers. Poor 

discrimination, for instance, demonstrates the predictors in a model are not strongly 

associated with outcome, such that researchers should consider additional predictors. Poor 

calibration of a model suggests genuine differences between the data set used to generate a 

model and the evaluation data set. For instance, a model predicting in-patient mortality for 

geriatric hip fracture patients was developed using a cohort of patients from the Netherlands 

and included, as predictors, the American Society of Anesthesiologists (ASA) score and 

institutional versus home residence6. The model might be miscalibrated when applied to a 

US population if there are differences between how US and Dutch clinicians score the ASA 

or if there are national differences in the health of individuals in institutional facilities versus 

living at home.

However, it is questionable whether, over and above providing information to researchers, 

discrimination and calibration can help clinicians decide whether or not to use a prediction 

model in their practice. For instance, the Dutch researchers report an AUC of 0.77 for their 

hip fracture mortality model. Is this high enough to warrant an orthopedic surgeon using 

the model to decide which patients should undergo hip fracture surgery, or would the AUC 

need to be closer to 0.85? Similarly, how much miscalibration would be “too much” and 

suggest that a model should not be used? For instance, if the model in Figure 2 had high 

discrimination, should it be used to aid clinical decision-making or is calibration too poor?

Decision curve analysis was developed as a method to determine whether use of a prediction 

model in the clinic to inform clinical decision-making would do more good than harm7. 

Here we give a brief introduction to decision curve analysis, including references and further 

reading, and give an overview of how it has and could be used in the orthopedic literature.

Decision curve analysis of orthopedic prediction models

To demonstrate the advantages of decision curve analysis, we will consider the example of 

pathologic spinal fractures in metastatic disease. In this example, early surgical intervention 

reduces the risk of a fracture, and hence the risk of severe pain and functional impairment. 

However, surgery is associated with high complication rates. Accurately predicting the risk 

of pathologic fractures is therefore highly beneficial in determining who to treat and who 

to observe until symptoms progress and risk of fractures increases. Typically, patients are 

recommended for surgery on the basis of high SINS or imaging results.

We will use a hypothetical example for illustrative purposes. Suppose there are two 

prediction models, model A and model B, that have been developed by two different teams 

to predict a patient’s risk of pathologic fractures within the next 6 months using variables 

such as SINS and history of osteoporosis as predictors. A study is conducted to evaluate 

both models on an independent cohort of 1000 patients who were eligible for surgery on the 

basis of SINS or imaging but in fact never underwent an operation. The investigators report 

AUCs of 0.715 vs. 0.758 for model A and model B with calibration as shown in Figures 1 

and 2. The obvious problem is that calibration is superior for model A but discrimination 

is better for model B. It is hard to tell whether the miscalibration shown for model B in 
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Figure 2 offsets the advantages of superior AUC. One might also reasonably ask the question 

whether either model should be used at all.

This is exactly the sort of problem that decision curve analysis was designed to address. 

We start from the idea that, in order to know whether the benefits of a model outweigh the 

harms, we have to put some numbers on benefit and harm. To do so, we need to think about 

the threshold probability of disease. This is defined as the minimum probability of disease 

(in this case, future pathologic fracture) at which a decision-maker — doctor or patient - 

would opt for an intervention (in this case, surgery). Consider that, if a patient were told that 

the probability of pathologic fractures was 1%, the discomfort and risks of surgery would 

certainly outweigh any benefit from reduced risk of fracture. Conversely, if the patient were 

told the risk of fractures was 99%, they would certainly choose to have surgery. If we were 

to gradually increase the probability of pathologic fractures from 1% to 99%, there would 

come a point where the patient would be unsure whether or not to have surgery. We call 

this point pt, the threshold probability and it is directly linked to how the consequences of 

the decision are weighted. For example, imagine that a patient stated that they would opt for 

surgery if their risk of pathologic fractures were 25% or higher but not if their risk were less 

than 25%. A 25% risk of fracture is a 75% chance of no fracture, a 3:1 ratio. Therefore, a 

patient with a pt of 25% thinks that the benefits of early surgical intervention for pathologic 

fractures are worth three times more than the harms of unnecessary surgery.

Decision curve analysis applies this intuition to account for clinical consequences and 

thereby quantify benefits and harms. The threshold probability pt is used in a simple formula 

to calculate the net benefit of the prediction model. The idea of net benefit analogous to 

profit, where revenue and costs are put on the same scale and compared directly. As an 

illustration, take the case of a wine importer who pays €1m to buy wine in France and then 

sells it for $1.5m in the United States. To determine the profit, the exchange rate between 

euros and dollars is required to put revenue and cost on the same scale using the formula: 

profit = income — expenses × exchange rate. If €1 is worth $1.25, then profit is $1.5m 

- €1m × 1.25 = $250,000. Applying this principle to the medical setting, profit is true 

positives – the model accurately identifies a patient who is destined to get a fracture and 

recommends risk-reducing surgery – and cost is false negatives: patients who would not get 

a fracture but for whom the model recommends surgery nonetheless. The exchange rate is 

derived from the threshold probability as described above. This gives the formula below, 

where N is the total number of patients

Net Benefit =
True positives − False positives ×

pt
1 − pt

N

In table 1, we apply net benefit to the study where model A and B were applied to the 

cohort of 1000 patients. We also include two clinical strategies that are alternatives to using 

a model: “treat none” or “treat all”. Model A has a higher net benefit than model B, despite 

model B having better discrimination, and it is also superior to recommending that either all 

or no patient gets surgery. Hence using model A to choose who gets surgery would lead to 

the best clinical outcome.
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An obvious problem with this approach is that we fixed the threshold probability at 25%. 

There may be some patients who are more averse to surgery – and who would want to avoid 

surgery unless they really needed it – or some doctors who are more aggressive. So what 

we do in decision curve analysis is to vary the threshold probability pt across a reasonable 

range and then calculate net benefit for each strategy at every level of threshold probability 

pt. Figure 3 shows the decision curve using a range for threshold probabilities from 20% 

to 50% on the grounds that, given the harms of surgery, few doctors would recommend 

surgery for a patient with a risk less than 20% and, on the other hand, few patients would be 

prepared to risk a greater than 50:50 chance of a fracture and not get surgery. The decision 

curve shows that model A has the highest net benefit across the whole range of reasonable 

threshold probabilities. What we can conclude is that we would improve clinical outcome if 

we were to use model A to decide which patients should undergo surgery rather than treating 

all patients, no patients or using model B to decide. For more on understanding net benefit, 

see Vickers et al.8

It is not always the case that a model is clinically useful, even if it is well calibrated and 

has good discrimination. Consider the example of anemia after major orthopedic surgery, the 

prevalence of which can be as high as 85%9. It has been proposed that patients should be 

given intravenous iron to reduce the risk of anemia10. But postoperative anemia is actually 

relatively predictable in terms of age, sex, preoperative hemoglobin and type of fracture, so 

we might imagine that a group of investigators build a prediction model and then propose 

that intravenous iron is only given to patients at higher risk.

Let us assume that the model is perfectly calibrated and has a high discrimination of 0.80. 

Figure 4 shows the decision curve for a simulated data set for such a model. It can be seen 

that the model is not better than the strategy of just giving all patients intravenous iron as a 

standard prophylactic measure unless the threshold probability is 50% or higher. Of course, 

given that postoperative anemia is associated with important complications, including 

infection, delayed discharge and even mortality9, and intravenous iron is a relatively safe 

intervention, we would probably give iron if the risk of anemia was relatively low, 5% or 

10%. The decision curve shows that the model is not of value in this range. The problem 

is that the prevalence of postoperative anemia is very high (we can actually see this on the 

decision curve: the curve for “treat all” crosses that for “treat none” at the prevalence). A 

model would have to be extremely accurate to move a patient’s risk from the average (85%) 

all the way down to below a threshold of 5 or 10%.

Decision curve analysis can also show that models can actually be harmful. In Figure 5, 

which is based on the pathologic fracture example, the net benefit for the model is lower 

than for “treat all” for some probability thresholds. In other words, using the model would 

be worse than just doing the surgery in all eligible patients. This can happen if the model is 

miscalibrated. It is not hard to see how a patient can make a bad decision to avoid surgery if 

they are told that they are at lower risk than they truly are.
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How are models evaluated in the orthopedics literature?

Several prediction models in the orthopedic literature have presented measures of accuracy 

without a decision curve analysis. For instance, one group of investigators developed several 

models to predict rotator cuff tears, the idea being to reduce the burden of further invasive 

and expensive tests such as arthrograms and magnetic resonance imaging11. However, 

because the authors only report measures such as the AUC, and sensitivity / specificity, 

we do not know whether we would improve clinical outcome were we to use the model 

to aid decision-making about work-up. Similarly, a model for predicting metastasis in 

osteosarcoma, reported a concordance index of 0.8012. The authors claimed that this was a 

good level of discrimination and that use of the model could improve patient outcomes by 

individualizing the aggressiveness of treatment according to risk of metastasis. But again, 

we are left with wondering whether a concordance index of 0.80 is high enough to warrant 

changes to life-and-death decisions about surgery and chemotherapy.

In contrast, a different study group addressed a similar problem but reported a decision curve 

as well as accuracy metrics. Interestingly, although a model including radiomics data had 

better discrimination for prediction of osteosarcoma outcomes, AUCs of 0.84 vs. 0.73, it did 

not show higher net benefit unless threshold probabilities were relatively high, above 40% 

or so. This demonstrates the value of a decision curve analysis to complement reporting of 

calibration and discrimination13.

Karhade et al. evaluated models to predict 90-day and one-year survival for patients with 

spinal metastasis and thereby inform whether to undergo palliative surgery. The best model 

had an AUC of 0.83 and 0.89 for 90 day and one-year survival respectively; it was well­

calibrated for the former endpoint but less so for the latter. Again, it is difficult to know 

whether these levels of discrimination and calibration are sufficient to warrant use of the 

model to aid decision-making. However, the authors also applied decision curve analysis and 

found good net benefit across a wide-range of threshold probabilities14.

Decision curve analysis was also applied in a study investigating whether an osteogenomic 

profile could improve the assessment of fracture risk in patients considering treatment for 

osteoporosis. The authors were able to demonstrate that adding the genomic profile to a 

standard risk prediction improved net benefit. They also used the net benefit results to 

quantify the improvement affording by the genomic approach, the equivalent of detecting an 

additional 3 fractures in women and 11 in men per 1000 patients with no increase in false 

positives. This allows the reader to consider whether genomic profiling would be clinically 

worthwhile15. For an example of decision curve analysis applied to prediction model for 

amputation, see Forsberg et al.16

Conclusion

Unlike traditional biostatistical methods, which only evaluate the accuracy of a model, 

decision curve analysis can tell us whether using a model to aid clinical decision-making 

would improve outcomes for our patients. Decision curve analysis is now widely used in the 

literature – the primary publication has over 1500 citations – and has been recommended 
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in editorials in several major journals including JAMA, BMJ, Journal of Clinical Oncology 
and Annals of Internal Medicine 17–20. Didactic papers on creating and interpreting decision 

curves have been published8,21,22 and are summarized, along with statistical code, tutorials 

and data sets, at www.decisioncurveanalvsis.org. We recommend increased use of decision 

curves to evaluate prediction models in the orthopedics literature.
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Figure 1. Calibration plot for a hypothetical model (“Model A”) predicting pathologic spinal 
fracture in patients with metastatic disease.
The model has good calibration, with predicted risk close to observed risk.
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Figure 2. Calibration plot for a hypothetical model (“Model B”) predicting pathologic spinal 
fracture in patients with metastatic disease.
The model underestimates risk for patients at higher predicted risk.
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Figure 3. Decision curve analysis for two hypothetical models predicting pathologic spinal 
fracture in patients with metastatic disease.
Model B has better discrimination (0.715 vs. 0.758) but is miscalibrated(figure 2). The 

decision curve shows that the miscalibration offsets improved discrimination: model A has 

a higher net benefit compared to model B, as well in comparison to the clinical default 

strategies of “treat all” or “treat none”, over the entire range of reasonable threshold 

probabilities. Using model A to decide which patients should receive surgery would 

therefore lead to the best clinical outcomes.
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Figure 4. Decision curve analysis for a model predicting anemia after hip surgery.
The model only has benefit at threshold probabilities that are irrelevant for the clinical 

scenario. Note that, for didactic purposes and unlike a typical decision curve, the entire 

range of threshold probabilities is shown.
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Figure 5. Decision curve analysis for a hypothetical model predicting pathologic spinal fracture 
in patients with metastatic disease.
The model leads to worse outcome than treating all patients at some threshold probabilities 

and so using the model in clinical practice would lead to harm.
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Table 1.
Net benefit of the two models for predicting facture.

Net benefit is given at a threshold probability of 25% along with that for the clinical alternatives of 

recommending surgery for all or no patients.

Strategy  True positives: patients 
recommended for surgery 
who would otherwise get a 

fracture

 False positives: patients 
recommended for surgery 
who will not get a fracture

Net benefit

Recommend surgery for all 
patients

306 694 (306–694 x (0.25 ÷ 0.75)) ÷ 1000 = 
0.0747

Recommend surgery if risk ⩾ 25% 
according to Model A

240 335 (240–335 x (0.25 ÷ 0.75)) ÷ 1000 = 
0.128

Recommend surgery if risk ⩾ 25% 
according to Model B

136 84 (136 – 84 x (0.25 ÷ 0.75)) ÷ 1000 = 
0.108

Surgery for no patients 0 0 (0 – 0 x (0.25 ÷ 0.75)) ÷ 1000 = 0
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